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Abstract: Sensors are the foundational components of any smart machine system and are invaluable
in all modern technologies. Consequently, faults and errors in sensors can have a significant negative
impact on the setup. Intelligent, lightweight, and accurate fault diagnosis and mitigation lie at the
crux of modern industries. This study aimed to conceptualize a germane solution in the domain
of fault detection, focusing on Hall-effect rotary encoders. Position monitoring through rotary
encoders is essential to the safety and seamless functioning of industrial equipment such as lifts
and hoists, and commercial systems such as automobiles. This work used multi-strategy learners
to accurately diagnose quadrature and offset faults in Hall-effect rotary encoders. The obtained
dataset was then run through a lightweight ensemble classifier to train a robust fault detection
model. The complete mechanism was simulated through interconnected models simulated in a
MATLAB Simulink™ environment. In real time, the developed fault detection algorithm was
embedded in an FPGA controller and tested with a 1 kW PMSM drive system. The resulting system
is computationally inexpensive and achieves an accuracy of 95.8%, making it a feasible solution for
industrial implementation.

Keywords: hall-effect rotary encoder; Industry 4.0; intelligent classification; IIoT; machine learning;
PMSM drive; sensor fault detection

1. Introduction

As we move towards realizing smart factories, and towards the digitization of in-
dustrial processes, there is a need to improve every component of each system. Industry
4.0 technologies [1] require every machine to be smart, more reliable, and automated [2].
Hence, there is a need to improve the sensor systems that are involved in the industrial
process. As much as the machines are vulnerable to different types of fault scenarios, so
are their embedded sensor systems. These sensor systems are essential to the performance
and feedback control of every smart machine. One such sensor system is the position
monitoring used for a myriad of applications in the industry, ranging from automobiles to
flow control [3]. With the increased focus on EV technology, there is a need for improved
rotary position sensors for applications such as torque vectoring [4]. Therefore, there is a
need for further research and development in this domain [5]. There are different types of
rotary sensors available in the market today. One common methodology used for position
measurement in BLDC motors is back EMF measurement for rotor position sensing, but
this method is lacking because it often results in inaccurate measurements, leading to
large torque ripples [6]. Other types of position sensors used for automotive applications
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are resistance-based potentiometric sensors, capacitive sensors, optical sensors, and Hall-
effect magnetic sensors [7]. Hall-effect position sensors are preferred over potentiometric
sensors because there is no need for contact in their utilization. They are also preferred
over optical position sensors as they are immune to dust, compact, and cost-effective.
Capacitive sensors provide high-accuracy output but require additional circuitry, thus
increasing manufacturing complexity [8]. The Hall effect was discovered by Edwin Hall
in 1897. Hall-effect sensors work based on the magnetic field effect. When a Hall element
is placed in a perpendicular magnetic field, a potential difference is developed across the
element that is commensurate to the magnetic field applied [9]. This effect is known as the
Hall effect, and the developed potential difference is used for the measurement of angles.
Different types of Hall-effect sensors can be used for rotary position-sensing applications,
including latch-, switch-, and linear-type sensors [10]. They have been used widely for
the stable and reliable operation of PMSM drives for various applications [11,12]. Linear
Hall-effect sensors are applied in cases where precise and continuous position information
is required. Applications of linear sensors include flow meters, pressure diaphragms,
voltage regulators, and tachometers [13]. Hall sensors are also preferred for elevator and
hoist applications in PMSM [14].

A single linear Hall sensor can be used for angle measurements in the range of
±90◦. This can be useful for some applications, but not for rotating machinery where 360◦

measurements are required. The literature cites that a single sensor can only accurately
measure angles in the range of ±45◦, as the setup is affected by the sensor’s position and the
external magnetic fields that might be present. For applications where 360◦ measurements
are required, it is recommended that a four-element Hall sensor is used [15]. For this, four
Hall elements are placed at an equidistant position from each other under a magnetized
surface. The major advantages of using the four-element approach are that it eliminates
the temperature-based inaccuracies and negates the effect of the external magnetic fields,
thus eliminating any magnetic offsets. Two main types of error are encountered when
using four-element Hall sensors, namely, offset error and orthogonal error. The main
causes of these errors are (i) changes in the magnetization of the permanent magnet;
(ii) permanent magnets with different widths; (iii) air-gap temperature fluctuation; and
(iv) the presence of harmonics in the air gap [11]. These factors lead to errors in the rotor
position measurement accuracy, which can lead to unsatisfactory performance and low
efficiency, therefore causing losses. They can also give rise to a DC component in the Hall
elements’ signal, which will then be amplified by the differential amplifiers. Therefore,
there is a need for a mechanism to be in place to detect these errors, to enable compensation
to be applied at the software or the hardware side, and therefore keeping the machine
performance at the required level [16]. Some work with regards to detection of faults
in the Hall-effect sensors already exists in the literature. Ref. [17] uses a BLDC motor
setup along with Hall-effect sensors to develop a fault detection method based on discrete
Fourier transform and the spectral density error of line voltages. Ali Mousmi et al. [18] use
combinatory circuits for the detection of Hall-effect sensor faults in a BLDC motor. In [19],
phase locked loops are used for detection of three types of faults occurring in Hall-effect
sensors in a PMSM motor setup. All these methods are effective in terms of detecting
different kinds of faults occurring in a Hall-effect sensor, but none are based on a machine
learning approach.

This paper proposes a novel machine learning-based strategy to detect and classify
these faults. The four-element Hall-effect sensor was co-simulated with a permanent
magnet synchronous motor setup for elevator and hoist applications, induced with various
fault scenarios for offset and orthogonal errors. A lightweight ensemble classifier was
applied to the given dataset to train a reliable defect detection model. The Simscape
electrical toolbox was primarily used to simulate the linked models that make up the
whole mechanism in MATLAB Simulink. The designed fault detection method was tested
in real time using a 1 kW PMSM drive system implementing the fault detection model
in an FPGA controller. The remainder of this paper is organized as follows. Section 2
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builds on the theoretical and mathematical conception of the sensor and industrial setup.
Section 3 describes the design of an FOC-based PMSM drive with fault creation and
data extraction. Section 4 presents the sensor fault detection on the FOC-based PMSM
drive system through model simulation and prototype hardware. Section 5 discusses the
simulation and hardware results under quadratic and offset sensor errors, and showcases
the fault diagnosis system results. Finally, Section 6 concludes.

2. Mathematical Modeling

This work requires mathematical modeling of two main components, namely, the
four-element Hall-effect rotary encoder and the permanent magnet synchronous motor
(PMSM). This section provides mathematical modeling of both of these components.

2.1. PMSM Modeling

Permanent magnet synchronous motors operate through the permanent magnets
embedded in the rotor, which generates an undulating magnetic field. When this magnetic
field interacts with the field created by energized stator windings, a sinusoidal rate of flux
change with respect to rotor angle is established [20]. When the rotor becomes synchronous,
its poles hold this rotating magnetic field between the air gaps, consequently resulting in
net generation of torque. The construction of the PMSM and its equivalent circuit diagram
are both seen in Figure 1. As per this circuit, the voltage in stator windings can be computed,
as shown in (1). va

vb
vc

 =

Rs 0 0
0 Rs 0
0 0 Rs

ia
ib
ic

+


dψa
dt

dψb
dt

dψc
dt

 (1)

where va, vb, and vc are the three-phase voltages, ia, ib, and ic are the three-phase currents,
and Rs is the net resistance of each of the stator windings. (dψa)/dt, (dψb)/dt, and (dψc)/dt
are magnetic flux rates of change in each of the stator windings. The total flux linkage in
each winding can then be defined as given in (2).ψa

ψb
ψc

 =

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

ia
ib
ic

+

ψam
ψbm
ψcm

 (2)

where ψa, ψb, and ψc are the total fluxes and ψam, ψbm, and ψcm are the permanent magnet
fluxes linking the stator windings. Laa, Lbb, and Lcc represent the self-inductances and Lab,
Lac, Lba are the mutual inductances. For more useful correlation, these entities may be
represented with respect to the rotor electrical angle (θe), as defined by (3)–(9).

θe = Nθr + Of (3)

Laa = Ls + Lm cos(2θe) (4)

Lbb = Ls + Lm cos
(

2
(

θe − 2π

3

))
(5)

Lcc = Ls + Lm cos
(

2
(

θe +
2π

3

))
(6)

Lab = Lba = −Ms − Lm cos
(

2
(

θe +
π

6

))
(7)

Lbc = Lcb = −Ms − Lm cos
(

2
(

θe +
π

6
− 2π

3

))
(8)

Lca = Lac = −Ms − Lm cos
(

2
(

θe +
π

6
+

2π

3

))
(9)
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where θr is the rotor mechanical angle, Of is the rotor offset, Ls is the stator self-inductance per
phase, Lm is the stator inductance fluctuation, and Ms is the stator mutual inductance. These
equations are still complex to solve concurrently; therefore, it is best practice to transform
them into dq0 frame relations through Park’s transform (P), as shown in (10) and (11).vd

vq
v0

 = P

va
vb
vc

 (10)

id
iq
i0

 = P

ia
ib
ic

 (11)
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Similarly, the inductances can also be translated to the dq0 frame as given in (12)–(14).

Ld = Ls + Ms +
3
2

Lm (12)

Lq = Ls + Ms −
3
2

Lm (13)

L0 = Ls − 2Ms (14)

Using these equations, the electrical equations that determine the overall operation of
the motor in the dq0 frame can be computed as in (15)–(18).

vd = Rsid + Ld
did
dt

− NωiqLq (15)

vq = Rsiq + Lq
diq
dt

− Nω(idLd + ψm) (16)

v0 = Rsi0 + Lo
di0
dt

(17)

T =
3
2

N(iq(idLd + ψm)− idiqLq) (18)

where N is the number of rotor permanent magnet pole pairs, ω is the mechanical speed of
the rotor, ψm is the permanent magnet flux linkage, and T is rotor torque.

2.2. Four-Element Hall-Effect Rotary Encoder

The four-element Hall-effect sensor requires the placement of four Hall elements
around a diametrically magnetized magnet at an equal distance from each other. This then
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generates four sinusoidal waves, all with a phase difference of 90◦ with its neighbor [15].
The four Hall sensors can be labeled as H1, H2, H3, and H4, as shown in Figure 2. The
outputs of each of the sensors is given in (19)–(22).

H1 = V sin α (19)

H2 = V sin(α + 90◦) = V cos α (20)

H3 = V sin(α + 180◦) = −V sin α (21)

H4 = V sin(α + 270◦) = −V cos α (22)
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The outputs from H1 and H3 are then passed through a differential amplifier to give
the component Vsinα (23).

H1 − H3 = V sin α − (−V sin α) = 2V sin α (23)

Similarly, the outputs of the sensors H2 and H4 are passed through a differential
amplifier to give the component Vcosα (24).

H2 − H4 = V cos α − (−V cos α) = 2V cos α (24)

θ = tan−1 2V sin α

2V cos α
(25)

The Vsinα and Vcosα components are then converted into digital signals using ADC
converters, and the rotor position can then be obtained by solving the tan−1 equation as
given in (25). The overall workflow of the angular computation is visualized in Figure 3,
which shows the flow of the signals from the Hall elements to the differential amplifiers.
The signals from differential amplifiers are then converted using ADCs and fed into a
processor to obtain the angular rotor position. The output signal from the sensor or the
signal conditioning circuit should be the source of the Hall-effect encoder’s error.
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3. Design of FOC-Based PMSM Drive with Fault Creation and Data Extraction

The designed model focuses on the conventional mechanism of a PMSM deployed
for industrial hoists [21,22]. The PMSM is an ideal subject for the use of Hall-effect rotary
encoders as this setup is commonly utilized in industries [23]. The complete fault detection
strategy was designed as a three-tier framework ranging from the PMSM and sensor
simulation, and the data acquisition, to the fault detection system. This layered architecture
can be summarized by the schematic diagram in Figure 4. A further in-depth overview of
the conception of this integrated model is described in the following subsections.
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3.1. Motor and FOC Architecture

PMSMs are gradually replacing induction motors in elevator and hoist setups due to
their high torque-to-speed ratio, compact construction, relatively high efficiency, less noisy
operation, and high-power density [14,24]. The faults occurring within the PMSM were
not considered in the design phase of this model as they are less relevant to the scope of
the study, which focuses on the faults developed in the sensory mechanism. This motor
provides a standard quadratic load torque profile for multiple 10 s simulations.

In applications that require higher levels of torques while maintaining low starting
current, in addition to high efficiency in PMSMs, field-oriented control (FOC) is the pre-
ferred technique. Briefly, this strategy dissociates torque and flux signals by translating
the static phase currents to a mobile or rotational frame [25]. In the case of the FOC im-
plemented in this model, the rotor dq frame is used as a reference point. The design of
the controller is shown in Figure 5. Here, ω and ωref are the measured and reference level
angular velocities, Tref is the reference torque, and θe is the rotor electrical angle. The dq
frame current references are represented by idr and iqr, whereas vdr and vqr are the reference
voltages. The implemented controller can effectively track the reference signal. In addition
to the focused monitoring and logging of the Hall-effect rotary encoder, the model also
consists of a comprehensive sensing unit for scrupulous analysis of the motor’s behavior.



Electronics 2022, 11, 3633 7 of 17

This setup predominantly consists of three-phase current and voltage, torque, and speed
sensing. In addition to being used for analysis, these parameters are also fed back to the
field-oriented controller in order to iteratively adjust the controller gains and maintain
consistent electrical behavior. For the purposes of this study, the system was designed
such that it requires the Hall monitoring system to perform adequately with logging and
monitoring capabilities. However, if the system was to be developed into a product, it
would be fundamental to implement this in a modular fashion so that the system can
function in its basic mode without the added functionality of the Hall sensing.
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3.2. Hall-Effect Rotary Encoder Operation and Faults

The central focus of this study was the operation of the Hall-effect sensor. The position
monitoring of rotating machines requires the full revolution range of angular measurements.
For such an application, it is not feasible to use a single Hall element, and the conventional
approach is to utilize four equidistant Hall elements under a diametrically magnetized
rotating magnet [26]. Therefore, this study also utilized a four-element Hall-effect rotary
encoder in the decoded angular position mode, which generates four sinusoidal wave-
forms [12]. These are then used to compute the incremental position of the PMSM shaft.
The Hall-effect sensor is considered a low-cost robust mechanism for industrial sensing [27].
However, as with all sensors, the operation can be subject to calibration and instrumen-
tation errors. These may not damage the sensor itself, but a loss of position accuracy
for industrial equipment such as lifts and hoists can result in catastrophic accidents and
extended downtime. This makes the rapid diagnosis of such faults crucial for continued
seamless operation. For this study, two significant Hall-effect encoder faults were modeled
for training and testing the fault detection subsystem: quadrature error and offset bias error.
The particulars of these faults are as follows:

• Quadrature error (QE): Quadrature detection in rotary encoders allows the user to
monitor the speed and direction of rotation, and incremental changes in angle [28].
Placement and alignment errors, magnet tilt, and off-axis magnet rotation may all con-
tribute to a total measurement error known as quadrature error. Additionally, variations
in device sensitivity will impact overall quadrature accuracy. During continuous rotation,
small quadrature errors for speed calculations may average out over time, but detecting
distinct pole transitions for the absolute position requires finer precision.

• Offset error (OE): Offset errors occur primarily in the Hall element and are due to
poor transistor matching of the components in the analogue signal path [26]. An
offset voltage may also develop due to non-ideal temperature conditions [29]. In
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well-designed sensor elements, these errors are small and existing OEs can be tackled
with offset compensation and front-end calibration.

The typical characteristics shown by the position waveform in healthy conditions and
with the above-mentioned faults are shown in Figure 6. To distinguish the variation, a short
snippet of 0.6 s is demonstrated once the motor starting is complete and the waveform has
stabilized.
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The simulated dataset consisted of three categories of data: healthy, with quadrature
error, and with offset error. The fault categories were simulated with varying error degrees
and offset voltages. The total number of collected data points amounted to approximately
4 million.

3.3. Data Extraction and Classification

Considering the functional constraint of manually acquiring such a vast dataset,
parallel pool processing with Simulink ensemble datastore was utilized to automate and
streamline the data acquisition and compilation process. Following the collection of data
into a comprehensive database, data features were extracted for each of the files to compile a
labeled feature table. The statistical features computed for this model were mean, standard
deviation, skewness, kurtosis, peak value, root mean square (RMS), impulse factor, crest
factor, clearance factor, and shape factor. Additionally, some common signal processing
features were also calculated, including signal-to-noise and distortion (SINAD), signal-to-
noise ratio (SNR), and total harmonic distortion (THD).

Feature extraction is considered an essential process for producing a high-accuracy
machine learning model as it tends to highlight trends in the data, ignoring irrelevant
anomalies [30]. This process reduces the dimensionality of the data, which optimizes
the computational load for the training process. Although extraction of features lowers
dimensionality and redundancy, sieving for significant features can further optimize model
training and accuracy [31]. Therefore, the model employs two feature selection techniques
to choose the most significant features for training. The first is neighborhood component
analysis (NCA), which is a non-parametric method used to select features to maximize
the prediction accuracy of regression and classification algorithms. It is cited in machine
learning systems due to its non-linear decision surface and simplicity with a single integer
parameter [32,33]. The model’s dataset is run through an NCA feature selection with regu-
larization to learn feature weights for minimization of an objective function that measures
the average leave-one-out classification or regression loss over the training data. The result-
ing computation for each feature weight is shown in Figure 7. The second strategy used
for feature selection is the minimum redundancy maximum relevance (mRMR) algorithm,
which finds the optimal array of features by ranking them according to their overlap with
other features. Although many algorithms focus on finding the most relevant features,
they ignore the fact that these may be correlated and therefore dispensable. The mRMR
algorithm is uniquely aimed at reducing redundant or correlated features, which may
weigh down the training process, while also maintaining relevance [31]. On running the
feature table through the mRMR, a ranking of best features was produced, as shown in
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Figure 7. By combining their results, the two selection methods were superimposed and
the irrelevant features were omitted prior to the training process. This resulted in more
efficient training and saved valuable computational resources.
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4. Realization of FOC for PMSM Drive System for Sensor Fault Detection

The objective of this work was to detect the sensor fault under various operating
conditions using machine learning algorithms. The prime focus was to extract the machine
data under healthy and sensor fault conditions, and analysis with the trained machine
learning model. Hence, the FOC for a 2.87 kW PMSM drive system was developed in the
MATLAB Simulink/Simscape™ environment and realized experimentally with a scaled-
down model, i.e., a 1 kW PMSM drive system.

4.1. Simscape Model of PMSM Drive System

The complete mechanism was simulated through interconnected models simulated in
MATLAB Simulink™, mostly through the Simscape electrical toolbox, as shown in Figure 8.
Simscape™ enables the creation of models of physical systems within the Simulink® envi-
ronment. Simscape helps to develop control systems and test system-level performance.
Physical component models can be built based on physical connections that directly inte-
grate with other modeling paradigms. In the Simscape environment, the FOC-based PMSM
drive with a sensor fault-enabled system was designed and deployed. The model shown in
Figure 8 consists of the PMSM, two-level voltage source inverter and source module, rotary
encoder, and FOC.

The permanent magnets contained in the rotor of permanent magnet synchronous
motors produce an undulating magnetic field, which powers the motor. Energized stator
windings produce a magnetic field that interacts with this magnetic field, resulting in a
sinusoidal rate of flux change with respect to the rotor angle. The poles of the rotor keep
this revolving magnetic field between the air gaps when it becomes synchronous, which
leads to the net creation of torque. As discussed in Section 2.1, the machine model was
developed in the Simscape™ environment. Six IGBTs with antiparallel diodes are wired
in series and parallel combinations and connected with a DC voltage source to form the
source module. The inverter produces line-to-neutral voltage for a three-phase balanced
load. Four Hall elements evenly placed beneath a revolving magnet serve as the basis for
the Hall-effect rotary encoder block’s representation of a 360◦ rotational position sensor.
The four sinusoidal waveforms noted in Section 2.2 are produced by the elements.



Electronics 2022, 11, 3633 10 of 17

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

model shown in Figure 8 consists of the PMSM, two-level voltage source inverter and 

source module, rotary encoder, and FOC.  

 

Figure 8. Developed model in the MATLAB Simulink environment. 

The permanent magnets contained in the rotor of permanent magnet synchronous 

motors produce an undulating magnetic field, which powers the motor. Energized stator 

windings produce a magnetic field that interacts with this magnetic field, resulting in a 

sinusoidal rate of flux change with respect to the rotor angle. The poles of the rotor keep 

this revolving magnetic field between the air gaps when it becomes synchronous, which 

leads to the net creation of torque. As discussed in Section 2.1, the machine model was 

developed in the Simscape™ environment. Six IGBTs with antiparallel diodes are wired 

in series and parallel combinations and connected with a DC voltage source to form the 

source module. The inverter produces line-to-neutral voltage for a three-phase balanced 

load. Four Hall elements evenly placed beneath a revolving magnet serve as the basis for 

the Hall-effect rotary encoder block’s representation of a 360° rotational position sensor. 

The four sinusoidal waveforms noted in Section 2.2 are produced by the elements. 

Field-oriented control is the preferred technique in applications that demand higher 

torque with low starting current and high efficiency in PMSMs. By transforming the static 

phase currents to a dynamic or rotating frame, this method simply separates the signals 

for flux and torque. The rotor dq frame is employed as a reference point for the FOC used 

in this model. Figure 9 shows the FOC control design. Here, ω and ωref are the measured 

and reference level angular velocities, Tref is the reference torque, and θe is the rotor elec-

trical angle. The dq frame current references are represented by idr and iqr, whereas vdr and 

vqr are the reference voltages. The implemented controller can effectively track the refer-

ence signal. The model has a thorough sensing unit for careful examination of the motor’s 

behavior, in addition to targeted monitoring and logging of the Hall-effect rotary encoder. 

These characteristics are utilized both for analysis and as feedback to the field-oriented 

controller, which iteratively modifies the controller gains to maintain stable electrical be-

havior. 

Figure 8. Developed model in the MATLAB Simulink environment.

Field-oriented control is the preferred technique in applications that demand higher
torque with low starting current and high efficiency in PMSMs. By transforming the static
phase currents to a dynamic or rotating frame, this method simply separates the signals for
flux and torque. The rotor dq frame is employed as a reference point for the FOC used in
this model. Figure 9 shows the FOC control design. Here, ω and ωref are the measured and
reference level angular velocities, Tref is the reference torque, and θe is the rotor electrical
angle. The dq frame current references are represented by idr and iqr, whereas vdr and vqr are
the reference voltages. The implemented controller can effectively track the reference signal.
The model has a thorough sensing unit for careful examination of the motor’s behavior,
in addition to targeted monitoring and logging of the Hall-effect rotary encoder. These
characteristics are utilized both for analysis and as feedback to the field-oriented controller,
which iteratively modifies the controller gains to maintain stable electrical behavior.
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4.2. Prototype Hardware of PMSM Drive System

Figure 10 shows the adopted experimental arrangement to analyze the dynamic
performance of the permanent magnet synchronous machine under sensor faults and
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extract the real time data. The experimental arrangement consists of a 1 kW PMSM
coupled with the mechanical loading arrangement. An IGBT-based two-level voltage
source inverter is employed to drive the PMSM. The gate pulse signal for the converter is
provided by the real-time FPGA controller. The VHDL code for Hall-effect sensor-based
PMSM field-oriented control was developed and implemented on a Xilinx Artix®-7 FPGA
processor. The VHDL logic gates for FOC are shown in Figure 11. The ratings of the PMSM,
converter, and controller are shown in Table 1. To obtain the speed feedback, the PMSM
machine is integrated with a Hall-effect encoder and signal conditioning circuit. Moreover,
the controller receives feedback signals from the Hall-effect current and voltage sensors
through signal conditioning and the filtering circuit. The sensed signals from sensors are
fed to analog-to-digital channels of the FPGA controller, and these signals are recorded on
the computer. The offset fault is created manually by adjusting the sensor gain in the signal
conditioning circuit. Similarly, the quadrature error is created by varying the Hall-effect
sensor output angle through integrating a variable for external input. The field-oriented-
controlled PMSM’s performance under different operating conditions was analyzed under
different operating and fault conditions.
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Table 1. PMSM drive specifications.

Parameter Simulation Model Hardware Prototype

PMSM Specifications

Winding Type Wye-Wound Wye-Wound

Rated Voltage 48 V 48 V

Permanent Magnet Flux
Linkage (ψ) 0.03 Wb 0.16 Wb

Stator d-axis Inductance (Ld) 0.0002 H 0.005 H

Stator q-axis Inductance (Lq) 0.0002 H 0.005 H

Stator Resistance (Rs) 0.13 Ohms 1.36 Ohms

Rated Frequency 100 Hz 100 Hz

Pole Pairs 6 3

Rated Speed 1000 rpm 2000 rpm

Output Power 2.87 kW 1 kW

Hall-Effect Sensors-rotary encoder Specifications

Sensing elements 4 elements 3 elements

Output angle 360◦ 0 to 360◦

Model

Power Converter and Controller Specifications

Voltage Source Inverter IGBT based 2 Level IGBT based 2 Level

Switching Frequency 2 kHz 10 kHz

FoC PI Controller Outer Loop
Gains Kp = 60; Ki = 600 Kp = 12.8; Ki = 38

FoC PI Inner Loop d-axis
Gains Kp = 0.1; Ki = 10 Kp = 0.32; Ki = 0.02

FoC PI Inner Loop q-axis
Gains Kp = 0.1; Ki = 10 Kp = 0.32; Ki = 0.02

Controller (FoC
Implementation) MATLAB Simulink Artix-7 FPGA

The VHSIC Hardware Description Language (VHDL) is a hardware description lan-
guage that may be used for design entry, documentation, and verification. It can represent
the behavior and structure of digital systems at various levels of abstraction, from the
system level down to that of logic gates. Dataflow modeling, behavioral modeling, and
structural modeling are all used in the architecture of the VHDL code for the FOC PMSM.
The primary design of VHDL for FOC PMSM is depicted in Figure 11a. It has a clock,
capture a, capture b, and capture c for input from Hall-effect sensors, program enable status,
and speed reference (set PWM). In addition to this, the developed fault detection algorithm
was embedded in an FPGA controller and tested. When the fault is identified, an indication
is given. Figure 11b also depicts the VHDL’s internal design.

5. Results and Discussion

As per the work process, the PMSM was tested under various operating conditions
and the data were extracted and the algorithm trained. The machine was permitted to run
normally (with full load and no load) for the first 1.2 s. At this point, the rotary encoder
quadrature error was activated, and variations in speed, torque, and current were noted.
Similar to the first simulation, the variance in speed, torque, and current was observed
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when the rotary encoder offset error was activated at 1.2 s (Figure 12). The machine ran
without any load while experiencing a sensor error.
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Speed: The machine’s speed under quadrature error had a steady throbbing shape.
Because the speed oscillation’s amplitude is so small, it has no effect on the motor’s speed.
When there was an offset error, oscillation occurred slowly at first and then accelerated.
Later, the speed amplitude also decreased.

Torque:Under quadrature error, the machine’s electromagnetic torque had a steady
pulsing shape, and increased from 0 to 0.78 p.u. of its rated value. When there was an offset
error, the torque oscillation was higher initially, before decreasing. The torque amplitude
exceeded 1.p.u. in later stages.

Current: According to the findings, the second phase’s current increased from 0.1
to 0.78 p.u. under quadrature error. The other two-phase currents also rose, from 0.1 to
0.44 p.u. In the case of offset error, all of the phase current’s waveform trend changed
completely, and the magnitude increased beyond 1.p.u.

The stator current of an FOC-controlled PMSM with quadrature error and offset error
is shown in Figure 13a,b, respectively, which demonstrate an experiment that was carried
out ina similar manner. The machine was permitted to operate at 0.4 p.u. load under
healthy conditions for the duration of the trial before the rotor fault was enabled.

The training data were entered into the MATLAB Classification Learner App to train
the model. For this fault detection system, a single machine learning algorithm would
provide inferior results; therefore, melded multi-agent ensemble learning models were
used. These ensemble models have lower interpretability but are relatively fast to train
and memory efficient. Using parallel computing, five ensemble models were trained
simultaneously. The models used and their classification results are shown in Table 2. The
highest accuracy of 95.8% was achieved with the subspace KNN ensemble model. Further
analysis of this model is shown in Figure 14a,b through a confusion matrix and parallel
coordinates plot. Closer examination of the results showed that certain combinations
of classifiers are not suited for unveiling the pattern of the sensor faults, although they
may have a more suitable role in other applications. This was partly expected due to the
properties of the various classifiers. The AdaBoost model, for example, is adept at handling
binary classification,but does not perform as well in cases such as ours where there are
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multiple classes. As the RUS Boost model is an enhanced derivative of AdaBoost, it has
a similar bottleneck. Alternatively, using the same decision trees with a random forest
meta-estimator effectively controls overfitting when managing multiple decision trees;this
is beneficial in our case, as the model needs to maintain flexibility regarding various levels
of fault intensity. This is reflected in the results, which show a higher accuracy for the
random forest ensemble than for the boosted methods. Finally, the subspace clustering
mechanism is shown to be highly accurate, especially with the KNN algorithm. This
high accuracy is likely due to the fact that subspace clustering specializes in cases such as
that being studied, where there are a large number of high-dimension features available
and the clustering needs to extend beyond a traditional entity into more unconventional
patterns. It can be seen that using the framework of a well-matched classifier ensemble for
intelligent fault detection leads to superior diagnostic accuracies. Furthermore, using this
type of a system for Hall-effect sensors, based on customizing the framework in terms of
its characteristics, and using a model for support, is unique to this work and beneficial to
developing more modern systems.
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Table 2. Classification results of various ensemble models.

Ensemble Name Melded Classifiers Accuracy

Boosted Trees AdaBoost with Decision Tree 41.7%

RUS Boosted Trees RUS Boost with Decision Tree 41.7%

Bagged Trees Random Forest Bag with
Decision Tree 94.5%

Subspace Discriminant Subspace with Discriminant
Learners 94.5%

Subspace KNN Subspace with Nearest
Neighbor 95.8%

Although the results show a positive outlook regarding what can be achieved for
sophisticated sensor systems, it is also important to discuss the issues that may arise when
deployed commercially. In systems utilizing classification via intelligent methods, it is often
debated whether the complexity of the mechanism makes it unsuitable for widespread use.
This may be true to an extent with the mechanism developed in this study; however, closer
inspection shows that the pipeline is highly integrated and requires little intervention.
This means that the complexity for the user is reduced at the completion of the process.
Although the complexity of acquiring data and training the model may still be high, a
hybrid implementation using periods of collected data to train the machine during off-time
may circumvent the complexity and boost the efficiency of the mechanism.
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6. Conclusions

In the age of Industry 4.0, artificial sensory mechanisms in machines are as significant
as sensory systems are to the human body. As a result of the rapidly expanding domain
of remote condition monitoring and the Industrial Internet of Things, the focus on sensor
systems has become even more significant. However, commensurate to their role in
industry, sensors have an equally catastrophic impact on industrial setups when faults
or errors exist in their measurement. In this study, a novel machine learning-based fault
diagnosis system for Hall-effect rotary encoders used in lifts and hoists was developed.
Position monitoring is essential in maintaining the seamless operation of PMSM lifts, and
efficient fault mitigation is invaluable in this scenario. The developed system utilizes
multi-learner models to train fault detection, achieving a maximum accuracy of 95.8%. The
model is computationally lightweight and accurate, giving it the potential to consolidate
with bespoke industrial setups and revolutionizing the domain of machine maintenance.
Integrating the intelligent system with onboard PLCs would effectively reduce machine
downtime due to erroneous readings. This will be the future scope of this work.
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