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Abstract: This paper presents a new scheme for the online solution of a networked multi-agent
pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent
in the game can form an Internet of Things (IoT) system, by incorporating the relative distance
and the control energy as the performance index, the expression of the policies when the agents
reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a
Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable
each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive
dynamic programming method is used to solve the game problem. Furthermore, the parameters
of the neural network are fitted by value function approximation, which avoids the difficulties of
solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium
is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent
pursuit–evasion games.

Keywords: multi-agent pursuit–evasion game; differential game; adaptive dynamic programming;
policy iteration; value function approximation

1. Introduction

Recently, the differential game of multi-agents has won the favor of many scholars for
its critical application prospects [1–4]. Among them, games of multi-pursuer and single-
evader have been widely considered in many guidance and interception problems. In many
scenarios, the agents may involve large-scale or complex dynamic systems, which make the
decisions of agents difficult to resolve [5], and the constraint of energy consumption is often
considered with the application of renewable energy. Although many methods can solve
differential games, most of the existing algorithms cannot solve them online, or require a
lot of empirical data. Therefore, this paper studies the problem of an online multi-pursuer
single-evader game and resolves the decision of the agents through the method of integral
reinforcement learning.

The pursuit–evasion game is a kind of common differential game, which is usually
used in competitive games, the optimization of IoT resources, military attacks, and so
on [6,7] Among them, the simplest scenario is the single-pursuer single-evader game. This
game is a zero-sum game, in which the pursuer and the evader have mutually exclusive
interests, and no other agents participate in the interference [8]. However, for a game
problem involving multiple agents, the benefit of the game will become complex [9]. The
difficulty of solving the multi-agent pursuit–evasion game is closely related to the size of the
communication network between individuals and the complexity of the game model [10].
Among them, ref. [11] makes a detailed derivation and solution for the capture game
problem of agents. Cappello [12] divided 12 pursuit–evasion game of multi-agents into
three cases, and the solution of its Nash equilibrium is given. In addition, when the
number of agents in the game is quite large, Peng [13] adopts a distributed network so
that the decision-making of other individuals is not affected after the failure or damage
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of each individual, which means the system has scalability, self-organization, and strong
robustness [14].

For an actual multi-agent pursuit–evasion (MPE) game, the core is to solve the decision
of each agent according to the setting of the value function. Nowadays, there are many
methods with which to solve the strategies of agents in the game. In Refs. [15,16], the
scholars solved the pursuit and evasion game problem of multi-agents with an analytical
method, obtained the Nash equilibrium solution of each multi-agent, and proved the exis-
tence condition of the Nash equilibrium. However, for a complex game system, the process
of obtaining an analytical solution consumes a lot of computational costs and time costs.
In Ref. [17], the reinforcement learning method was used in the Nash equilibrium game
for solving the decisions of agents, and the numerical solution equivalent to the analytical
solution was obtained. In addition, recently there have been many off-line algorithms that
were able to simplify the solution of multi-agent pursuit and evasion games [18–20]. The
off-line algorithm for the pursuit–evasion problem in the differential game is becoming
more and more mature. However, off-line methods are not competent enough to realize
the flexibility of emergency changes in implementing the online confrontation.

Therefore, how to solve the problem of the MPE game online has become a heated
topic in the academic community. In 2002, Murray et al. first proposed the iterative adaptive
dynamic programming (ADP) algorithm for continuous systems [21] and first adopted the
policy iterative algorithm in Ref. [22]. At this time, the ADP algorithm can only be used
as an off-line iteration. Vamvoudakis et al. proposed an online adaptive method based
on policy iteration [23–25] to solve the optimal control problem of continuous nonlinear
systems and theoretically proved the stability of this online adaptive algorithm. This online
adaptive method has also been studied in discrete systems. Using the ADP method to
solve differential game problems has also begun to develop in the direction of online
learning. An online adaptive control scheme based on policy iteration for multi-person
non-zero-sum differential game problems was proposed [26]. Owing some information
about a system may not be known, Wei [27] considered both linear and nonlinear systems
to compute an online learning method in optimizing control with unknown information
about the system matrix, and an event-triggered ADP method with multiple triggering
conditions was developed for multi-player non-zero-sum (NZS) games [28]. In Ref. [29],
a novel data-based ADP method was presented to solve the optimal consensus tracking
control problem for discrete-time (DT) multi-agent systems (MASs) with multiple time
delays. However, in the process of policy iteration, the excitation signal may drop to very
low over time, making the approximation algorithm difficult to operate; thus, Karg [30]
focused on the fulfillment of the persistent excitation condition for signals which result from
transformations by means of polynomials. Moreover, Li [31] discussed the feasibility of
this method in a distributed system. For the multi-agent PE game problem with uncertain
system parameters, it is still difficult to solve because of the complexity of the scale of the
actual systems. Furthermore, solving the MPE game problem in real time without knowing
all the information about the systems has become a valuable research topic.

In this paper, the ADP method is used to solve the networked MPE game problem
with multiple pursuers and a single evader in real time. In order to realize the implemen-
tation and solution of the game, we divide the game process into minimal time intervals
through integral reinforcement learning, and then we obtain the policy of each agent by a
policy iteration method. Through continuous iterations, the game converges to the Nash
equilibrium, and the policy of each agent will converge to its Nash equilibrium policy.
In order to eliminate the difficulty of solving the HJI equation in a multi-agent game, as
the state information of each agent can be perceived mutually under the IoT system, the
value function approximation method is used, and finally the numerical solution of each
agent’s Nash equilibrium policy is obtained. Using the state information provided by the
IoT system, we can obtain the Nash equilibrium policies that consider both distance and
energy control in the game. Simulation experiments are used to verify the effectiveness of
the method.
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The main contributions of this paper are listed below:

1. The relative distance and the control energy are incorporated as the performance
index, and the Nash equilibrium of an MPE game is obtained by using the minmax
principle, in which the Lyapunov function is constructed to verify whether capture
scene occurs;

2. The multiple iterative interval is divided in the whole game process by conducting
the integral reinforcement learning model, and the policy of each iterative interval
is obtained by the policy iteration method, which is proved to converge to the Nash
equilibrium solution;

3. The online ADP method is adopted to overcome the difficulty of solving the HJB
equation, and a set of approximation functions are established by using the method
of value function approximation. The numerical solution of the policies of the agents
is obtained.

In simple terms, the original contribution of this paper is to establish an MPE game
model by building a weighted value function and creating a basis function to fit the value
function using the ADP method. We obtain the Nash equilibrium solution of the game by
learning the neural network parameters. The capture conditions are also analyzed by using
the Lyapunov function method.

The remainder of this paper is organized as follows: Section 2 constructs the physical
model of the multi-agent pursuit–evasion game. Section 3 discusses the Nash equilibrium
solution and capture conditions of the game problem. Section 4 discusses the integral
reinforcement learning method, i.e., the policy iteration and value function approximation,
to obtain the policies without solving the HJI equation directly. Section 5 demonstrates the
simulation of a practical problem. Section 6 is the conclusion of the paper.

2. Formulation of the Game

The multi-agent game system is based on the communication network among agents,
integrating a data storage module, navigation system, electric actuator, decision evaluation,
and an updating system. Its main structure is shown in Figure 1. Each pursuer is equivalent
to equipment in the network. It executes the policy through the electric actuator, and
transmits position, speed, and other status information to the communication network
from the navigation system. Agents can interact with the status via the network layer.
All information is transmitted to the platform layer through the communication system,
evaluated by the decision evaluation system, and new policies are generated through the
decision updating system; the new policies are transmitted to the electric actuator of the
agents via the communication network.
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Consider a game system with a couple of pursuers and a single evader, and where
each agent in the game system has its goal to achieve, which can be defined as follows:
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Definition 1. In an MPE game with multiple pursuers and a single evader, the evader tries to
escape from being captured by every pursuer, while each pursuer tries to capture the single evader.
The performance index of each pursuer is to minimize the distance between the evader and its own
control energy, and the performance index of the evader is to maximize the distance between each
pursuer and to minimize its own control energy.

The conditions of both the pursuers and the evader change in real time; thus, the
system is a multi-agent differential game. Here, the dynamics of each agent are expressed
as a set of differential equations. Consider a team of N agents as the pursuers, each of
which follows the dynamics:

.
xpi = Axpi + Biupi (1)

The dynamics of the single evader can be expressed as

.
xe = Axe + Beue (2)

where xpi, upi, xe, and ue refer to the state variables and controls of the i-th pursuer and the
evader, respectively. A, Bi, and Be are the system matrices. Let xpi represents the position
and velocity of the i-th pursuer in different dimensions, respectively, and upi contains the
accelerations of the i-th pursuer along those dimensions. Similarly, xe and ue are those of
the single evader to fulfill the control model.

Let δi is the difference between the state variables of the pursuer i and the evader,
which is expressed as

δi = xpi − xe (3)

For the multi-agent PE game problem we discussed, each pursuer tries to minimize
the distance to the evader, while the evader tries to maximize the distance to every pursuer.
Substitute Equations (1) and (2) into Equation (3) to get the time derivative of δi as

.
δi = Aδi + Biupi − Beue (4)

For each element, there exists a performance index. We establish the integral perfor-
mance index of agent i as

Ji(δi, upi, ue) =
1
2

∫ ∞

0
(δ>i Qiδi + u>piRpiupi − u>e Reue)dτ (5)

where Qi is a positive-definite matrix and Rpi and Re are two symmetric positive definite
matrices. upi and ue stand for the policies of the i-th pursuer and evader, respectively.
δ>i Qiδi is the weighted term of the relative state variable, which is used to restrict the
relative position between the i-th pursuer and the evader. u>piRpiupi and u>e Reue are the
total amounts of energy consumption of the controls of the i-th pursuer and the evader,
respectively, which are used to realize the constraints on the control variables.

Since each pursuer will participate in the PE game, which will affect the final policy of
the evader, here, we define the overall index function J as the weighted sum of each index
function Ji in Equation (5) for i = 1, . . . , N,

J =
1
N

N

∑
i=1

Ji (6)

The value of the game is evaluated as follows when the i-th pursuer and the evader
employ certain policies:

Vi(δi) =
1
2

∫ ∞

0
(δ>i Qiδi + u>piRpiupi − u>e Reue)dτ (7)
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For pursuer i and the component of the evader, when both of which are acquiring the
optimal policies, then we have:

V∗i (δi) = min
upi

max
ue

Ji = min
upi

max
ue

1
2

∫ ∞

0
(δ>i Qiδi + u>piRpiupi − u>e Reue)dτ (8)

By summing N value functions in the game, the overall value function can be obtained
as follows:

V∗(δ) = min
up1,...,upN

max
ue

Ji

= min
up1,...,upN

max
ue

1
2

∫ ∞
0 ( 1

N

N
∑

i=1
δ>i Qiδi +

1
N

N
∑

i=1
u>piRpiupi − u>e Reue)dτ

(9)

where δ is the set of δ1, . . . , δN .
The aim of the issue is to find out the appropriate control to satisfy Equation (9) for

each agent. However, there are a couple of difficulties faced when calculating the numeral
result of the control policies. In the actual system, the analytical solution of each individual
strategy is difficult to obtain directly, or occupies too many computing resources and too
much time, so the focus of this paper is to iteratively obtain the Nash equilibrium solution
by using the idea of reinforcement learning.

The difficulty faced by this paper lies in solving the Nash equilibrium solution of
multi-agent systems in pursuit–evasion games. We popularize the scenario of the zero-sum
game and consider the scenario of multiple pursuers. We use the integral reinforcement
learning method to solve the policy of each agent, as is shown in Section 4.

3. Solution of the MPE Game Problem

According to the physical model of the PE game problem, the Nash equilibrium
solution to the problem is obtained by using the minimax principle. The capture conditions
of the PE game are discussed by using the Lyapunov function method.

For multi-agent PE games, each individual’s decision will affect the system. The Nash
equilibrium solution of the game can be obtained by using the minmax principle, that is,
the set of decisions where all parties reach the optimal situation at the same time.

The multi-agent game model is derived from the game of two agents. Among them,
the differential game of two agents is a group of differential games, which is established
based on bilateral optimal control theory. For the differential game of multiple agents, each
index function corresponds to a group of optimization, the policy of which is obtained by
the minmax principle. In the connected graph, the evader is linked with multiple pursuers,
so it needs to consider the policies of each interconnected chasing pursuer. Suppose there
is a game with a set of policies to reach the Nash equilibrium and the evader is linked with
a number of N pursuers, then we call (u∗p1, . . . , u∗pn, u∗e ) the game-theoretic saddle point.

The differential expression in Equation (7) is equivalent to the Bellman equation of
the game. According to Equations (1) and (2), the Bellman equation of pursuer i and the
evader can be obtained as:

H(. . .) = 1
2 (

1
N

N
∑

i=1
δ>i Qiδi +

1
N

N
∑

i=1
u>piRpiupi − u>e Reue) +

N
∑

i=1
( ∂V

∂δi
)
> .

δi

= 1
2 (

1
N

N
∑

i=1
δ>i Qiδi +

1
N

N
∑

i=1
u>piRpiupi − u>e Reue) +

N
∑

i=1
( ∂V

∂δi
)
>
(Aδi + Biupi − Beue)

(10)

where H(. . .) is the Hamilton function of the PE game, upi and ue are the admissible control
policies of the i-th pursuer and the evader, and ∇V stands for ∂V

∂δi
.
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In order to find the optimal policies of the game, according to the stationary condition
of the minmax principle, the following equations should be satisfied:

∂H
∂upi

= 0 (11)

∂H
∂ue

= 0 (12)

Moreover, the second derivative of the Hamilton function to the control of each
element should satisfy the following conditions:

∂2H
∂u2

pi
> 0 (13)

∂2H
∂u2

e
< 0 (14)

Thus, the optimal policies of the pursuers and evader are found as

u∗pi = −NR−1
pi B>i (

∂V∗

∂δi
) (15)

u∗e = −NR−1
e B>e (

∂V∗

∂δi
) (16)

For infinite time invariant systems, the solution of the game is determined by
(15) and (16), where the function Vi is the solution of the Hamilton–Jacobi–Isaacs (HJI)
equation of the game as follows:

1
2
(

1
N

N

∑
i=1

δ>i Qiδi +
1
N

N

∑
i=1

u>piRpiupi − u>e Reue) +
N

∑
i=1

(
∂V
∂δi

)
>
(Aδi + Biupi − Beue) = 0 (17)

We need to further prove the above conclusions. That is, for the MPE game with multiple
pursuers and a single evader, when the policy of each agent reaches Equations (15) and (16),
the game reaches the Nash equilibrium.

Before proving this conclusion, we need to use the basic property of the Hamilton
function in a multilateral optimal control problem, which is embodied in Lemma 1.

Lemma 1. Let V∗ satisfy the HJI Equation (17), making the Hamilton function
H(δ,∇V∗, up1, . . . , upN , u∗e ) = 0. Then (10) becomes:

H(δ,∇V∗, up1, . . . , upN , ue ) =
N
∑

i=1
( ∂V∗

∂δi
)
>
(Bi(upi − u∗pi) + Be(u∗e − ue)) +

1
2N

N
∑

i=1
u>piRpiupi

− 1
2N

N
∑

i=1
u∗>pi Rpiu∗pi +

1
2 u∗>e Reu∗e − 1

2 u>e Reue.
(18)

Proof of Lemma 1. Upon adding and subtracting the terms u∗>p Rpu∗p, u∗>e Reu∗e , ∇V>Bu∗p,
and ∇V>Bu∗e , the Hamiltonian (10) yields:
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H(. . .) =
N
∑

i=1
δ>i Qiδi +

N
∑

i=1
( ∂V

∂δi
)
>
(Aδi + Biu∗pi − Beu∗e ) +

1
2N

N
∑

i=1
u∗>pi Rpiu∗pi −

1
2 u∗>e Reu∗e

+
N
∑

i=1
( ∂V

∂δi
)
>
(Bi(upi − u∗pi) + Be(u∗e − ue)) +

1
2N

N
∑

i=1
u>piRpiupi − 1

2 u>e Reue

− 1
2N

N
∑

i=1
u∗>pi Rpiu∗pi +

1
2 u∗>e Reu∗e

= H(δ,∇V, u∗p1, . . . , u∗pN , u∗e ) +
N
∑

i=1
( ∂V

∂δi
)
>
(Bi(upi − u∗pi) + Be(u∗e − ue))

+ 1
2N

N
∑

i=1
u>piRpiupi − 1

2N

N
∑

i=1
u∗>pi Rpiu∗pi +

1
2 u∗>e Reu∗e − 1

2 u>e Reue.

(19)

When the value function V attains the Nash equilibrium value V∗, we have:

H(∇V∗, up1, . . . , upN , ue) = H(∇V∗, u∗p1, . . . , u∗pN , u∗e ) +
N
∑

i=1
( ∂V∗

∂δi
)
>
(Bi(upi − u∗pi) + Be(u∗e − ue))

+ 1
2N

N
∑

i=1
u>piRpiupi − 1

2N

N
∑

i=1
u∗>pi Rpiu∗pi +

1
2 u∗>e Reu∗e − 1

2 u>e Reue.
(20)

From the HJI function (17), we can find that the Hamilton function of the game
H(∇V∗, u∗p1, . . . , u∗pN , u∗e ) = 0 when the value function attains the optimal value, which
completes the proof. �

The Hamilton function can be transformed using Lemma 1. As the control variables
upi, ue, and the conditions at the Nash equilibrium H(∇V∗, u∗p1, . . . , u∗pN , u∗e ) are concluded,
it is easier to prove the Nash equilibrium for the MPE problem mentioned in Theorem 1.

Theorem 1. Consider the kinetic equations of vehicles (1) and (2) with the value function as
given in (7). Let V∗ be a positive definite smooth solution of the HJI Equation (17). Then,
(u∗p1, . . . , u∗pN , u∗e )given by (15) and (16) becomes the game-theoretic saddle point and V∗ becomes
the Nash equilibrium value of the MPE game.

Proof of Theorem 1. In order to prove that (u∗p1, . . . , u∗pN , u∗e ) is the game-theoretic saddle
point of the game, we need to show that the best action for the evader to maximize the
value function (15) is u∗e when all the pursuers execute the policies as given in (21). On the
other hand, the best action for the i-th pursuer to minimize the value function (16) is u∗pi
when the other agents execute the policy as given in (22), which indicates the following:

u∗pi = argminVup1,...,upi ,...,upN ,u∗e (δ(t)) (21)

u∗e = argmaxVup1,...,upN ,ue(δ(t)) (22)

which are equivalent to:

Vu∗p1,...,u∗pN ,ue(δ(t)) ≤ Vu∗p1,...,u∗pN ,u∗e (δ(t)) ≤ Vu∗p1,...,upi ,...,u∗pN ,u∗e (δ(t)) (23)

where Vupi ,ue(δ(t)) is the corresponding solution of the Hamiltonian (18). Define V(δ(t0))

as the initial value of the game. Assume that a capture occurs in the interval t ∈ [t0, ∞],
which implies lim

x→+∞
Vup ,ue(δ(t)) = 0. Adding this item to Equation (7), we get:

V = min
up1,...,upN

max
ue

1
2

∫ ∞

0
(

1
N

N

∑
i=1

δ>i Qiδi +
1
N

N

∑
i=1

u>piRpiupi − u>e Reue)dτ +
∫ ∞

t0

.
Vup1,...,upN ,ue dτ + V(δ(t0)) (24)
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From Equation (24), it is obvious that Vu∗p1,...,u∗pN ,u∗e (δ(t)) = V∗(δ(t0)). Upon using
Lemma 1, (24) becomes:

Vup1,...,upN ,ue(δ(t0)) =
∫ ∞

t0
(

N
∑

i=1
( ∂V

∂δi
)
>
(Bi(upi − u∗pi) + Be(u∗e − ue))

+ 1
2N

N
∑

i=1
u>piRpiupi − 1

2N

N
∑

i=1
u∗>pi Rpiu∗pi +

1
2 u∗>e Reu∗e − 1

2 u>e Reue)dτ + V(δ(t0)).
(25)

Let ε(V) be the integral term in Equation (25). In order to prove Equation (23), we just
need to verify that ε(Vup ,u∗e ) ≥ 0 and ε(Vu∗p ,ue) ≤ 0. Using (25) we get:

ε
(

Vu∗p1,...,u∗pN ,ue

)
=
∫ ∞

t (
N
∑

i=1
( ∂V

∂δi
)
>

Be(u∗e − ue) +
1
2 u∗>e Reu∗e − 1

2 u>e Reue)dτ

=
∫ ∞

t −u∗>e Re(u∗e − ue) +
1
2 u∗>e Reu∗e − 1

2 u>e Reue)dτ

= − 1
2

∫ ∞
t (u∗e − ue)

>Re(u∗e − ue)dτ ≤ 0

(26)

ε
(

Vu∗p1,...,upi ,...,u∗pN ,u∗e

)
=
∫ ∞

t (( ∂V
∂δi

)>Bi(upi − u∗pi)−
1

2N u∗>p Rpu∗p +
1

2N u>p Rpup)dτ

=
∫ ∞

t (− 1
N u∗>pi Rpi(upi − u∗pi)−

1
2N u∗>pi Rpiu∗pi +

1
2N u>piRpiupi)dτ

= 1
2N
∫ ∞

t (u∗pi − upi)
>Rpi(u∗pi − upi)dτ ≥ 0,

(27)

which completes the proof. �

Remark 1. From Theorem 1, we know that when the game reaches the Nash equilibrium, the value
function does not decrease no matter how the i-th pursuer unilaterally changes its policy. On the
other hand, no matter how the single evader unilaterally changes its policy, the value function
does not increase. As soon as the policy set of the game reaches the game-theoretic saddle point,
any unilateral change in the policies by either agent is in contrary to its benefits, and the other
side of the game reaps the reward in this process. Intuitively speaking, when the game reaches the
Nash equilibrium, if any pursuer unilaterally changes its policy, the evader becomes more difficult
to capture. However, the evader can be captured easily if it unilaterally changes the policy at the
saddle point.

So far, we can summarize the Algorithm 1 as follows:

Algorithm 1: The optimality of Nash equilibrium policies for each agent

Step 1: Obtain the system Nash equilibrium expression
The Hamiltonian function (10) is obtained according to the system parameters, and the expression
of multi-agent Nash equilibrium policies (15) and (16) is obtained through the minimax conditions
(11)~(14).
Step 2: Construct difference form Hamilton function
The Nash equilibrium function term (19) is constructed in the Hamiltonian function, and the
differential Hamiltonian function (20) is obtained to facilitate the comparison of the properties of
Nash equilibrium policies and other policies.
Step 3: Proof of Nash equilibrium of game
The rationality of inequality (23) is proved according to the difference method. By comparing the
positive and negative of the integral term, i.e., Equations (26) and (27), it is found that the Nash
equilibrium can realize the minmax strategy, which is the property of the value function (9).

The process of proving the optimality of Nash equilibrium is shown in Figure 2.
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In this problem, each pursuer shares states and control information, so there is a
cooperative relationship between each pursuer, which affects the decisions of each agent.
According to Equation (6), the value function V is composed of the sum of V1, . . . , VN . Due

to the coupling between individuals, ∇Vk =
N
∑

i=1

∂Vk
∂δi

, i, k = 1, . . . , N, so we have:

∇V =
N

∑
k=1
∇Vk =

N

∑
k=1

N

∑
i=1

∂Vk
∂δi

. (28)

When there is no communication between each pursuer, the game model is equivalent
to N groups of single-pursuer and single-evader game problem, and there is no coupling
between individuals, which means ∂Vk

∂δi
= 0. If k 6= i, then the sum of V1, . . . , VN is

meaningless, and Vk needs to be calculated separately. ∇Vk in Equation (28) changes to:

∇Vk =
∂Vk
∂δk

. (29)

As this paper considers the case where communication exists between each individual,
coupling between agents is contained in the following parts.

In an MPE game problem, whether the pursuers can capture all the evaders or not is
very noteworthy information. If so, the MPE problem is likely to become a finite-time game
as an interception problem. Next, we demonstrate the conditions under which the capture
scenario occurs in the game.

In Theorem 1, we assume that a finite-time capture occurs in the interval t ∈ [t0,+∞]
to ensure the existence of the Nash equilibrium. Theorem 2 gives the sufficient conditions
for the occurrence of the capture.

Theorem 2. Let the pursuers satisfy the dynamics as given by Equation (1) and the evader satisfy
Equation (2). Moreover, let (15) and (16) be the control policies of the pursuers and the single evader,
respectively, where function V(δ) is the solution of the HJI Equation (17). Then, a capture of the
MPE game occurs in the sense that dynamic (4) is asymptotically stable.

Proof of Theorem 2. In order to prove the property of the stability, we can take the value
function as a Lyapunov function. Since V(δ) is the solution of the HJI Equation (15), and
we can acquire that V(δ) ≥ 0 and V(δ(t0)) = 0, then the derivative of the function

.
V(δ)

can be expressed as follows:
.

V =
N
∑

i=1
( ∂V

∂δi
)
>
(Aδi + Biupi − Beue) = − 1

2 (
1
N

N
∑

i=1
δ>i Qiδi +

1
N

N
∑

i=1
u>piRpiupi − u>e Reue)

= − 1
2N

N
∑

i=1
δ>i Qiδi − N

2

N
∑

i=1
( ∂V

∂δi
)
>
(BiR−1

pi B>i − BeR−1
e B>e ) ∂V

∂δi
.

(30)

From Equation (30), the derivative of the Lyapunov function
.

V keeps negative only
if BiRpiB>i − BeR−1

e B>e ≥ 0, i = 1, . . . , N. That is, if game system (A, Bi) and (A, Be) is
stabilizable, (A,

√
Qi) is observable, and BiRpiB>i − BeR−1

e B>e ≥ 0 for i = 1, . . . , N holds,
then the dynamic of the MPE game is asymptotically stable, and all pursuers have the
potential to catch up with the evader. On the other hand, if BiRpiB>i − BeR−1

e B>e < 0, then
the Lyapunov stability condition is not satisfied, and the state variables of system (4) may
tend to diverge. The divergence of the distance between two agents will make it impossible
for the capture to occur. At this time, the pursuers cannot capture the evader. �

Remark 2. In particular, when Bi = Be = B for all i = 1, . . . , N, it can be predicted that the
distance between the pursuer i and the evader will approach 0 as time passes as R−1

pi − R−1
e is

positive. On the contrary, if R−1
pi − R−1

e is not positive, pursuer i may not be able to catch the evader.

In value function (7), u>piRpupi and u>e Reue represent the total amounts of energy consumption of
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the control for pursuer i and the evader. For pursuer i and the evader, Rpi and Re matrices represent
their soft constraints on the control utility, which act as the control penalty. The larger the control
energy weight of the evader or the smaller the control energy weight of the pursuer, the easier the
capture scenario is to trigger.

4. Solution Using Adaptive Dynamic Programming

In Section 3, we obtain the Nash equilibrium policy of each agent in the MPE game.
However, it is challenging to solve the accurate result of the policy for actual systems.
For the numerical solution of the policy, Pontani and Conway used a genetic algorithm
to calculate the off-line control policies of the agents in a zero-sum differential game [11].
However, for the online game problem of a continuous system, the off-line algorithm may
not monitor the states and controls of all the agents. Therefore, based on the concept of
reinforcement learning, this section solves the implementation policy through the policy
iteration (PI) method. In addition, it is difficult to directly obtain the derivative of the value
function with respect to the state quantity, which needs to be fitted by an approximate
algorithm called the value function approximation (VFA). When the PI method loops to
convergence, the Nash equilibrium policies of all agents are obtained.

4.1. Policy Iteration

Since the value function of the MPE game above has an integral form, the value
function can be decomposed by dividing the upper and lower bounds of the integral. By
forming the terms of integral reinforcement learning, the policy iteration (PI) method is
executed to solve the game.

Define an infinite-horizon integral cost associated with the control input as:

V(δ(t)) =
∫ ∞

t
Γ(δ(τ), up1(τ), . . . , upN(τ), ue(τ))dτ (31)

For Γ(δ(τ), up(τ), ue(τ)) = δ>Qδ + u>p Rpup − u>e Reue.
Selecting T as a time period, Equation (31) can be expanded as follows:

V(δ(t)) =
∫ t+T

t
Γdτ +

∫ ∞

t+T
Γdτ =

∫ t+T

t
Γdτ + V(δ(t + T)) (32)

The integrand Γ(δ(τ), up1(τ), . . . , upN(τ), ue(τ)) is known as the integral reinforce-
ment of the pursuer in the time interval [t, t + T]. Note that T is not a state or control
variable, but a hyper-parameter in the algorithm. Choosing different time intervals can
affect the final solution and efficiency of the algorithm. Divide the whole time period of
the game into multiple short time intervals. Assume that [t, t + T] is the ith time interval.
In this time interval, the pursuers and evader adopt policies as u(j)

pi , i = 1, . . . , N and u(j)
e ,

respectively. Then, Equation (32) becomes:

V(j)(δ(t)) =
∫ t+T

t
Γ(u(j)

p1 , . . . , u(j)
pN , u(j)

e )dτ + V(j)(δ(t + T)) (33)

The controls for the next time interval can be obtained by using the following in (33):

u(j+1)
pi = −NR−1

pi B>i ∇V(j)

u(j+1)
e = −NR−1

e B>e ∇V(j).
(34)

Note that only the state information and control information of both sides is needed
in the solving progress. System matrix A does not participate in the above operation. In
actual applications, it is likely to solve the game of systems with unknown parameters,
such as in the modeling of an unconventional aircraft. Therefore, this algorithm can also be
used for obtaining an online solution effectively.



Electronics 2022, 11, 3583 11 of 20

Equations (33) and (34) compose one cycle of policy iteration. The PI method can make
the MPE game converge to the Nash equilibrium as the cycle continues. The following
theorem proves the convergence of the PI method.

Theorem 3. For the given MPE game, set u0
pi and u0

e ,i = 1, . . . , N as the admissible initial
control policies. Then, the value V(δ) and policies upi and ue,i = 1, . . . , N converge to the Nash
equilibrium with V∗(δ) , u∗pi , and u∗e , i = 1, . . . , N , which optimize each player in the game.

Proof of Theorem 3. Let V
u(j)

pi ,u(j)
e

be the value when the ith pursuer and evader adopt the

policies (u(j)
p , u(j)

e ), and j is the iteration counter. Subtracting the value from (25) when the

pursuers and the evader adopt (u(j+1)
pi , u∗e ) and (u(j)

pi , u∗e ), we get the following:

V
u∗p1,...,u(j+1)

pi ,...,u∗pN ,u∗e
(δ(t))−V

u∗p1,...,u(j)
pi ,...,u∗pN ,u∗e

(δ(t)) =
∫ ∞

t
−(u(j+1)

pi − u(j)
pi )
>

Rpi(u
(j+1)
pi − u(j)

pi ) ≤ 0 (35)

which means that the function group V
u(j)

pi ,u∗e
(δ(t)) decreases monotonically. Similarly,

we can see that the function group V
u∗pi ,u

(j)
e
(δ(t)) increases monotonically. According to

Dini’s theorem and the uniqueness of the value function (7), the value of the game V
u(j)

pi ,u(j)
e

converges uniformly to Vu∗pi ,u
∗
e .

In Equation (35), since V
u(j)

p1 ,...,u(j)
pN ,u(j)

e
(δ(t)) is differentiable, the first derivative of

δ, ∇V
u(j)

p1 ,...,u(j)
pN ,u(j)

e
, converges to ∇V

u(∗)
p1 ,...,u(∗)

pN ,u(∗)
e

as the value function converges. Thus,

the policies of every player ∇V
u(∗)

p1 ,...,u(∗)
pN ,u(∗)

e
converge to the Nash equilibrium policy set

(u(∗)
p1 , . . . , u(∗)

pN , u(∗)
e ) as the value function converges, which completes the proof. �

Based on Theorem 3, the continuous MPE game problem can be solved online via the
PI method, which brings the solution to converge definitely to the Nash equilibrium as the
iteration cycle operates.

Remark 3. For the continuous time MPE problem, the use of the PI method to solve the Nash
equilibrium parameters of the game will not lead to changes in its convergence, and the policy of each
agent will eventually approach the analytical solution. In addition, the algorithm is still available
for time-varying systems. If A changes suddenly, as long as the current controller stabilizes the
new A, it is equivalent to solve the Nash equilibrium in the new state. Using Theorem 3, we can see
that the game will converge to the Nash equilibrium corresponding to the final form of the system.

Remark 4. In the process of the PI method, the accurate information of system matrix A is
not required when solving the policies of the agents, which means that for systems with some
unknown specific structure, the policies can still be obtained and make the game converge to the
Nash equilibrium. In the cycle of iteration, the state variables δt and δt+T and control policies u(j)

pi

and u(j)
e for i = 1, . . . , N need to be known at every iteration step.

4.2. Value Function Approximation

In the actual application scenario, solving the HJI equation is often a tough process
analytically, for it might not have any analytical solution in an MPE game. Thus, we apply
an approximative method to solve the equation by utilizing a structure to approximate the
solution of the value function.

Assume that a finite set of basis functions φj(δ) can be determined that approximate
the value function V. Note that the functions are linearly independent, and the value
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function is usually composed of polynomials of the state variables. The value function V
can be approximately represented as

V(δ(t)) =
L

∑
k=1

wkφk(δ) = w>L ϕL(δ) (36)

where L is the number of basis functions in approximation, and ϕL(δ) is the vector of the
corresponding basis function, which is composed of multiple state variables of the agents.
wL is a vector including unknown weights to be determined, and wk, (k = 1, . . . , L) are the
elements of vector wL.

Using the VFA method for the cost function, the HJI equation can be expressed as

w>L ϕL(δ(t)) =
∫ t+T

t
Γdτ + w>L ϕL(δ(t + T)) (37)

The focus is to solve the unknown weight parameter wL in Equation (36). The initial
value of the parameters is determined before iteration starts, which is likely to obtain
residual error before the weight parameters converge to their analytical value. From
Equation (37), the residual error can be defined as

ξ(δ(t), T) =
∫ t+T

t
Γdτ + w>L (ϕL(δ(t + T))− ϕL(δ(t))) (38)

The residual error indicates the difference between the actual weight parameters
and the parameters in the solving process, which can be viewed as a temporal difference
residual error for the game system.

In the VFA algorithm, we try to fit the value function through the basis function
method and learn the weight parameters by building a neural network. At this time, the
weight parameters are also called neural network parameters.

At each iteration step, in order to obtain the weight parameters w(j)
L in the VFA that

approximates the value function V(j), the least-square method is used during each iteration
step. When the game converges to the Nash equilibrium, the residual will converge to 0.
In the process of convergence, the absolute value of the residuals will gradually decrease.
Hence, the weight parameters w(j)

L of the VFA are adapted in a way to minimize the
following quadratic integral residual:

S =
∫

ξ2(δ(t), T)dδ (39)

The quadratic integral residual S in Equation (39) represents the cumulative error of
the algorithm, and it reaches the minimum value when its first partial derivative over the
weight parameter w(j)

L comes to 0, that is

∫ dξ(δ(t), T)

dw(j)
L

ξ(δ(t), T)dδ = 0 (40)

Substituting (38) into (40) and assuming ρ =
∫ t+T

t Γdτ, we have

w(j)
L = Φ−1Θ (41)

where
Φ =

∫
(ϕL(δ(t + T))− ϕL(δ(t))) · (ϕL(δ(t + T))− ϕL(δ(t)))

>dδ

and
Θ =

∫
(ϕL(δ(t + T))− ϕL(δ(t))) ρ dδ
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When the residual function S reaches the minimum value, it means that the existing
basis function can completely fit the value function by updating the neural network param-
eters obtained in Equation (41). According to Theorem 3, the value function approximated
by the basis function can converge to V∗. Thus, the policies of every player∇V

u(∗)
p1 ,...,u(∗)

pN ,u(∗)
e

converge to the Nash equilibrium policy set (u(∗)
p1 , . . . , u(∗)

pN , u(∗)
e ) as the value function

converges. Since then, the ADP algorithm is used to avoid the difficulty of solving the
composite HJI equation, and the Nash equilibrium policies consistent with the analytical
method are obtained.

Remark 5. The value function iteration is embedded in the policy iteration algorithm, i.e., n
batches of least-square sample points need to be selected in each iteration process. The number of
sample points n in each interval should be more than L (the number of the reinforcement learning
parameters to be determined). Otherwise, the reinforcement learning parameter wL cannot be
regressed, resulting in the termination of the algorithm iteration. Moreover, the policies of both sides
are no longer obtainable.

5. Numerical Simulation

In this section, we simulate an MPE game with multiple pursuers and a single evader.
In the simulation process, the system of agents adopts a class of second-order form, that is,
the kind of dynamic model which takes acceleration as control. The trajectory and speed of
the agents change in real time.

Consider the MPE game problem as:
.
spix = vpix.
spiy = vpiy.
vpix = apix.
vpiy = apiy

(42)


.
sex = vex.
sey = vey.
vex = aex.
vey = aey

(43)

where spix, spiy, vpix, and vpiy are the state variables of the i-th pursuer, which represent
its position and velocity along two directions. Similarly, sex, sey, vex, and vey are the state
variables of the single evader, which represent its position and velocity along those two
directions. (apix, apiy) and (aex, aey) are the accelerator couples of the i-th pursuer and
the single evader, which serve as the policies of the i-th pursuer and the single evader,
respectively.

Subtract the model of the i-th pursuer (42) and evader (43) to obtain the difference
between their state variables δ = [dx, ∆vx, dy, ∆vy], where dx and dy are the distance
projections in the X and Y directions, respectively. The dynamic of the subtracted model is:

.
dix = ∆vix

∆
.
vix = apix − aex.

diy = ∆viy
∆

.
viy = apiy − aey

(44)

The distance between the two agents is expressed as a function of the difference of the
state variables of Equation (44) as:

d =
√
(spix − sex)

2 + (spiy − sey)
2 =

√
d2

ix + d2
iy
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In addition, in order to confirm whether the pursuers can capture the evader, set the
capture radius as l. When the distance between two agents is less than l, then a successful
capture takes place, and the MPE game comes to an end.

Since the benefits of agents are determined by the distance between them, and the
velocity is irrelevant, matrix Q in the value function (7) is set as Q = diag(1, 1, 0, 0).

The set of the approximation basis functions is composed of the Kronecker product
quadratic polynomial elements

{
δi ∗ δj

}
i,j=1,2,3,4. To reduce the computational cost of VFA,

eliminate the combinations where there is no coupling relationship between state variables
and construct the basis function group ϕiL(δ) = [δ2

i1, δi1δi3, δ2
i2, δi2δi4, δ2

i3, δ2
i4].

The listed initial values are considered in the following simulation experiment:
xp10 = [3; 1; 2; 0], xp20 = [10; 0; 0; 3]; xp30 = [2; 10; 3; 5], xe0 = [8; 8; 1; 2], Rp1 = Rp2 =
Rp3 = 0.1, Re = 1, ap10 = ap20 = ap30 = 0, ae0 = 0, w0 = [1.5; 1.2; 1.5; 1.5; 1.5; 1.2].

Set the capture radius as l = 0.05 m to start the MPE game simulation, and the
trajectories of the agents vary as in Figure 3. Table 1 shows the state of agents at the end of
the game.
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Figure 3. Trajectories of the agents in MPE game from beginning to capture.

Table 1. State variables of each agent in the game.

Pursuer 1 Pursuer 2 Pursuer 3 Evader

Coordinate (m) (10.2406, 12.4123) (10.2820, 12.4131) (10.2355, 12.5222) (10.2419, 12.4489)
Distance (m) 0.0366 0.0538 0.0735 -

After the game starts, the evader accelerates to the direction where no pursuer exists,
and the three pursuers adjust their policies according to the position of the evader. The
evader can also adjust its policy to avoid being captured, but it is still captured by pursuer
1 due to greater energy constraints.

As the three pursuers have the same performance and follow value function (8), they
can maintain good coordination in pursuit and finally capture the evader. The evader takes
all factors of the state of the three pursuers into consideration and makes the decision to
accelerate away from the directions of the pursuers.
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In the process of the game, the gradient of the distance becomes steeper first and then
gentler, which indicates that the pursuers narrow the distance as much as possible in the
beginning, but in the later stage, due to the reduction of the distance, their energy control
factors gradually occupy the main place. The agents realize the decision of pursuing and
evading under the condition that their energy consumptions are as small as possible.

The capture happens at tc = 4.12 s, when the coordinates of pursuer 1 and evader are
(10.2406, 12.4123) and (10.2419, 12.4489), respectively. The distance between pursuer 1 and
evader is demonstrated in Figure 4.
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As the iteration goes, the neural network parameters converge as the games reach
the Nash equilibrium, which means the policies of both the pursuers and the evader
convergence to the optimal value. The distance between pursuer 2 and evader at the time
of capture is 0.0366 m. Note that the control policies of the agents are updated at each
interval T = 0.4 s.

From the beginning of the game to when the capture happens, 10 cycles of the policy
iteration are completed. During this period, the parameters of the neural network converge
gradually, and usually become stable at some fixed values from the fourth iteration cycle
onward. We verify the effectiveness of the algorithm by obtaining the analytical solution of
the network parameters, which can be seen in Figure 5. The coordinate and time of capture
is shown in Table 2.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 21 
 

 

   
(a) (b) (c) 

Figure 5. Variation of neural network parameters with the number of iterations. (a) neural network 
parameters 1iw , 1, ,6i =  ; (b) neural network parameters 2iw , 1, ,6i =  ; (c) neural network 

parameters 3iw , 1, ,6i =  . 

Table 2. Capture conditions of the MPE game when time interval is set as T = 0.4 s and T = 0.2 s. 

 Capture Time (s) Capture Coordinate (m) Travel Distance of Evader (m) 
T = 0.4 s 4.12 (10.2419, 12.4489) 4.9818 
T = 0.2 s 3.84 (10.1025, 12.1622) 4.6631 

We can see in Figure 6 that a shorter iteration time interval brings closer a result of 
reaching the Nash equilibrium. However, the shorter the iteration period, the more itera-
tions are needed in the whole game process, which means that the calculation cost will 
increase with the number of iterations, though the accuracy will be better at this time. 

When a shorter time interval of iterations is selected, the pursuers can catch up with 
the evader faster. This is mainly because the evader in the simulation has weaker maneu-
verability, and its policy takes minor changes as the time interval varies. For the pursuers 
with strong maneuverability, the improvement is obvious, so the capture distance is 
nearer and the capture time is shorter. A shorter iteration time interval means that the 
frequency of policy updates increases, and the VFA algorithm is implemented in a shorter 
time, which can complete optimization faster. In general, while considering the compu-
ting performance of the agents, refining the time interval of iterations can enable agents 
to obtain Nash equilibrium policies faster. 

In order to test the stability of the algorithm, we now consider the possible errors in 
agents. If an error occurs for pursuer 2, which means pursuer 2 cannot receive the infor-
mation from others to execute the policy obtained by the algorithm, then it can only exe-
cute the initially defined policy, while pursuer 1 and pursuer 3 are in a normal state. By 
executing the above simulation, the trajectory shown in Figure 8 can be obtained. 

0 2 4 6 8 10
iteration times

0

0.5

1

1.5
w11

w12
w13

w14
w15
w16

0 2 4 6 8 10
iteration times

0

0.5

1

1.5

2

2.5

3

3.5
w21

w22
w23

w24
w25
w26

0 2 4 6 8 10
iteration times

0

0.5

1

1.5

2

2.5
w31

w32
w33

w34
w35
w36

Figure 5. Variation of neural network parameters with the number of iterations. (a) neural network
parameters w1i, i = 1, · · · , 6; (b) neural network parameters w2i, i = 1, · · · , 6; (c) neural network
parameters w3i, i = 1, · · · , 6.



Electronics 2022, 11, 3583 16 of 20

Table 2. Capture conditions of the MPE game when time interval is set as T = 0.4 s and T = 0.2 s.

Capture Time (s) Capture Coordinate (m) Travel Distance of Evader (m)

T = 0.4 s 4.12 (10.2419, 12.4489) 4.9818
T = 0.2 s 3.84 (10.1025, 12.1622) 4.6631

By contrast, as long as the conditions in Theorem 3 are met, different initial values
may affect the speed and pattern of the convergence of neural network parameters, but
they will eventually converge to the analytical values.

The selection of the time interval T for each iteration step may also influence the
solution of the MPE game. The selection of the iteration period is mainly based on the
computing performance of the agents. Now we choose a different iteration time interval
as T = 0.2 s to recompute the game problem. Keeping other initial states and parameters
of the agents unchanged, we conduct the MPE game and get the trajectories between the
pursuers and evader as illustrated in Figure 6, and the distances as shown in Figure 7.
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We can see in Figure 6 that a shorter iteration time interval brings closer a result
of reaching the Nash equilibrium. However, the shorter the iteration period, the more
iterations are needed in the whole game process, which means that the calculation cost will
increase with the number of iterations, though the accuracy will be better at this time.

When a shorter time interval of iterations is selected, the pursuers can catch up
with the evader faster. This is mainly because the evader in the simulation has weaker
maneuverability, and its policy takes minor changes as the time interval varies. For the
pursuers with strong maneuverability, the improvement is obvious, so the capture distance
is nearer and the capture time is shorter. A shorter iteration time interval means that the
frequency of policy updates increases, and the VFA algorithm is implemented in a shorter
time, which can complete optimization faster. In general, while considering the computing
performance of the agents, refining the time interval of iterations can enable agents to
obtain Nash equilibrium policies faster.

In order to test the stability of the algorithm, we now consider the possible errors
in agents. If an error occurs for pursuer 2, which means pursuer 2 cannot receive the
information from others to execute the policy obtained by the algorithm, then it can only
execute the initially defined policy, while pursuer 1 and pursuer 3 are in a normal state. By
executing the above simulation, the trajectory shown in Figure 8 can be obtained.
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Figure 8. Trajectories of the agents in MPE game when an error occurs for pursuer 2.

It can be seen that when an error occurs for pursuer 2, the other pursuers can still
capture the evader. At this time, the capture location is slightly farther than normal, and
the capture time is slightly longer at 4.32 s. The distance between the three pursuers and
the evader is shown in Figure 9, and the distances when there is no error for the pursuers
are also shown as a comparison. The capture conditions are shown in Table 3.
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Table 3. Capture conditions of normal status and in the case when an error occurs for pursuer 2.

Capture Time (s) Capture Coordinate (m) Travel Distance of Evader (m)

Normal 4.12 (10.2419, 12.4489) 4.9818
Error occurs for pursuer 2 4.32 (10.3427, 12.5269) 5.0972

Therefore, when there is an error on pursuer 2, the pursuers do not strictly implement
the Nash equilibrium policies at this time, so the capture requires a longer distance, and
the capture time is increased slightly compared with the normal state. Pursuers 1 and 3 try
their best to achieve their optimal policies, while chaser 2 gradually leaves the game due to
its error, which also confirms that the Nash equilibrium policies are optimal for each agent
in the MPE game.

This simulation experiment evaluated the sensitivity of the initial value to the algo-
rithm, and found that the change in sampling interval would affect the convergence of the
neural network parameters. If the sampling interval is too short, it may lead to over-fitting,
which affects the accuracy of the algorithm. In addition, the selection of the initial value
of the state does not affect the stability of the algorithm, and the game will still gradually
converge to the Nash equilibrium in the process of iteration.

6. Conclusions

The solution of an MPE game with networked multiple-pursuer and single-evader is
discussed in this paper, and the expression of the policy of each agent is obtained by using
the minmax strategy. It is proved that when the MPE game reaches the Nash equilibrium,
the policy of each agent will converge to its Nash equilibrium policy, i.e., the optimal
policy of the agent. The adaptive dynamic programming method is used for online policy
iteration, and the VFA is adopted, utilizing the data provided through the IoT system to
avert the difficulties in solving the complicated HJI equation. It was shown that the game
reaches the Nash equilibrium condition after multiple iterations.

In this paper, the online ADP method is used to solve the MPE game problem. For
a game with an integral value function, which is similar to Equation (7), the PI method
proposed in Section 4 can be used to find its solution. However, for game problems with
terminal or compounded value functions, the ADP method is difficult to solve, which
limits the use of such methods. In addition, this paper did not take into account the case
of complex constraints in the game process, and subsequent research should focus on the
constraints of state variables and control variables.
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In the future, we will consider the pursuit–evasion game scenarios of more complicated
systems. It is worth studying scenarios when there are more evaders and pursuers in one
game system. In addition, the algorithm still has room for improvement with regard to
computing large-scale neural network parameters.
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