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Abstract: Due to its increasing incidence, skin cancer, and especially melanoma, is considered a major
public health issue. Manually detecting skin lesions (SL) from dermoscopy images is a difficult and
time-consuming process. Thus, researchers designed computer-aided diagnosis (CAD) systems to
assist dermatologists in the early detection of skin cancer. Moreover, SL detection naturally exhibits a
long-tailed distribution due to the complex patient-level conditions and the existence of rare diseases.
Very limited research for handling this issue exists on SL detection. In this paper, we propose an
end-to-end decoupled training for the long-tailed skin lesion classification task. Specifically, we
initialized the training of a network with a novel loss function L f able to guide the model to a
better representation of the features. Then, we fine-tuned the pretrained networks with a weighted
variant of L f helping to improve the robustness of the network to class imbalance. We evaluated our
model on the ISIC 2018 public dataset against existing methods for handling class imbalance and
existing approaches for SL detection. The results demonstrated the superiority of our framework,
outperforming all compared methods by a minimum margin of 2% with a single model.

Keywords: skin lesion detection; computer-aided diagnosis; long-tailed distribution; deep learning

1. Introduction

Skin cancer is an invasive disease caused by the abnormal growth of skin cells in the
body. Skin cancer incidences have increased dramatically throughout the last decade [1].
Melanoma is the most dangerous type of skin cancer. Although its occurrence rate is 4%,
it is responsible for about 75% of all skin-cancer-associated deaths [2]. The only way to
prevent patient death from melanoma is to diagnose it earlier.

The clinical diagnosis of skin cancer starts with a visual examination of the suspect
areas followed by a histopathological analysis. This protocol is time-consuming, complex
and subjective due to the fact that the accuracy of diagnosis is strongly related to the
dermatologist’s experience [3]. Therefore, it is deemed desirable to invest research efforts in
the development of methods that can assist clinicians in the early detection of skin cancer.

An active strand of work aimed to tackle the challenging skin lesion (SL) detection
with the help of computer-aided diagnosis (CAD) systems. In particular, CAD based on
deep learning models through convolutional neural network (CNNs) has been achieving
remarkable results in the automated detection of SL, outperforming dermatologists’ level
in an experimental context [3–5].

Existing approaches to develop CAD for SL diagnosis can be categorized as follows:
systems based on one single CNN [6–8], systems using multiple CNNs [9–11], and systems
using CNNs combined with other classifiers [12–14]. The review articles in [2,15,16] can be
referred to for detailed insights of deep learning approaches used for SL detection.
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The rise of modern deep learning techniques has led to a great performance improve-
ment on the challenging task of SL detection. However, the use of such systems in a real
clinical context is still delayed by the fact that SL datasets present skewed data distributions
where a few classes (head classes) contain a large number of samples, while most classes
(tail classes) are under-represented [17]. The difficulty of training a model on a long-tailed
dataset mainly comes from two aspects. First, deep learning methods are hungry for data,
but annotations of tail classes might be insufficient for training. Second, the model tends
to bias towards head classes since the head class objects are the overwhelming majority
in the entire datasets [18]. For example, the popular public dataset of SL ISIC 2018 [19,20]
has a ratio between rare and majority classes greater than fifty, indicating a serious class-
imbalance issue. Figure 1 illustrates the long-tailed distribution of the ISIC 2018 dataset.
Very limited research on the robustness of methods to design CAD systems able to alleviate
the long-tailed imbalance problem is available in the area of SL detection [16]. Developing
methods to construct CAD systems robust to class imbalance is therefore crucial to spread
the use of such systems in a real clinical context.

Figure 1. Illustration of the distribution of the ISIC 2018 public dataset [19,20]. The dataset exhibits a
long-tailed distribution with a ratio between rare and majority classes greater that about fifty. Head
corresponds to lesions in the dataset that are over-represented and Tail to lesions in the dataset that
are under-represented.

In this work, we propose a novel deep learning framework using a single CNN to
design a CAD system for SL detection which is robust to class imbalance. Current existing
approaches dealing with class imbalance can be subdivided into three approaches [17]: data
processing, cost-sensitive weighting, and decoupling methods. The decoupled training
seems to achieve better performance than the reweighting methods [21]. In general, a
decoupled training involves a two-stage pipeline that learns representations under the
imbalance dataset at the first stage, then rebalances the classifier with a frozen represen-
tation at the second stage. However, one of the main drawbacks of this approach is that
the representation could be suboptimal since it is not jointly learned with the classifier [18].
Inspired by this, we propose a two-stage end-to-end training with two novel loss functions
(L f and Lc) able to meet the two objectives of the decoupled training without disjoining
the training of deep features and classifiers. The first stage uses the L f loss and guides the
model to learn better representations for weight initialization. The L f loss helps to improve
the performance of the feature model in the first stage of the decoupled training and out-
performs cross-entropy with an instance-balancing strategy which is widely adopted in
decoupled training. Then, the second stage focuses on dealing with the skewed distribution
of the data. Specifically, the second training phase uses the Lc loss which reduces the
loss contribution of easy and outlier examples, while maintaining a high-loss contribution
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for harder examples, allowing the model to give attention to the informative samples,
making it robust to class imbalance. We conduct several experiments to demonstrate the
effectiveness of our approach on the ISIC 2018 dataset.

In summary, our key research contributions are:

• We propose two new loss functions, L f and Lc, able to weight samples more efficiently
so as to guide the network to focus on informative samples;

• We propose an approach able to handle both the class imbalance issue and the outlier
issue;

• We propose a new learning scheme for the decoupled training following an end-to-end
process;

• We demonstrate the strength of our method on the ISIC 2018 long-tail benchmark
dataset and show improved performance over both existing methods that deal with
the class imbalance problem and prior works on the same tasks.

The remainder of the manuscript is organized as follows: some related work is dis-
cussed in Section 2. In Section 3, we formally describe the problem and present a prelim-
inary analysis of its impact. Section 4 describes the materials and methodology applied.
Then, the experimentation results and discussion are provided in Section 5. The conclusions
of the research are discussed in Section 6.

2. Related Work
2.1. Design of CAD System for Skin Lesion Detection

The current trends in designing SL diagnosis systems can be subdivided into three
types of approaches [15]: those based on one CNN, those that combined multiple CNNs
through an ensemble method, and those that combined CNNs with other classifiers.

2.1.1. CAD Based on One CNN

The first breakthrough of applying CNNs on SL came from Esteva et al. [5]. They
trained a CNN using a very large dataset with 129,450 clinical images and 2032 different dis-
eases and tested its performance against 21 board-certified dermatologists on biopsy-proven
clinical images to perform a binary classification between two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant
melanomas versus benign nevi. Their results showed that the automatic system achieved
similar performance to experts, demonstrating a level of competence comparable to that of
dermatologists. Lucius et al. [6] evaluated the performances of eight CNNs in categorizing
the seven most common pigmented SL. They observed that the least accurate CNN out-
performed general practitioners and that a CNN could improve a general practitioner’s
diagnosis accuracy in a routine clinical scenario. Zhang et al. [8] proposed an attention
residual learning CNN model. Their proposed network aimed to exploit the intrinsic
self-attention ability of a CNN and generated attention maps at lower layers to improve
classification performance. Yao et al. [7] combined the focal loss [22], class-balanced
loss [23] and the RandAugment [24] augmentation strategy to design a CAD based on a
single CNN model for the multiclass classification of SL and reached a balanced accuracy
score of 0.86 on the ISIC 2018 dataset.

2.1.2. CAD Based on an Ensemble of CNN

Another successful technique to improve CAD systems for SL detection is by assem-
bling a finite set of CNNs. Harangi et al. [25] fused the outputs of four CNNs by applying
a weighted fusion strategy in a three-class classification task, achieving an area under
the receiver operating curve (AUROC) of 0.89 which was superior to the performance of
each CNN individually. Jordan Yap et al. [9] proposed a method that considered several
image modalities, including patient’s metadata, to improve the classification results. The
ResNet50 network they used was differently applied over dermoscopic and macroscopic
images, and their features were fused to perform the final classification. Their multimodal
classifier outperformed the basic model using only macroscopy with an AUROC of 0.866.
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Gessert et al. [10] assembled some well-known CNNs to perform a multiclass classification
of SL. They first applied multiple model input resolutions and employed a cropping strat-
egy to train their models. Then, they created a large ensemble with the optimal subset of
models based on the cross-validation performance. In the same context, Foahom et al. [11]
applied an ensemble and aggregation method along with a directed acyclic graph technique
to develop a diagnostic system classifying SL into three classes: seborrheic keratosis, nevi,
and melanoma. Their approach showed improvement in performance compared to a
previous ensemble method of multiclass CNNs.

2.1.3. CAD Based on CNNs Combined with Other Classifiers

As mentioned earlier, some studies design CAD systems by combining CNNs with
other classifiers. In this context, Mahbod et al. [13] proposed a fully automatic computerized
method that was an ensemble of deep features from several well-established CNNs at
different abstraction levels in combination with a support vector machine classifier to
distinguish malignant melanomas from benign lesions. Similarly, Hagerty et al. [14]
presented an approach that combined conventional image processing with deep learning
by fusing the features from the individual techniques. Their method led to a 7% AUC
improvement over the CNN model alone. Almaraz-Damien et al. [12] proposed a new
CAD system based on a fusion of handcrafted features related to the medical algorithm
ABCD rule (asymmetry borders–colors–dermoscopic structures) and deep learning features
employing mutual information measurements. The deep features used for the fusion were
obtained by transfer learning on pretrained CNNs. Abunadi et al. [26] also proposed
a hybrid CAD system that combined handcrafted features such as wavelet transform,
gray-level co-occurrence matrix, and local binary pattern with an artificial neural network.

As mentioned earlier, the objective of this study was to alleviate the class imbalance
issue in the development of CAD for SL detection. To that end, we based our approach
on the construction of a robust CAD system using a single CNN. We believe that, once we
have successfully solved the issue of class imbalance, the proposed method may be easily
integrated to an ensemble scheme to improve its performance.

2.2. Methods for Handling Long-Tail Distributions

Various methods have been proposed to reduce the bias of classifiers trained on long-
tailed distribution datasets. Existing methods can be divided into three categories [17,27]:
data-level approaches, classifier-level approaches, and decoupled training.

2.2.1. Data-Level Approach

The data-level approach focuses on adjusting the class ratio in the input dataset to
achieve a balanced class distribution. This approach often employs sampling techniques
such as undersampling, oversampling, or a combination of both.

Oversampling consists of generating new minority-class samples from the available
unbalanced data. Random oversampling is one oversampling strategy that consists of
randomly replicating instances of the minority class. Another strategy, called focused over-
sampling, consists of resampling only instances of minority classes near the classification
boundary. However, both strategies present major shortcomings. Random oversampling in-
creases the possibility of overfitting the classifier and increases the computational cost, while
focused oversampling leads to a more specific decision region of the minority class [28].
The synthetic minority oversampling technique (SMOTE) [29] is an algorithm proposed
to address these issues. SMOTE attempts to create more diversity among the minority
class data by generating synthetic samples. These new minority class samples are obtained
by linearly interpolating the existing observations from minority classes. More recently,
some strong oversampling techniques have been proposed. For example, mixup generates
new images by taking a convex combination of images in the dataset [30]. Other related
methods are Cutmix [31] and Cutout [32]. Cutmix blends two images by cutting a patch
from one image and inserting it into another, while Cutout zeroes out some parts of the
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input examples. Another oversampling approach uses GANs to generate realistic samples
from minority classes; However, not only is their training difficult, it also generalizes poorly
on diverse datasets [33–35].

Undersampling is another common technique for handling class imbalance. In contrast
to oversampling, which adds minority class data, undersampling removes data from
the majority class to form a balanced dataset. The main limitation of undersampling
methods is that they may remove critical information required by the model to learn.
Thus, several works proposed methods for intelligently choosing the majority samples to
preserve valuable information for learning. Mani et al. [36], for example, proposed several
algorithms that removed majority class samples based on their distance from minority
samples predicted by the K-NN algorithms.

2.2.2. Classifier-Level Methods

Classifier-level methods aim to adjust the learning or the decision process in a way
that facilitates the learning task, specifically with respect to the minority class samples.
Several disparate techniques exist in this category, including cost-sensitive learning and
margin loss.

Cost-sensitive learning works by altering the loss function to make the classifier more
sensitive toward minority classes [37]. Intuitively, applying different weights to training
samples is similar to oversampling those data points with the appropriate frequencies.
The popular way of applying this approach consists of weighting the loss by the inverse
number of samples for each class [38]. Cui et al. [23] designed a class-balanced loss, which
weighted the loss by the inverse of the effective class frequencies within the neighboring
region rather than the number of samples for each class. Ren et al. [39] proposed to use
the label frequencies to adjust model predictions during training, so that the bias from the
class imbalance could be alleviated by prior knowledge. Lin et al. [22] proposed a reformu-
lated version of cross-entropy loss that added a weighting factor that downweighted the
correctly classified sample. Similarly, Tan et al. [40] proposed a novel loss which directly
downweighted the loss values of negative samples for the rare categories.

Other classifier-level methods include regularizers that encourage the minority classes
to have larger margins. Cao et al. [41] proposed a label-distribution-aware margin loss
(LDAMLoss) that minimized a margin-based generalization bound. Similarly, Menon
et al. [42] proposed a modification of the softmax cross-entropy that encouraged a large
relative margin between a pair of rare and dominant labels. A margin loss for imbalanced
datasets was also proposed and studied in [43,44].

2.2.3. Decoupled Training

Decoupled training methods decouple the learning process into representation learn-
ing (first stage) and classifier training (second stage) [17,27]. The paper by Kang et al. [45]
was the pioneer work on the introduction of the two-stage training scheme. They used
a standard instance-balanced sampling to learn the representation stage. Then, for the
second stage, they evaluated three different approaches for classifier’s learning: classifier
retraining, nearest-class-mean classifier, and τ-normalized classifier. Their approach es-
tablished a new state-of-the-art performance on three long-tailed benchmarks. Similarly,
Kang et al. [46] developed a k-positive contrastive loss to learn a more class-balanced and
class-discriminative feature space, which led to better long-tailed learning performance.
Other recent studies innovated on the decoupled training scheme by enhancing the classi-
fier training stage. For example, Zhang et al. [47] applied an additional layer to calibrate
the original classifier by matching the distribution of predictions with a relatively balanced
distribution of classes. Wang et al. [48] proposed a unified distribution alignment strategy
for long-tail visual recognition. Their approach transferred the statistics from relevant head
classes to infer the distribution of tail classes in the second stage.

The decoupled training has been fully discussed in recent works [48–50], but some
issues still persist and need to be resolved. First, the choice of the right loss to obtain the
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best features model remains insufficiently discussed. Second, the adopted resampling or
reweighting methods for the second stage still have some limitations, especially focusing
on head classes’ learning [51], and last but not least, the two-stage learning strategy defies
the expectation of end-to-end training sought in deep learning [17].

This work attempts to resolve each of the previously mentioned issues. We started
by analyzing the currently used loss functions to determine the one matching the best
features’ representation in the first stage of the decoupled training. Then, for the second
stage, we investigated whether we could design a novel loss function helping the model
be more robust to class imbalance. Different from prior works, our approach followed an
end-to-end training.

3. Problem Setting and Analysis
3.1. Problem Setting

We consider a dataset D = (xi, yi)
N
i=1 with N training samples and C classes, xi is the

training image and yi ∈ 1, 2, ...., C is its label. We denote by Dk a subset of D containing
all the samples belonging to the class k. Nk represents the number of samples of Dk. D is
considered a long-tail dataset if we have N1 ≥ N2 ≥ ... ≥ NC and N1 � NC after sorting
Nk. The task of long-tail visual recognition is thus to learn a model on a long-tail training
dataset that generalizes well on a test dataset.

Let M(xi, w) denote a CNN model parameterized by w. In its most general form, M
contains two components: a feature extractor f (xi) = x

′
i and a discriminative classifier

h(x
′
i) = zi, where x

′
i denote the deep features of input xi and zi denotes the logit output

of the classifier. The prediction probability pi is generally calculated by So f tmax(zi). The
feature extractor comprises several stacked layers of convolution, activation, and pooling
that are designed to learn hierarchical feature representations of xi, while the discriminative
classifier is built with fully connected layers that aim to interpret the extracted features x

′
i

and perform the classification task.
The reason why it is challenging to train M(xi, w) in a long-tailed visual task are

two-fold. First, the number of tail samples is small, which makes it difficult to train the
feature extractor f (xi) on the long-tailed training split that generalizes well on tail classes.
Second, the over-representation of head classes makes the classifier h(x

′
i) biased to the head

classes, that is, the prediction score of head classes is much higher than that of tail classes.
The two training stages of our proposed method aim to tackle these challenges.

3.2. Analysis

In this section, we investigate how the popular cross-entropy loss function (CE) and
its weighted version (CS) are suitable for the first stage of the decoupled training. We
also analyze how the imbalanced data distribution influences the training of M(xi, w). To
that end, we conducted two toy examples on ISIC2018 with the EfficientNetB3 model.
We first trained the network with CE and CS for 50 epochs to evaluate the first stage of
the decoupled training. Then, we trained the network with CE for all epochs with early
stopping to analyze the distribution of probabilities during a full training session (see
Section 5.2 for implementation setting).

We visualize in Figure 2, with the T-distributed stochastic neighbor embedding (t-SNE)
algorithm, the distribution of deep features of the validation dataset for the network trained,
respectively, with CS (Figure 2a) and CE (Figure 2b). As shown in Figure 2a, the decision
boundary between categories is blurry for the network trained with CS. The feature points
near the decision boundary are not discriminative, leading to many false positives. On the
other hand, the network trained with CE generates features that are more discriminative in
the two-dimension feature space. These observations suggest that features produced by
class-balancing sampling loss functions during the first stage of the decoupled training are
worse than those produced by non-weighted losses.
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(a) (b)

Figure 2. Visualization of the distribution of deep features learned by the EfficientNetB3 model
trained with (a) cost-sensitive cross-entropy loss (CS), and (b) cross-entropy loss (CE). We observe
that the decision boundary between categories is blurry for the network trained with CS compared to
the network trained with CE. This observation suggests that the CE function learns a better feature
representation than the CS function.

For an in-depth study of the influences of long-tailed distribution in the training of a
model, we visualize in Figure 3 the probability distributions during training of the head
class (Nevi) and the tail class (Dermatofibroma) on the validation split. We first observe that
at the initialization of the model, all the probabilities have values in the interval [0.1, 0.3],
which is normal because the neurons of the classifier are initialized considering that all
the classes have the same probabilities (in our case we have seven classes), thus giving
probabilities around 0.14. Then, we observe that for the head class Nevi, the learning is
done easily with the prediction probabilities which very quickly become more and more
confident with a convergence approximately reached from epoch 20. On the other hand,
learning from the tail class is much less straightforward. We observe at the beginning
of the training that the model has difficulty in discriminating this class with prediction
probabilities up to about epoch 22 which oscillate between the interval [0.0, 0.3]. From
epoch 22, the model starts to discriminate this class better with prediction probabilities
that become more confident with a convergence that starts to be reached around epoch
52. Moreover, we observe for this class that, despite the beginning of convergence of the
model, there remain samples with frozen probabilities around the interval [0.0, 0.2]. These
samples can be assimilated to very difficult examples, even aberrant, and for which the
model can do without, to focus on more discriminative samples.
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(a)

(b)

Figure 3. Distribution of prediction probabilities during training on the validation set for (a): tail
class (dermatofibroma) and (b): head class (nevi).

4. Materials and Methodology
4.1. Theoretical Motivation

Our efforts here are focused on SL classification which presents a skewed distribution
between classes. Specifically, we wish to design a learning framework aiming to construct
a CAD system robust to class imbalance. To that end, inspired by decoupled training
works [45] and the analysis presented in Section 3.2, we define a two-stage training based
on two novel loss functions L f and Lc. Figure 4 illustrates both functions with the cross-
entropy criterion. The L f loss function is used during the first training phase and guide
the model to learn a better feature representation of the task. The Lc loss function is used
during the second training phase, and its objective is to deal with class imbalance issues.
Both stages work in an end-to-end manner.

Figure 4. Illustration of loss distribution of the two functions L f and Lc used in our framework and
the standard cross-entropy criterion.
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For a sample image xi, let pi be the probability derived from the SoftMax function applied
to the logit zi output by the model. yi is the ground-truth label of xi. We denote by pC ∈ [0, 1]
the predicted probability generated by a model that x corresponds to its label c.

Revisiting cross-entropy loss formulation: The Softmax cross-entropy loss is defined by:

CE(y, p) = −∑
i

yilog(pi) (1)

Revisiting mining samples definition: An easy sample xi is a sample for which the
model predicted with a high probability (pc > 1− exp(−η), η > 0 with η large). Otherwise,
when the predicted probability is low (pC around .5), the sample is considered a hard sample.
Prior works on deep learning [52–54] have demonstrated that hard samples own more
discriminative information than easy samples. On the other hand, Li et al. [55] defined as
outliers, samples with very large gradients (pc < 1− exp(−η), η > 0 with η large). They
observed that these samples existed stably even when the model converged. This is similar
to the observation we made in the analysis section. We believe that outliers can also be
assimilated to mislabeled data.

4.2. Definition of Loss Functions

Based on our observations made during the analysis study, as an initialization of the
network, we needed to downweight the loss contribution for easy samples to prevent
header classes from overwhelming the total loss contribution during training, while main-
taining a higher loss contribution of harder samples to help the model better discriminate
tailed classes. Moreover, non-class-balancing losses are suitable to improve the represen-
tation learning of the feature model. To define a loss function meeting these criteria, and
being continuous and derivable, we were inspired by signal theory and borrowed the
cardinal sine function. We thus introduced the function L f defined as:

L f (y, p) = −∑
i

sin(πpi)

πpi
yilog(pi) (2)

In Equation (2), the cardinal sine factor allowed us to define a distribution of costs fol-
lowing the same dynamics as the cross-entropy while maintaining a very low contribution
for easy samples. The gradients were computed by differentiating L f with respect to the
input pi with the following formulation:

∇pi L f =
(log(pi)− 1) sin(πpi)− πpilog(pi) cos(pi)

πpi2
(3)

Once the model had learned a good representation of the features, we needed to guide
its learning to discriminative samples to make it robust to class imbalance. To that end,
we wanted to mitigate the contribution of the very large gradients preventing them from
affecting the convergence of the model and leading it to focus on discriminative samples.
Thus, we modified the L f function by subtracting the sine cardinal term with another
cardinal sine of a higher frequency and added a dumping factor through the exponential
function to smooth the oscillation induced by the subtraction of both terms. The resulting
loss function Lc could thus be defined by:

Lc(y, p) = −∑
i
(

sin(πpi)

πpi
− sin(δπpi)

δπpi
exp−δpi )yilog(pi) (4)

The Lc Loss satisfied the following mathematical properties:

• When the gradient of a sample was very large, corresponding to pi near 0, the loss
went to 0, and the model was less affected by outliers.

lim
pi→0

Lc(p, y) = 0 (5)
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• When the gradient of a sample was very low, corresponding to pi near 1, the loss went
to 0, which prevented the model from being overwhelmed by easy samples.

lim
pi→1

Lc(p, y) = 0 (6)

In practice, for the second stage, we used a weighted version of the Lc loss weighted
by a classical weighting method such as the inverse of the class frequencies. From our
experiments, we observed that the models generally achieved the best performance for
δ ≥ 1000. The setting of δ was done by a grid search.

It can be seen from Figure 4 that the L f loss (green curve) considerably reduces the
loss of the well-classified samples (pc > 1− exp(−η), η > 0 with η large) compared to the
CE loss (blue curve), which helps to prevent easily classified samples from dominating the
gradient while maintaining the contribution of harder samples similar to the CE loss. The
Lc loss (red curve) follows the same distribution as L f except that it also downweights the
loss of very hard samples preventing the model from being affected by outliers.

4.3. Description of the Proposed Learning Framework

The overall steps of the proposed framework are shown in Figure 5. This framework
is composed of two main phases: training and testing. In both phases, a preprocessing step
is performed on the input images. The training phase is subdivided into two stages. In
the first stage, a CNN is finetuned with the L f loss. This stage aims to guide the feature
extraction of the CNN to learn a good representation of features for the given task. The
second stage begin when the number of training epochs reaches a threshold T. In this stage,
the CNN is finetuned with a weighted version of the Lc loss. This stage aims to guide the
learning of the classifier to balance the head and tail classes. It is advantageous to set T as
the epoch when the model has begun to converge to the local minimum. In our study, T
was automatically defined as the epoch for which the model performance on the validation
split had not improved in terms of balanced accuracy for 10 epochs. The testing phase of
the proposed framework performs the evaluations. The codes and models used in this
paper are available in open source via the link provided in the supplementary material.

Figure 5. The overview of the proposed framework. In the first stage, we train the pretrained DCNN
with the L f loss to guide the model to learn a better discriminative representation of features. In the
second stage, when the number of epochs is greater than a threshold T, we continue the training of
the model with the weighted version of Lc to perform the final classification task.
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4.4. Dataset Description and Preparation

The evaluation of our approach was conducted on the ISIC 2018 dataset. The ISIC 2018
dataset includes 10,015 dermoscopic images across seven different categories: melanoma
(MEL), melanocytic nevus (NEV), basal cell carcinoma (BCC), actinic keratosis (ACK),
benign keratosis (BEK), dermatofibroma (DEF), and vascular lesion (VAL). Samples of
each of the seven categories present in the dataset are illustrated in Figure 6. As shown in
Figure 3, the ISIC 2018 dataset presents a long-tailed distribution than can be subdivided
into head classes (MEL, NEV, and BEK), medium classes (BCC and ACK), and tail classes
(DEF and VAL) for a more in-depth study on class imbalance robustness. The images
are in high resolution. We used 80% of the images as training data, 10% of the images
as validation data, and 10% of the images as testing data. We also performed standard
preprocessing techniques for SL images [11]. Specifically, we center-cropped the image to
preserve the aspect ratio and then resized it to 300 × 300 using a bicubic interpolation and
performed a color standardization using the gray-world color constancy algorithm [56]. We
also applied standard data augmentation techniques namely horizontal flipping, vertical
flipping, and random rotation.

ACK BCC BEK DEF

MEL NEV VAL ACK

BCC BEK DEF MEL

NEV VAL MEL NEV

Figure 6. Samples of skin lesions from ISIC 2018 dataset.

4.5. Training of the Convolutional Neural Network

We used a pretrained EfficieNetB3 [57] as the backbone to conduct all our experi-
ments. Only the classification layer was modified to adapt the models to a multiclass
task of seven classes. The number of blocks, the name and kernel size of the convolution
layers in a corresponding block, the size of each filter, and the number of layers are de-
scribed in Table 1. We used the Adam optimizer with the following settings: beta 1 = 0.9,
beta 2 = 0.999, epsilon = 1 ×10−7 and amsgrad = false. Models were trained with a batch
size of 128 for 100 epochs. Similar to [58], we used the cyclical learning rate (CLR) proposed
by [59] to schedule the learning rate during training in the range from 0.001 to 0.00001. We
also applied regularization to avoid overfitting by stopping the training early when the
balanced accuracy on the validation set did not improve after 20 epochs and selected the
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best saved model with the highest balanced accuracy score. The best obtained value of the
hyperparameter δ was 107.

Table 1. Detailed structure of the EfficientNetB3 architecture used.

Block N° Layer Name Resolution Filter Size Number of
Layers

1 Conv 300 × 300 3 × 3 1
2 MBConv1 150 × 150 3 × 3 2
3 MBConv6 150 × 150 5 × 5 3
4 MBConv6 75 × 75 3 × 3 3
5 MBConv6 38 × 38 3 × 3 5
6 MBConv6 19 × 19 5 × 5 5
7 MBConv6 10 × 10 5 × 5 6
8 MBConv6 10 × 10 3 × 3 2
9 Conv 10 × 10 1 × 1 1
10 Global pooling 10 × 10 1
11 Dense layer 10 × 10 1

4.6. Evaluation Metrics

A normal accuracy would favor and encourage the correct classification of over-
represented classes, which is critical considering the unbalanced dataset. Therefore, we
opted for the balanced accuracy (BACC) for ranking approaches, which is defined as:

BACC =
∑C

i=1 Si

C
(7)

where Si denotes the sensitivity of class i and C the number of classes. Another well-
used metric for medical analysis that we used is the area under the receiver operating
characteristic curve (AUROC), which reflects the level of separability between classes.

5. Results

This section presents and discuss the results from our experiments. As the training
of the neural network is a stochastic process, for all our experiments, we ran each of
the involved methods ten times with different random seeds and reported the average
performance associated with its standard deviation.

To validate our approach, we performed the following experiments:

• We conducted an ablative study to analyze which of the commonly used loss function
CE and L f was more appropriate for stage one;

• We compared our full pipeline with common methods in the literature proposed for
handling class imbalance, namely cost-sensitive loss (CS) [38], class-balanced loss
by effective number of classes (CB) [23], focal loss (FL) [22], label-distribution-aware
margin loss (LDAM) [41], influence-balanced Loss (IB) [60], bag of tricks (BAGs) [50]
and decoupled training [21];

• We compared our approach with prior works developing CAD systems for SL classification;
• We analyzed the best performance achieved with our pipelines.

5.1. Comparative Study of Our Approach with SOA Approach for Handling Class Imbalance

Table 2 summarizes the models’ performance on the test set of state-of-art approaches
for handling class imbalance compared to our pipelines. By analyzing the performance
obtained by a group of classes according to the level of imbalance (head, medium, and
tail), we observed that our approach helped to improve the performances for the classes
belonging to the medium group (2% improvement) and tail group (3% improvement) while
maintaining a good performance for the head group. Moreover, our method achieved the
best overall performance, reaching an average BACC of 87% with a minimum margin of 2%
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compared to other methods. This result suggested that our approach allowed us to build a
system robust to class imbalance.

Table 2. Balanced accuracy rate of EfficientNetB3 trained with various methods for handling the
long-tailed distribution and our pipelines on the testing split. Our approach achieves the best overall
performance. † indicates our reimplementation.

Methods Head Medium Tail All

CS † [38] 0.76 ± 0.02 0.83 ± 0.02 0.95 ± 0.03 0.84 ± 0.01
CB † [23] 0.79 ± 0.01 0.86 ± 0.01 0.95 ± 0.04 0.85 ± 0.01
FL † [22] 0.80 ± 0.01 0.83 ± 0.05 0.88 ± 0.04 0.83 ± 0.01

LDAM † [41] 0.76 ± 0.03 0.78 ± 0.01 0.93 ± 0.04 0.82 ± 0.02
IB † [60] 0.83 ± 0.01 0.81 ± 0.04 0.87 ± 0.01 0.82 ± 0.02

BAGs † [50] 0.79 ± 0.01 0.84 ± 0.02 0.92 ± 0.02 0.85 ± 0.02
Decoupled learning † [21] 0.80 ± 0.01 0.82 ± 0.02 0.88 ± 0.02 0.83 ± 0.02

Our method 0.81 ± 0.01 0.88 ± 0.02 0.98 ± 0.01 0.87 ± 0.01

5.2. Performance of the Best Model with Our Approach

To further investigate the performance of our approach, we generated the receiver
operating characteristic curves for each lesion of the best model obtained with our pipelines
(see Figure 7). Our model performed well with an AUROC at least higher than 95% on
all classes. Interestingly, we note that both tail classes obtained an AUC of 100%, thus
confirming the previous conclusion on the robustness of our approach for class imbalance.

Figure 7. Receiver operating characteristic curves of the best model obtained with our pipelines for
actinic keratosis (ACK), basal cell carcinoma (BCC), benign keratosis (BEK), dermatofibroma (DEF),
melanoma (MEL), nevi (NEV) and vascular lesion (VAL).

5.3. Comparative Study with Other CAD Systems for Skin Lesion Detection

We report in Table 3 the performances of several CAD systems for SL detection. The
reported performance values are taken from the original papers. Our approach obtained
the best performance. Moreover, despite the fact that we used an approach with a single
CNN model, we still managed to outperform some works that used a set of several CNNs
including the works of Gessert et al. [10] and Barata et al. [61].
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Table 3. Balanced accuracy rate of our best model through our pipeline compared to other computer-
aided diagnosis systems. Our approach obtained the best performance. ‡ indicates that the results
are taken from the original papers.

Works Methods BACC

Al-masni et al. ‡ [62] Single CNN 0.81
Gessert et al. ‡ [10] Ensemble of CNNs 0.76

Yao et al. ‡ [7] Single CNN 0.86
Garg et al. ‡ [63] Single CNN 0.74

Barata et al. ‡ [61] Ensemble of CNNs 0.73
Our method Single CNN 0.88

5.4. Ablative Study
5.4.1. Effectiveness of L f Loss for the First Stage of Decoupled Training

To evaluate the effectiveness of the first stage of our decoupled method, we compared
the performance of our cost function L f with the commonly used CE for this stage. As
presented in Table 4, the L f loss function obtained a better performance with a BACC of
83% compared to the cross-entropy criterion, which obtained a BACC of 82%. This showed
that our cost function was more suitable than the CE function to train the feature model in
stage one of the decoupled training.

Table 4. Performance in stage one of the decoupled training of EfficientNetB3 trained with cross-
entropy loss (CE) and L f loss.

Stage One Methods BACC

CE 0.82 ± 0.01
L f loss 0.83 ± 0.00

5.4.2. Effectiveness of Our Learning Scheme Compared to a Conventional Scheme

In order to have a better analysis of our approach, we plotted the learning curves on
the training and validation datasets of the EfficientNetB3 model trained with the CS cost
function (Figure 8a) and with our approach (Figure 8b). We can observe on Figure 8a that
the model trained with the CS function reached its convergence around epoch 40, then
its performance started to stagnate with no hope of improvement. On the other hand, for
the model trained with our approach (see Figure 8b), we observe that the second training
phase prolonged the convergence of the model. Indeed, when the model started to stagnate
around epoch 40, the switch from the L f cost function to the Lc cost function allowed us
to obtain a significant performance gain, which could be observed through the difference
obtained on the loss around epoch 60. As a reminder, we had defined a delay of 10 epochs
before being able to automatically switch functions. This result highlighted the contribution
of our approach compared to a classical learning procedure.
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(a) (b)

Figure 8. Learning curve of EfficientNetB3 trained with (a) cost-sensitive cross-entropy loss (CS) and
(b) our learning scheme. We observe that the second training phase of our approach has prolonged
the convergence of the model with a significant performance gain that can be observed through
the gap obtained around epoch 60. This highlights the contribution of our approach compared to a
classical learning procedure.

6. Conclusions

In this work, we presented an end-to-end decoupled training framework to develop
computer-aided diagnosis (CAD) systems for skin lesion. The proposed approach aimed
to tackle the issue of CAD trained on a long-tailed skin lesion dataset and thus construct
a CAD robust to class imbalance. We conducted comprehensive ablatives studies and
experiments to demonstrate the effectiveness of our method. With a single CNN, our
approach was able to outperform all CAD systems with which we compared it by at
least a 2% margin, achieving a BACC of 88% on the classification of the seven skin lesion
types in our task. Moreover, our approach outperformed existing approaches proposed
to handle class imbalance. For further work, we plan to integrate our method into an
ensemble scheme which we believe will allow us to greatly improve the detection accuracy
of our CAD. Moreover, adding some recent deep learning techniques such as test-time
augmentation could also help our method to reach better performance.

Supplementary Materials: The code for our experiments is available online at link to github (https:
//github.com/cartelgouabou/End_to_end_decoupled_training_for_skin_lesion_classification, ac-
cessed on 7 October 2022) .
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