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Abstract: Relation extraction in the threat intelligence domain plays an important role in mining the
internal association between crucial threat elements and constructing a knowledge graph (KG). This
study designed a novel document-level relation extraction model, FEDRE-KD, integrating additional
features to take full advantage of the information in documents. The study also introduced a teacher–
student model, realizing knowledge distillation, to further improve performance. Additionally, a
threat intelligence ontology was constructed to standardize the entities and their relationships. To
solve the problem of lack of publicly available datasets for threat intelligence, manual annotation was
carried out on the documents collected from social blogs, vendor bulletins, and hacking forums. After
training the model, we constructed a threat intelligence knowledge graph in Neo4j. Experimental
results indicate the effectiveness of additional features and knowledge distillation. Compared to
mainstream models SSAN, GAIN, and ATLOP, FEDRE-KD improved the F1score by 22.07, 20.06, and
22.38, respectively.

Keywords: threat intelligence; document-level relation extraction; knowledge distillation;
knowledge graph

1. Introduction

Today, the Internet of Things (IoT) impacts almost every aspect of societal needs [1].
With the rapid development of network and information technology, new cyber threats (e.g.,
session hijacking, masquerade attack, and interruption) [2] are showing a gradual rising
trend. Increasing complexity of attack strategy and the ever-changing attack scenarios make
traditional network defense, such as firewalls, hard to resist. In 2019, more than 10,000 new
types of cybercrime were committed in Russia [3]. In February 2022, Ukrainian government
agencies and banking websites were targeted by large-scale distributed denial-of-service
(DDoS) attacks, resulting in the offlining of at least 10 websites [4]. To achieve better
command of threat situations and coordinate the response to unknown threats, security
experts proposed cyber threat intelligence (CTI) for network defense. Gartner [5] first put
forward that CTI is knowledge of existing or emerging threats against assets, including
scenarios, mechanisms, indicators, and actionable recommendations, which can provide the
subject with countermeasures.

Knowledge of threat intelligence originates from security analysis reports, blogs, social
media, etc., which provides powerful data support for situational awareness and active
network defense [6]. However, threat intelligence is mainly in the form of natural language,
containing a large amount of unstructured data. Thus, it is difficult to visualize the internal
relations of crucial elements. To help researchers understand the semantic association of
elements quickly, it is necessary to design corresponding algorithms for mining entities
and relations between them from large-scale threat intelligence documents to construct a
knowledge graph.

Relation extraction aims to identify relations between entities from a given text [7].
As shown in Figure 1, the head entity Attacker “Mealybug” and the tail entity Trojan
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“Trojan.Emotet” can express the relation of “Use”. Although relation extraction in the general
domain has achieved satisfactory results, the mainstream models present the following
limitations in the cybersecurity domain: (1) the lack of open-source datasets about threat
intelligence; (2) threat intelligence contains plenty of terms such as vulnerability number,
malware name, advanced persistent threat (APT) group, etc., with serious out-of-vocabulary
(OOV) problem; (3) threat intelligence documents are complex in structure. The frequency
of entities in a sentence is extremely low, leading to the serious imbalance in the distribution
of data labels. In addition, the current work mainly focusses on text mining at the sentence
level. However, in practical scenarios, there may be multiple mentions for an entity and
the relations between entities usually depend on at least two sentences for inference [8].
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Figure 1. A threat intelligence text containing entities and relations.

To this end, this paper proposes a novel feature-enhanced document-level relation
extraction model (FEDRE) to improve the in-domain performance of threat intelligence,
which integrates new features. Then we introduce a teacher–student model to achieve
knowledge distillation (FEDRE-KD). In summary, we present a practical model to convert
threat intelligence documents into structured data and construct a knowledge graph. It
can be further utilized in threat hunting and decision making. Our contribution can be
summarized as follows:

(1) We captured part-of-speech (POS) of entity, width of mention, distance between
entity pair, and type of entity as new features in document-level threat intelligence relation
extraction. Pre-training model bidirectional encoder representation from transformers
(BERT) was applied as encoder to alleviate the OOV problem.

(2) We introduced a teacher–student model, gathering effective information from
texts by soft labels, which retains the association between classes and eliminates some
invalid redundant information. We achieved knowledge distillation and further improved
performance.

(3) We collected 227 threat intelligence documents and manually annotated them based
on an ontology we defined. We systematically compared the performance of our model
with the mainstream neural network models on the document-level relation extraction
task. Experimental results demonstrate the effectiveness of our model. The extraction
results were integrated to construct a threat intelligence knowledge graph, realizing the
visualization of correlation of key elements.
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2. Related Work
2.1. Document-Level Relation Extraction

As an important task of information extraction, relation extraction refers to extracting
pre-defined relations from unstructured text based on named entity recognition. Relations
between entity pairs can be formally described as triples < e1, r, e2 >, where e1 and e2 are
entities and r belongs to relation set R = {r1, r2, . . . , rn}.

Early studies [9–12] mainly focused on the relations between entities within a single
sentence. However, in practical scenarios, an increasing number of relations need to be
inferred through multiple sentences. Recently, research has shifted to document-level
relation extraction, which needs to integrate intra-sentence and inter-sentence information
and capture interactions between entity mentions. Existing methods are mainly divided
into two categories: document graph methods and transformer-based methods. Specifi-
cally, Wang et al. [13] encoded the document into global entity representation, local entity
representation, and contextual relation representation, and constructed a global heteroge-
neous graph. Zhang et al. [14] proposed an entity-pair-level document graph and collected
contextual information horizontally and vertically to enhance entity pair representation.
They captured features of single-hop and multi-hop logical reasoning by using criss-cross
attention. For the transformer-based methods, Xu et al. [15] integrated the unique depen-
dence between mentions into a standard self-attention mechanism which ran through the
whole encoding module. Yuan et al. [16] captured critical sentence feature using an inter-
sentence attention mechanism and designed gating function to combine sentence-level and
document-level features. Xie et al. [17] presented EIDER, an evidence-enhanced document-
level relation extraction framework consisting of three stages, including joint relation and
evidence extraction, evidence-centered relation extraction, and fusion of extraction results,
which achieved a significant improvement.

2.2. Threat Intelligence Information Extraction

Indicators of compromise (IOC) can be observed at the early stage of a cyber-attack,
which is vital for identifying whether a computer has been hacked. However, exist-
ing IOC extraction methods rely heavily on expert knowledge. To tackle this problem,
Long et al. [18] proposed an end-to-end sequence labeling model, which can automati-
cally extract IOC from cybersecurity texts using a multi-head self-attention mechanism
and contextual features, exploring entities and relations between them has significant
applications in cybersecurity. Because of the fast-growing volume of the documents, it is
time-consuming and laborious to develop feature templates. Therefore, Gasmi et al. [19]
proposed three relation extraction models based on LSTM, reducing troubles caused by
feature engineering. Wang et al. [20] constructed an automatic IOC extraction method,
iAES, for cybersecurity blogs based on regular expression matching and deep learning
models. Satyapanich et al. [21] classified the types of cyber events into five categories
and combined semantic features with deep learning to propose a new cybersecurity event
extraction system CASIE, which provides data support for building a knowledge graph.

2.3. Knowledge Distillation

In general, large models have good performance and generalization ability because of
their complex structure, followed by long training time and high computational overhead.
Small models, on the other hand, have limited expressiveness due to their scale. Therefore,
it is reasonable to guide small models with the knowledge from large models, so that the
former can have comparable or similar performance and significantly reduce training time,
thus realizing compression and acceleration.

Hinton et al. [22] first proposed the concept of knowledge distillation. They suggested
training a complex network (called the teacher model) and using the output of this model
and ground truth to train a simpler network (called the student model). Remero et al. [23]
extended Hinton’s approach, utilizing the output of the teacher model and the feathers of
the middle layer as hints to improve the training process and performance. In addition
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to applications in computer vision, knowledge distillation is gradually being applied to
natural language processing (NLP). Zhang et al. [24] designed a bipartite graph to discover
type constraints between entities and relations based on the entire corpus. Then, they
combined such type constraints with neural networks to achieve a knowledgeable model.
Furthermore, this model was regarded as a teacher to generate well-informed soft labels
and guide the optimization of a student network via knowledge distillation.

2.4. Threat Intelligence Knowledge Graph

Knowledge graph is a semantic network proposed by Google, revealing relations
between entities. It has been widely applied in many fields, such as data storage [25],
knowledge reasoning [26] and intelligent answering [27]. Threat intelligence knowledge
graphs can store massive amounts of information. Experts are capable of constructing corre-
sponding systems based on the interrelated information. Then, they make determinations
using logical reasoning based on pre-defined rules, providing support for user decisions.

Gao et al. [28] proposed SECURITYKG, collecting open-source cyber threat intelligence
(OSCTI) reports and using a combination of artificial intelligence (AI) and NLP techniques
to construct a security knowledge graph. Piplai et al. [29] suggested that the cybersecurity
knowledge graph based on information extracted from OSCTI was limited, as the author
may focus on only specific aspects of malware. In addition, not all authors were trustworthy.
Conflicting information could be detected on the basis of ontology, constraints, and rules
after inserting behavior knowledge into the knowledge graph. Mittal et al. [30] presented
an end-to-end system for knowledge extraction in the cybersecurity informatics domain.
It combined vector space and the knowledge graph (called VKG structure) to represent
threat intelligence. In this structure, vectors contained implicit information about entities.
On the other hand, the knowledge graph possessed explicit information about entities and
their relations. Meanwhile, they created a search engine and a warning system by actively
updating the knowledge graph.

3. Framework Architecture

This paper proposes a novel document-level relation extraction model, FEDRE, inte-
grating global and local information. It captures part of speech of entity, width of mention,
distance between entity pair, and type of entity as new features. The framework of FEDRE
is shown in Figure 2.

As shown in Figure 3, we introduce a teacher–student model, gathering effective
information from texts using soft labels.

3.1. Encode Layer

In a given a document, D = [xt]
l
t=1, xt represents the word at position t. We marked

entity mentions by inserting a special symbol “*” at the start and the end of mentions. We
used the pre-trained model BERT as our encoder, obtaining contextual embedding H:

H = Bert([x1, . . . , xl ]) = [h1, . . . , hl ] (1)

where H ∈ Rl×d1 , and d1 is the dimension of the hidden layer in the pre-trained model.

3.2. Representation Layer

We used NLTK, a Python library, to generate POS tags of the input sentence. Then we
created a POS embedding matrix P:

P = Pos([x1, . . . , xl ]) = [p1, . . . , pl ] (2)

where P ∈ Rl×d2 , and d2 is the dimension of the POS embedding.
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Figure 2. The framework of the proposed model FEDRE. The input will be preprocessed to obtain
tokenization and part-of-speech. FEDRE converts them into vectors as mention-level representation.
To solve the problem of multiple mentions, the model adopts log-sum-exp pooling to acquire entity-
level embedding, combined with type embedding and width embedding. Then FEDRE obtains local
contextual embedding using the multi-head attention mechanism. Distance embedding is presented
as an additional feature for entity pair. Representations for a specific entity pair are encoded with
the embeddings above. Finally, the model feeds them into a classifier and infers the relations in the
original input.
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For each token, we concatenate the contextual embedding and its POS embedding to
generate POS-enhanced token representation:

C = [h1|p1, . . . , hl |pl ] = [c1, . . . , cl ] (3)

where C ∈ Rl×(d1+d2), and [ | ] denotes the concat operation.
Span width was an important feature for the entity, so we trained a width embed-

ding matrix:

W = Width(li) = [w1, . . . , wn1 ] (4)

where wi ∈ Rd3 , and d3 is the dimension of the width embedding.
We took the embedding of “*” at the start of mention and concatenated it with width

embedding to obtain width-enhanced mention embedding:

mentionmj = cmj

∣∣∣wmj (5)
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For an entity ei with Nei mentions
{

mi
j

}Nei

j=1
, a log-sum-exp pooling was applied to

produce entity embedding:

hei = log
Nei

∑
j=1

exp
(

mentionmj

)
(6)

Experimental results showed that entity types contained information required for
relation extraction. Therefore, an entity-type embedding matrix was generated to merge
type information:

T = Type(ti) = [t1, . . . , tn3 ] (7)

where ti ∈ Rd5 , and d5 is the dimension of the type embedding.
Given a pre-trained multi-head attention matrix A ∈ RHD×l×l , Aijk denotes the atten-

tion score from token j to token k in the ith attention head. We first took the attention from
the “*” symbol as the mention-level attention, then averaged the attention over mentions of
the same entity to obtain entity-level attention AE

i ∈ RHD×l , denoting the attention scores
from the ith entity to all tokens. Then we located important context for the given entity pair
(es, eo) by attention matrix, calculating local contextual embeddings.

A(s,o) = AE
s ·AE

o (8)

q(s,o) =
HD

∑
i=1

A(s,o)
i (9)

a(s,o) = q(s,o)/1Tq(s,o) (10)

c(s,o) = Ha(s,o) (11)

Next, representation for a specific entity pair (es, eo) was encoded as:

z(s,o)
s = tan h

[
WShes + WC1 c(s,o) + WD1 D(dso) + WT1 T(es)

]
(12)

z(s,o)
o = tan h

[
WOheo + WC2 c(s,o) + WD2 D(dos) + WT2 T(eo)

]
(13)

where dso is the distance between the first mention of entity s and entity o.
To reduce the number of parameters, we exploited the group bilinear, which effectively

lowered the computational overhead. Specifically, we divided the entity representation into
k equal-sized groups and fused the features to obtain representation of the given entity pair.[

z1
s ; . . . ; zk

s

]
= zs (14)[

z1
o ; . . . ; zk

o

]
= zo (15)

g(s,o) = (
k

∑
i=1

zi
sW

i
rzi

o + br) (16)

3.3. Relation Classification

We calculated the logit of relation r of the given entity pair using a non-linear activa-
tion:

P(r|es, eo) = σ
(

g(s,o)
)
= σ(

k

∑
i=1

zi
sW

i
rzi

o + br) (17)

Relation extraction can be regarded as a multi-label classification task. Traditional
baselines usually use standard binary cross-entropy loss to tackle this problem, which
specify a global threshold as the criterion for whether a relation label exists. However,
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models have different confidence in threshold for different entity pairs. In addition, the
distribution of entities and relations was extremely unbalanced in this task. Therefore,
we adopted adaptive focal loss (AFL) as our loss function. Specifically, we set a learnable
dynamic threshold combined with focal loss.

LAFL = ∑
ri∈PT

(1− P(ri))
γlog(P(ri)) + log(P(rTH)) (18)

3.4. Knowledge Distillation

In this module, a teacher-student model was introduced to realize knowledge distilla-
tion, so that model performance could be further improved. Specifically, we firstly obtained
teacher model trained by the process mentioned above. Then we used the mean square
error (MSE) loss to calculate the difference between logits generated by the student model
and soft labels generated by the teacher model. Finally, we combined it with AFL in 3.3 as
the overall loss function of the student model.

LKD = MSE(Teacher, Student) (19)

LRE = α1LAFL + α2LKD (20)

where α1 and α2 are hyperparameters used to balance the two loss functions.

4. Experiment
4.1. Dataset

We annotated 227 threat intelligence documents manually, 151 of which were selected
as the training set and the remaining 76 as the test set. The training set contained 1610 en-
tities and 949 relations. Definitions of entities and relations between them are shown in
Tables 1 and 2.

Table 1. Distribution of entities.

Entity Type Definition Training Set Test Set

ATTACK Technique 298 135
ORG Organization/Vendor 261 136
TIME Time 233 97

VIRUS Virus/Script 210 83
LOCATION Country/Region 206 89
SOFTWARE Legitimate Software 125 57
ATTACKER Attacker 79 28

OS Operation System 61 25
VULNERABILITY Vulnerability 50 23

VERSION Version 40 12
Course-of-action Defense Strategy 31 24

EVENT Attack Event 16 7
Total / 1610 716

Table 2. Distribution of relations.

Relation Type Definition Training Set Test Set

Target Target of Attack/Attacker 239 116
Perform Perform Attack 203 69
Rel-to Associated 138 48
Use Use Software/Virus 82 28

Occur Occurred Time 59 22
Influence Influence by Attack 59 34
HasVul Contain Vulnerability 49 17
Mitigate Defend Against an Attacker 35 21
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Table 2. Cont.

Relation Type Definition Training Set Test Set

Located Located in 33 21
Exploit Exploit Vulnerability 20 8

Reported Reporting Time 11 4
Patched Patching Time 7 5
Defend Carry out Defense Strategy 7 16

Total / 942 409

Threat intelligence ontology was constructed, as shown in Figure 4.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 4. The threat intelligence ontology. Crucial elements and relationships between them are 

displayed above. For instance, entity “Attacker” is connected with entity “OS” by relation “Target”. 

4.2. Experiment Setup 

Our model was trained on Nvidia Geforce RTX 3090 GPU based on Pytorch1.7.1. We 

used cased BERT-based as the pre-trained encoder for threat intelligence. We trained the 

model for 100 epochs with batch size 8, using the AdamW optimizer with warmup and 

early stop strategy (If the performance was not improved for 20 consecutive epochs, the 

training process would be stopped). The learning rate was set to 5 × 10−5 for BERT and 1 × 

10−4 for other layers. The loss weight of the teacher model and student model was set to 

1:1, i.e., 𝛼1 = 𝛼2 = 1. We chose 25 as the size of the POS embedding (𝑝), type embedding 

(𝑡), width embedding (𝑤), and distance embedding (𝑑). 

To tackle the imbalance of the dataset, we adopted random oversampling to copy 

minority classes before training our model. Specifically, tokens were replaced by their 

synonyms to create new samples. 

Following prior studies, we introduced commonly used metrics in the relation ex-

traction task to evaluate our model, i.e., precision (P), recall (R), and F1-score (F1). Addi-

tionally, we used F1 as the main evaluation metric. Furthermore, we presented time over-

head as another index. Meanwhile, we calculated performance for each kind of relation- 

analysing model at a more granular level. 

We compared our model with three excellent works, including SSAN [15], GAIN 

[31], and ATLOP [8]. For fair comparisons, we use cased BERT-based as the base encoder 

for all methods. 

4.3. Result and Analysis 

4.3.1. Model Comparison 

Table 3 presents the relation extraction results of our model and baseline models on 

our dataset. First, compared to ATLOP, FEDRE improved its performance significantly by 

21.01/22.61/22.38 P/R/F1 on the test set. This demonstrates the usefulness of additional 

features during inference. In addition, we concluded that FEDRE-KD outperformed 

FEDRE by 4.51 in the F1, proving that knowledge distillation can effectively be promoted. 

Figure 4. The threat intelligence ontology. Crucial elements and relationships between them are
displayed above. For instance, entity “Attacker” is connected with entity “OS” by relation “Target”.

4.2. Experiment Setup

Our model was trained on Nvidia Geforce RTX 3090 GPU based on Pytorch1.7.1. We
used cased BERT-based as the pre-trained encoder for threat intelligence. We trained the
model for 100 epochs with batch size 8, using the AdamW optimizer with warmup and
early stop strategy (If the performance was not improved for 20 consecutive epochs, the
training process would be stopped). The learning rate was set to 5 × 10−5 for BERT and
1 × 10−4 for other layers. The loss weight of the teacher model and student model was set
to 1:1, i.e., α1 = α2 = 1. We chose 25 as the size of the POS embedding (p), type embedding
(t), width embedding (w), and distance embedding (d).

To tackle the imbalance of the dataset, we adopted random oversampling to copy
minority classes before training our model. Specifically, tokens were replaced by their
synonyms to create new samples.

Following prior studies, we introduced commonly used metrics in the relation extrac-
tion task to evaluate our model, i.e., precision (P), recall (R), and F1-score (F1). Additionally,
we used F1 as the main evaluation metric. Furthermore, we presented time overhead as
another index. Meanwhile, we calculated performance for each kind of relation- analysing
model at a more granular level.
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We compared our model with three excellent works, including SSAN [15], GAIN [31],
and ATLOP [8]. For fair comparisons, we use cased BERT-based as the base encoder for
all methods.

4.3. Result and Analysis
4.3.1. Model Comparison

Table 3 presents the relation extraction results of our model and baseline models on
our dataset. First, compared to ATLOP, FEDRE improved its performance significantly by
21.01/22.61/22.38 P/R/F1 on the test set. This demonstrates the usefulness of additional
features during inference. In addition, we concluded that FEDRE-KD outperformed FEDRE
by 4.51 in the F1, proving that knowledge distillation can effectively be promoted. The
experimental results also show that FEDRE-KD performed better than all the baseline
models. The F1 of our model was 21.07 higher than that of SSAN and 20.06 higher than
that of GAIN.

Table 3. Performance comparison of different models.

Model P (%) R (%) F1 (%) Overhead (h)

SSAN [15] 50.57 46.86 48.64 2.85
GAIN [31] 50.77 48.58 49.65 2.80
ATLOP [8] 51.36 36.71 42.82 2.68

FEDRE 72.37 59.32 65.20 2.28
FEDRE-KD 79.60 62.00 69.71 2.00

4.3.2. Ablation Study

We conducted ablation studies to further analyze the utility of each module in FEDRE.
The results are shown in Table 4.

Table 4. Ablation study of FEDRE.

Model P (%) R (%) F1 (%) Overhead (h)

FEDRE 72.37 59.32 65.20 2.28
NoPOS 63.19 49.06 55.24 1.81

NoWidth 57.74 48.50 52.72 1.81
NoType 62.63 47.01 53.71 1.96

NoDistance 60.40 48.38 53.73 1.68

We first removed the POS embeddings and width embeddings, which are denoted
as NoPOS and NoWidth, respectively. It was obvious that performance would drop if
any feature of them was removed, indicating that the information for POS and width
is important for relation prediction. Specifically, we found that verbs and nouns were
more likely to be associated to other tokens in threat intelligence documents. Meanwhile,
integrating width embedding could enrich representation at the mention level.

Then, we removed the entity-type embeddings, which is denoted as NoType. The
performance dropped sharply, by 11.49. There existed different relations between different
kinds of entities. For instance, “Patched” would only appear when the head entity belonged
to “Vulnerability” and the tail entity belonged to “Time”. Therefore, integrating type
embeddings can enrich representation at the entity level.

Finally, we removed the distance embeddings, which is denoted as NoDistance. The
performance dropped by 11.47. This further demonstrates that the distance of two entities
could enrich representation at the entity-pair level.

4.3.3. Fine-Grained Performance Comparison

To further observe the ability of introducing additional features and knowledge distil-
lation to fit different types of data, Table 5 shows the fine-grained performance in detail.
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Table 5. Fine-grained performance comparison.

Model
SSAN [15] GAIN [31] ATLOP [8]

P (%) R (%) F1(%) P (%) R (%) F1(%) P (%) R (%) F1(%)

Target 62.74 60.29 61.49 59.52 56.99 58.23 61.02 59.55 60.28
Perform 48.19 53.09 50.52 42.48 59.13 49.44 46.53 41.88 44.08
Rel-to 58.77 40.56 48.00 42.92 37.08 39.79 48.25 24.38 32.39
Use 58.30 60.00 59.14 52.87 76.43 62.50 44.52 51.07 47.57

Occur 20.56 16.36 18.22 26.61 30.91 28.60 42.88 26.36 32.65
Influence 30.36 20.69 24.61 51.17 25.88 34.37 46.87 15.00 22.73
HasVul 72.16 59.22 65.05 50.23 23.53 32.05 74.11 18.82 30.02
Mitigate 30.78 53.97 39.20 40.70 50.48 45.07 43.50 12.38 19.27
Located 45.57 33.65 38.71 47.68 24.76 32.59 50.94 27.14 35.41
Exploit 46.03 67.92 54.87 50.50 20.00 28.65 24.76 12.50 16.61

Reported 34.02 27.50 30.41 16.12 25.00 19.60 43.43 22.50 29.64
Patched 44.71 48.67 46.61 41.33 36.00 38.48 68.45 52.00 59.10
Defend 35.05 9.79 15.31 21.33 7.50 11.10 90.00 5.62 10.58

Model
FEDRE FEDRE-KD

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Target 69.72 62.81 66.08 82.86 63.97 72.20
Perform 64.47 62.82 63.63 71.88 73.40 72.63
Rel-to 89.86 68.13 77.50 92.79 73.57 82.07
Use 55.32 92.86 69.33 58.54 85.71 69.57

Occur 50.00 50.00 50.00 78.57 50.00 61.11
Influence 61.54 23.53 34.04 71.43 14.71 24.40
HasVul 92.31 80.00 85.72 88.46 76.67 82.14
Mitigate 84.62 52.38 64.71 66.67 38.10 48.49
Located 60.00 14.29 23.08 62.50 23.81 34.48
Exploit 61.26 40.25 48.58 62.50 45.45 52.63

Reported 54.12 47.67 50.69 75.00 60.00 66.67
Patched 68.91 60.71 64.55 85.71 85.71 85.71
Defend 58.99 14.14 22.81 57.13 16.55 25.67

Combined with the distribution of relations in Table 2, it can be intuitively found that
introducing additional features significantly improved the classification ability of most
types, such as ”Target”, “Perform”, and “Use”. Meanwhile, it is obvious that introduc-
ing knowledge distillation brought further promotion, with the maximum improvement
of 21.16.

4.3.4. Choice of Sampling Technique

To alleviate the imbalance of the dataset, oversampling and undersampling were
introduced. The results in Table 6 prove that the oversampling algorithm could significantly
improve the performance. However, the undersampling algorithm suffered from the risk
of unreasonably removing instances of loss of important information.

Table 6. Performance comparison of different sample techniques.

Sample Technique P (%) R (%) F1 (%)

None 58.46 48.67 53.12
Under Sampling 59.06 46.43 51.99

Under Sampling + Over Sampling 76.44 50.70 60.96
Over Sampling 72.37 59.32 65.20

4.4. Threat Intelligence Knowledge Graph Construction

We inputted threat intelligence documents with annotated entities into the trained
FERED-KD model. The model predicted relations selected from predefined relation sets for



Electronics 2022, 11, 3715 11 of 13

all the entity pairs. Then we inserted the entity-relation set into the knowledge graph using
the neo4j-admin command. The results are shown in Figure 5.
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5. Conclusions

In this paper, we propose a novel document-level relation extraction model introducing
additional features and knowledge distillation. Experimental results show that integrating
features can enhance the fitting ability of most types. Meanwhile, the teacher–student model
can further improve the performance. Additionally, we constructed a threat intelligence
knowledge graph displaying internal association between vital elements in documents. In
summary, the proposed model FEDRE-KD can provide significant support to transform
network defense from passive to active. It can be utilized in tracing an attacker and making
auxiliary decisions. In future work, we plan to extend our dataset to avoid imbalance. In
addition, we will consider solving the overlap entity problem. Finally, we will focus on
knowledge reasoning to obtain new information.
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