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Abstract: In this paper, a grid-connected photovoltaic (PV) generation system is proposed with the
purpose of providing support to low-voltage grids, namely through the elimination or attenuation of
the grid imbalances. This compensation must consider the load types, which can be either linear or
non-linear, and whether the reactive power and current harmonics generated by the non-linear loads
need to be compensated in addition to the unbalanced active power. This must be well considered,
since the compensation of all aspects requires oversized PV inverters. Thus, the different unbalanced
compensation schemes are addressed. Several schemes for the generation of the inverter current
references taking into consideration the compensation and load type are presented. For this PV
generation system, a dual four-leg, two-level inverter is proposed. It provides full unbalanced
compensation owing to the fourth leg of the inverter and also extends the AC voltage, which is
important when this compensation is required. To control this inverter, a control scheme for the
inverter that considers several compensation factors is proposed. A vector voltage modulator
associated with the controller is another aspect that is addressed in the paper. This modulator
considers the balance between the DC voltages of the inverters. Several compensation schemes
are verified through computational tests. The results validate the effectiveness of the proposed PV
generation system.

Keywords: low-voltage grid; unbalanced load; grid support; dual inverter; multilevel inverter;
photovoltaic system (PV)

1. Introduction

One of the renewable energy sources that now plays an important role is solar energy,
specifically when harnessed using photovoltaic (PV) generators. These energy generators
have shown enormous growth in recent years [1]. Besides their ability to generate renew-
able and clean energy, several other factors have also been involved, such as technological
advances, falling prices of PV panels and government incentives [2]. Regarding the tech-
nological advances, one of the components of the PV generators that has been subject to
significant research is the inverter. Besides acting in the conversion from DC to AC and
control of the system in grid-connected applications, the inverter can also be an active
grid participant. In such cases, it must be designed to support the optimized operation of
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the electric grid by providing ancillary services. One of the ancillary services that is now
starting to be considered is the compensation of the grid-unbalanced loads [3].

PV generators are very well suited to distributed generation in low-voltage grids [4–8].
However, most of the time these kinds of grids require some support in order to meet
certain requirements, reduce losses and increase capacity. One of the problems that severely
affects these grids is caused by non-linear loads. In fact, these loads inject harmonics into the
grid, which affects the capacity of the grid and generates currents in the neutral wire due to
homopolar components [9–11]. One important aspect that usually needs to be compensated
for is the reactive power associated with the loads. The same is true for the load type,
which can be linear or non-linear. These problems can be attenuated by making use of the
PV generators’ capabilities, since they also are able to provide ancillary services. Several
studies have reported on the technological aspects regarding this compensation [12–14].
Due to the typical low-voltage network constitution of four wires, the imbalance of the
loads is another important problem. Single-phase loads are usually connected to these
grids, which could cause important current imbalances. This problem is aggravated by
non-linear loads. Besides the increase in losses and reduction in grid capability, the current
in the neutral line can be even higher than the phase line currents [9]. Although this
problem is also important, much less attention has been given to it as compared to the other
mentioned problems. Regardless, several studies have addressed this problem [15–18]. The
use of PV generators to address the currents imbalance problem was recently reported in
the literature [19–23]. It should be mentioned that the active power from the PV generator
should be injected in an unbalanced way.

For the grid-connected PV generators, one of the most adopted topologies for the
power converter that interfaces with the grid is the classical two-level voltage source
inverter (VSI) approach [24–29]. This topology has been used for single and three-phase
grids. For three-phase grids, a three-wire inverter is often adopted. This is an obvious
choice when considering that the PV generator should supply a balanced power to the
grid. However, to provide ancillary services associated with the load unbalance, four-wire
inverters are normally considered the best solution [30–33].

Another category of topologies for the power converter used to connect the PV gener-
ators to the grid involves the generation of a multilevel AC voltage. Initially, the so-called
classical topologies were adopted, namely the cascaded H-bridge (CHB), neutral point
clamped (NPC) and flying capacitor [34–40] topologies. Of these, the first one is char-
acterized by the distributed use of PV panels, allowing better reliability to be achieved.
Due to this characteristic, several topologies based on this concept (distributed PV panels
with classical two-level VSIs) were proposed. One of the proposed topologies uses three
three-phase, two-level VSIs and divides the PV panels into three groups [41]. Multilevel
inverters composed of two-level VSIs based on the concept of using cascaded transformers
have also been proposed [42–47]. In such configurations, the AC multilevel waveform is
obtained by means of the transformer turn ratios. However, these solutions require the use
of multiple transformers. Another approach is based on the use of several submodules, in
which each one consists of a two-level half-bridge DC–AC converter, which was designated
the modular multilevel converter (MMC) [48–51]. However, this configuration uses an
extensive number of submodules. Therefore, it is also required that the PV panels are dis-
tributed by those modules. Hence, it is considered as more appropriate for medium-voltage
PV systems [52]. One of the proposed topologies that has been extensively studied uses
two three-phase, two-level VSIs [53–56]. In this topology, the PV panels are divided by
the two inverters. On the other hand, the AC terminals of the inverters are connected to a
three-phase transformer with open windings.

As for the two-level inverters, multilevel converters with four wires connected to a
three-phase network with a neutral wire were also proposed and studied. However, most of
the works were directed to the classical multilevel inverters, such as the cascaded H-bridge
converter structure, the neutral point clamped structure and the T-type structure [57–62].
Additionally, most of these inverters have not been specifically applied to PV systems.
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Other multilevel inverters with four wires and unbalanced loads, such as the Z and quasi-
Z-source inverters, have also been studied [63,64]. However, regarding the new multilevel
inverters that use the classical two-level VSIs, virtually no proposals of PV generators with
four wires to supply an unbalanced power are available. A topology with two three-phase,
two-level VSIs, which has been extensively studied, is one of the best cases.

Considering the important role that PV generators can play in the compensation of
unbalanced loads, this paper proposes a generator with a modular multilevel inverter
with associated compensation schemes to provide this type of grid support. The proposed
multilevel inverter consists of two four-wire, two-level inverters in connection with the open
windings of a transformer. A control strategy associated with a new vectorial modulator
is also proposed for this multilevel inverter. This modulator allows the DC capacitors
of the inverters to always be balanced. Therefore, the unbalanced generation of the PV
panels connected to each inverter does not generate voltage imbalances in the capacitors.
Moreover, several schemes to generate the current references are proposed, considering
either linear or non-linear loads.

After this introductory section, the paper is organized as follows. In Section 2, the
system to be compensated and the dual four-leg, two-level inverter topology are introduced.
Next, in Section 3, the control strategy and the vectorial voltage modulator proposed in this
paper are disclosed. Section 4 covers the results and discussion of the computer simulations.
Finally, some conclusions are drawn in the last section.

2. Proposed System

Typically, low-voltage (LV) networks are characterized by a three-phase, four-wire
connection. In these LV grids, a neutral wire connection is provided for the loads. This
connection is provided not only for single-phase loads, but also for the three-phase loads
(Figure 1). The scattered distribution of the consumer loads will result in an asymmetric
distribution. Therefore, imbalances associated with the currents and voltages will show
up. This problem is aggravated by the existence of non-linear loads, which are becoming
increasingly prevalent.
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Figure 1. LV network characterized by a three-phase, four-wire connection in which the scattered
distribution of the consumer loads can result in an asymmetric distribution.

As described in the previous section, the inverters that are used in PV systems can
also provide ancillary services, such as support to unbalanced loads. In order to maximize
the provision for the type of ancillary service, a new dual-inverter structure is proposed, as
shown in Figure 2. This structure is based on two four-leg, two-level inverters connected
to an injection transformer. The windings of the transformer are in open configuration,
in which each side is connected to each of the inverters. The inverters are also connected
between them through their fourth leg.
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The output voltages of the proposed four-wire multilevel converter can be obtained
through the application of the Kirchhoff laws and the state of the switches of the inverters.
Thus, considering the switches as a binary variable bji (directly related to switch Sji and
equal to 1 if the switch is on and 0 if is off), the AC voltages of each of the inverters are
given by (j = 1,2):  Vj1

Vj2
Vj3

 = VCj
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where VCj are the input voltages of each inverter.
Taking into consideration the previous equations and that the output voltages of the

multilevel converter are the difference between the two inverters, the AC voltages at the
terminals of the transformer windings are expressed by:

 V1
V2
V3

 = VC1

 1 0 0 −1
0 1 0 −1
0 0 1 −1




b11
b12
b13
b14

 − VC2

 1 0 0 −1
0 1 0 −1
0 0 1 −1




b21
b22
b23
b24

 (2)

However, in order to obtain a space vector diagram of the proposed inverter, the
Clark–Concordia transformation must be applied to the AC voltages at the terminals of the
transformer windings, as given by Equation (3).
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From the analysis of Equation (3), considering all possible combinations of the switches
and that the DC voltages are equal, a total number of 256 space vectors are obtained.
However, not all of these vectors are different. In fact, only 65 voltage vectors (including the
zero voltage) are different, with the others being redundant. Figure 3 shows these different
voltage vectors in a three-dimensional space (αβo coordinates), which can be applied at the
output of the proposed converter. On the other hand, from the 65 different voltage vectors,
19 vectors are related to the two-dimensional αβ plane (Figure 4a), 49 are related to the
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two-dimensional αo plane (Figure 4b) and 25 are related to the two-dimensional βo plane
(Figure 4c).

Electronics 2022, 11, x FOR PEER REVIEW 5 of 25 
 

 

(Figure 4a), 49 are related to the two-dimensional αo plane (Figure 4b) and 25 are related 
to the two-dimensional βo plane (Figure 4c). 

Beta
Alfa

Zero

 
Figure 3. Voltage vectors that can be applied at the output of the proposed converter in the 
three-dimensional space (αβo coordinates). 

1 2

3 4

65

Alfa

Beta

7

89

1011

1213

1415

1817

16

0

 

Alfa

Zero

0 3,17 1,16 18 2

20,21 22 4,25 24

32 6,30 33 31

39 37 40 38

41

29,34

5,19

50 43,49 5114,42

54 53

63

52,55

28 26,27 25

35

9 7,10 8,1211

36

13,48 46 44,4847

59 15,56 5857

61 62 60

64

 

Beta

Zero

0

4,20,25,28

29,30,31

19,22,24,26 5,27

73,8,9

42,43,46,47

55,56,57

21,23

44,45

12,17,1816

13,48,50,5114,49

54,58,5915,52,53

60,6162,63

64

32,33,35 6,34,36

37,38 39,40

41

 
(a) (b) (c) 

Figure 4. Voltage vectors that can be applied at the output of the proposed converter in the 
two-dimensional space: (a) αβ plane; (b) αo plane; (c) βo plane. 

3. Control Strategy 
The proposed dual-inverter structure based on two four-leg, two-level inverters is 

controlled in order to transfer the maximum power from the PV generators. This is 
achieved through the control of the AC currents in balanced and imbalanced ways. 
Additionally, the regulation of the DC capacitors and the balance between them must 
always be achieved. 

In order to develop the control system of the inverter, the system dynamics of the 
converter connected to the grid established in state space equations is required. Through 
the analysis of the power converter topology, the following state equations for the 
capacitor voltages can be obtained:  

1 11 11

2 22

2 2

1 10 0

1 10 0

C DCPH

C DCPH

C Cv iid
v iidt

C C

   
          = −           
   
   

 (4) 

Figure 3. Voltage vectors that can be applied at the output of the proposed converter in the three-
dimensional space (αβo coordinates).

Electronics 2022, 11, x FOR PEER REVIEW 5 of 25 
 

 

(Figure 4a), 49 are related to the two-dimensional αo plane (Figure 4b) and 25 are related 
to the two-dimensional βo plane (Figure 4c). 

Beta
Alfa

Zero

 
Figure 3. Voltage vectors that can be applied at the output of the proposed converter in the 
three-dimensional space (αβo coordinates). 

1 2

3 4

65

Alfa

Beta

7

89

1011

1213

1415

1817

16

0

 

Alfa

Zero

0 3,17 1,16 18 2

20,21 22 4,25 24

32 6,30 33 31

39 37 40 38

41

29,34

5,19

50 43,49 5114,42

54 53

63

52,55

28 26,27 25

35

9 7,10 8,1211

36

13,48 46 44,4847

59 15,56 5857

61 62 60

64

 

Beta

Zero

0

4,20,25,28

29,30,31

19,22,24,26 5,27

73,8,9

42,43,46,47

55,56,57

21,23

44,45

12,17,1816

13,48,50,5114,49

54,58,5915,52,53

60,6162,63

64

32,33,35 6,34,36

37,38 39,40

41

 
(a) (b) (c) 

Figure 4. Voltage vectors that can be applied at the output of the proposed converter in the 
two-dimensional space: (a) αβ plane; (b) αo plane; (c) βo plane. 

3. Control Strategy 
The proposed dual-inverter structure based on two four-leg, two-level inverters is 

controlled in order to transfer the maximum power from the PV generators. This is 
achieved through the control of the AC currents in balanced and imbalanced ways. 
Additionally, the regulation of the DC capacitors and the balance between them must 
always be achieved. 

In order to develop the control system of the inverter, the system dynamics of the 
converter connected to the grid established in state space equations is required. Through 
the analysis of the power converter topology, the following state equations for the 
capacitor voltages can be obtained:  

1 11 11

2 22

2 2

1 10 0

1 10 0

C DCPH

C DCPH

C Cv iid
v iidt

C C

   
          = −           
   
   

 (4) 

Figure 4. Voltage vectors that can be applied at the output of the proposed converter in the two-
dimensional space: (a) αβ plane; (b) αo plane; (c) βo plane.

3. Control Strategy

The proposed dual-inverter structure based on two four-leg, two-level inverters is
controlled in order to transfer the maximum power from the PV generators. This is achieved
through the control of the AC currents in balanced and imbalanced ways. Additionally, the
regulation of the DC capacitors and the balance between them must always be achieved.

In order to develop the control system of the inverter, the system dynamics of the
converter connected to the grid established in state space equations is required. Through
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the analysis of the power converter topology, the following state equations for the capacitor
voltages can be obtained:

d
dt

[
vC1
vC2

]
=

[
1

C1
0

0 1
C2

] [
iPH1
iPH2

]
−
[

1
C1

0
0 1

C2

] [
iDC1
iDC2

]
(4)

where currents iDC1 and iDC2 are given by (5); currents iPH1 and iPH2 are the currents of each
of independent PV generator; C1 and C2 are the capacitances of each inverter input capacitor.

[
iDC1
iDC2

]
=

[
b11 b12 b13 b14
−b21 −b22 −b23 −b24

] 
i1
i2
i3
i4

 (5)

Using Park’s transformation, the state space equations of the capacitor voltages in the
stationary coordinates dqo are:

d
dt

[
vC1
vC2

]
=

 b1d
C1

b1q
C1

b1o
C1

− b2d
C2
− b2q

C2
− b2o

C2

 id
iq
io

 − [ 1
C1

0
0 1

C2

] [
iDC1
iDC2

]
(6)

Using a similar analysis but considering the Clarke–Concordia transformation, it is
possible to obtain the following state space equations for the inverter AC currents in the
coordinates αβo:

d
dt

 iα
iβ

io

 =


− R f

L f
0 0

0 − R f
L f

0

0 0 − R f
L f


 iα

iβ

io

 +

 −vC1 0 0
0 −vC1 0
0 0 −vC1

 b1α

b1β

b1o

+

 −vC2 0 0
0 −vC2 0
0 0 −vC2

 b2α

b2β

b2o

+


− 1

L f
0 0

0 − 1
L f

0

0 0 − 1
L f


 Vsα

Vsβ

Vso


(7)

where R f and L f are the resistance and inductance of each coupling inductor, respectively.
Since in this system it is also required to compensate an unbalanced grid, then the

controller is developed on the αβo coordinate system. In this way, in accordance with the
strong relative degree [65,66] of the inverter AC currents, the control laws of these currents
in the αβo reference frame will be given by:

S(eiα, t) = iα re f − iα = 0
S
(
eiβ, t

)
= iβ re f − iβ = 0

S(eio, t) = io re f − io = 0
(8)

To ensure the desired condition (8), a voltage vector modulator based on the sliding
mode stability condition S

(
eiαβo, t

) .
S
(
eiαβo, t

)
< 0 is proposed [65,66]. Thus, in accordance

with this stability condition, the adopted voltage vector must ensure that
.
S
(
eiαβo, t

)
< 0 if

S
(
eiαβo, t

)
> 0 or

.
S
(
eiαβo, t

)
> 0 if S

(
eiαβo, t

)
< 0.

In order to implement this strategy, the errors associated with the control laws given
by (8) are discretized using hysteretic comparators. In this case, one five- and two seven-
voltage levels (from −2 to +2 and −3 to +3) are considered. The output of these hysteretic
comparators (να, νβ, νo) are the inputs of the three look-up tables. In Tables 1–3, these look-
up tables are presented. Variables να, νβ and νo are related to the hysteretic comparator
levels. For example, let us consider that the outputs of the hysteretic comparators are
να = +2, νβ = +1 and νo = +1. In this case, two vectors can be chosen, namely 4 and 20.
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Table 1. Look-up table associated with the αβ coordinates.

νβ/να −3 −2 −1 0 +1 +2 +3

−2 13 15 15 14 16 16 18

−1 13 13 12 14 17 18 18

0 11 10 10 0 1 1 2

+1 9 9 8 5 3 4 4

+2 9 7 7 5 6 6 4

Table 2. Look-up table associated with the αo coordinates.

νo/να −3 −2 −1 0 +1 +2 +3

−3 61 60, 62, 64 60, 62, 64 63 63 63 63

−2 57, 59 56, 58, 15, 57 61, 63, 65 52, 55 53, 54 53, 54 53

−1 13, 45, 47 13, 44, 45, 46, 48 44, 46, 48 14, 42 43, 49, 50 43, 49, 51 43, 49, 51

0 9, 11 7, 9, 10, 7, 8, 10, 12 0 1, 3, 16, 17 1, 16, 18 2, 18

+1 26, 27, 28 26, 27, 28 25, 26, 27 5, 19 20, 21, 22 4, 20, 21, 22, 23 4, 23, 24

+2 36 35, 36 35, 36 29, 34 6, 30, 32 6, 30, 32, 33 31, 33

+3 38 38 38 38 37, 40, 41 38, 40, 41 38

Table 3. Look-up table associated with the βo coordinates.

νo/νβ −2 −1 0 +1 +2

−3 62, 63, 64 60, 61 60, 61 60, 61 60, 61

−2 15, 52, 53 54, 58, 59 55, 56, 57 55, 56, 57 55, 56, 57

−1 14, 49 13, 48, 50, 51 42, 43, 46, 47 44, 45 44, 45

0 16 12, 17, 18 0 3, 8, 9 7

+1 21, 23 21, 23 19, 22, 24, 26 4, 20, 25, 28 5, 27

+2 29, 30, 31 29, 30, 31 29, 30, 31 32, 33, 35 6, 34, 36

+3 37, 38 37, 38 37, 38 37, 38 39, 40, 41

This system is developed with the purpose of injecting the generated PV power in a
way that will help to balance the grid load voltage. However, this generation must consider
several different conditions, namely:

• The generated PV power is lower than the unbalanced grid load power;
• The generated PV power is higher than the unbalanced grid load power.

For the first condition, the inverter should inject the generated PV power in an unbal-
anced way and proportional to the grid’s unbalanced load power. In this way, the phase
with higher load will receive more generated PV power, helping to balance the low-voltage
grid. However, if the generated PV power is higher than the unbalanced grid load power,
then the system must inject the power in two different ways: a part of the injected power
must be unbalanced and the other part must be balanced. The unbalanced part is equal to
the unbalanced grid load power and the other part is injected in a balanced way. Therefore,
a completely balanced grid [30] is achieved. It should be noted that this procedure can be
achieved for the active power or reactive power and current harmonics.
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To define the reference of the grid current d component, a PI controller associated with
the inverter connected to the PV generator 1 is used. This controller is defined to ensure
the control of the voltage of the DC capacitor, VC1 . This reference is given by:

Ictr = KP

(
v∗C1
− vC1

)
+ KI

∫ (
v∗C1
− vC1

)
dt (9)

For the other inverter, there is no need to control it in a similar way, since the AC
currents of one of the inverters are the same as in the other. The control of the capacitor
voltage VC2 is obtained through the right choice of voltage vector to be applied to the
inverters. As can be verified in Tables 1–3, there are redundant vectors. Therefore, since
some of them charge one of the capacitors and discharge the other one, and vice versa, the
correct choice maintains the voltage of capacitor C2 as equal to the voltage of capacitor C1.
For example, considering the previous case in which να = +2, νβ = +1 and νo = +1, then
vectors 4 and 20 can be applied. On the other hand, associated with these two vectors
are redundant combinations, as can be seen in Table 4. Therefore, if capacitor voltage VC1

is higher than capacitor voltage VC2 and the current of phase 1 is positive and the other
ones are negative, then vector 20E must be applied, since it will discharge capacitor C1
and charge capacitor C2. For the reverse situation, in which the capacitor voltage VC1 is
lower than capacitor voltage VC2 , then vector 20D should be chosen. The balance between
the two capacitors is granted. The complete control scheme of the proposed multilevel
inverter can be seen in Figure 5. This control scheme consists of the DC voltage controller,
AC current controller and space vector modulator.

Table 4. Redundant vectors for the case of να = +2, νβ = +1 and νo = +1.

Vector S11 S12 S13 S14 S21 S22 S23 S24

4A 1 0 0 1 0 0 1 0

4B 1 1 0 1 0 1 1 0

20A 0 0 0 0 0 0 1 0

20B 0 0 0 1 0 0 1 1

20C 0 1 0 0 0 1 1 0

20D 0 1 0 1 0 1 1 1

20E 1 0 0 0 1 0 1 0

20F 1 0 0 1 1 0 1 1

20G 1 1 0 0 1 1 1 0

20H 1 1 0 1 0 0 0 0

20I 1 1 0 1 1 1 1 1

20J 1 1 1 1 0 0 1 0

Another aspect that must be considered is how the current references are generated.
For the current d reference, whether the injected is higher than the unbalanced grid load
power or not must be assessed. This is achieved using the following condition:

id_re f = K1 Ictr (K2 Ictr + id_Lood) (10)

where id_load is the d component of the load current and K1 and K2 are given by:

K1 =


1

Ictr
, Ictr ≥ 1

1 , 0 < Ictr < 1
0 , Ictr ≤ 1

(11)
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K2 =

{
0 , Ictr < 1
1− 1

Ictr
, Ictr ≥ 1 (12)

Regarding the other references (q and o current components), it must be considered that
the load imbalance is reflected in the AC components of the qo load currents. However, in
order to avoid a significant increase in the inverter’s apparent power, only the unbalanced
active power is considered. The iq and io references are given by:{

iq_re f = k1 Ictr
∼
i q_load

io_re f = k1 Ictr io_load
(13)

where
∼
i q_load is the oscillatory load q current component and io_load is the load o

current component.
The complete scheme for the generation of the inverter current references can be seen

in Figure 6.
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As mentioned before, the current reference scheme was designed to avoid a significant
increase in the inverter apparent power. However, this last scheme does not completely
eliminate the imbalance (if the load is not a single resistor), since the imbalance associated
with the reactive components of the currents are not compensated. It also does not consider
imbalances originated by non-linear loads. Thus, if there is no restriction regarding the in-
verter apparent power, all imbalances can be compensated. In this case, the DC component
of current iq should not be removed. Non-linear loads must also be taken into consideration,
since nowadays they are becoming predominant. For this type of load, the harmonics are
reflected in the dqo currents as AC components. Thus, considering that there are not any
restrictions, these harmonics can also be compensated by the PV system. Therefore, if the
apparent power of the PV generator and converter is equal or higher than the load, the
grid currents will be balanced, sinusoidal (without harmonics) and in phase with the grid
voltage. The scheme of this compensation can be seen in Figure 7.
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If the loads are non-linear and it is only desired to compensate for the active power
or active and reactive power imbalances associated with the load, the scheme should be
changed. The generated harmonics will be reflected in the dqo currents as AC components.
Thus, to avoid the compensation of the harmonics by the PV inverter (to prevent oversizing
the inverter), these AC components should be removed. However, these components
will introduce a new problem, since some of them are at the near frequency of the AC
components generated by the imbalance of the linear loads. To avoid this problem, the
acquired load currents are filtered with a low-pass filter before the Clark–Concordia trans-
form is applied. The new scheme that only compensates for the active and reactive power
imbalances of the load is presented in Figure 8. If it is desired only to compensate for the
active power, then the AC components of the q current component should be removed.
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4. Simulation Results

The validation of the proposed PV generation system with a dual four-leg, two-level
inverter and the proposed control system were achieved through several tests carried out
by computer simulations. For these tests, the previously described controller, proposed
compensation system and several schemes for the compensation were also considered.
The PV generation system was connected to a low-voltage grid with 230/400 VRMS. The
inverter was connected to the grid through a transformer with a 1:4 turns-ratio and an
inductor low-pass filter with 10 mH. The DC voltage reference of each inverter was 200 V
and 1000 µF capacitors were used. For the simulation of our test system, MATLAB 2017a
with Simulink version 8.9 was used. We also used the Simulink Library, namely the
Simscape/PowerSystems blockset.

Tests with linear and non-linear loads were implemented. The first ones were per-
formed for an unbalanced linear load, consisting of a RL load per phase with 8.5 Ω and
4.2 mH for phase 1, 10 Ω and 5 mH for phase 2 and 7 Ω and 3.5 mH for phase 3. These
tests were performed for no unbalanced compensation and several types of compensation,
namely sub-, full and overcompensation. The three modes depend on the compensation
scheme that is used, namely whether it is only the active power to be compensated or
whether the other power types also need to be compensated. If the compensation scheme
is only for the active power to be compensated, in order to reduce the apparent power of
the inverter, then:

• The subcompensation mode is when the generated power from the PV system is lower
than the active load power;

• The full compensation mode is when the generated power from the PV system is equal
to the active load power;

• The overcompensation mode is when the generated power from the PV system is
higher than the active load power.

For example, if the load is only resistive, when in subcompensation mode, the PV
system is unable to fully compensate the load unbalance, meaning some imbalance still
appears at the point of common coupling (PCC). When in full compensation mode (power
generated by the PV system is equal to the load power), the current is null at the PCC.
When in overcompensation mode, the grid receives power, although with the currents
balanced. If the load is inductive, even in full compensation mode the imbalance remains
and the grid currents are not zero, since the reactive component of the load power is not
compensated. However, if the scheme considers the other powers to be compensated, then
for any type of load and for the full compensation mode, the current is null at the PCC.

The first result is for the situation in which the PV system does not compensate the
imbalances of the load. In Figure 9, the load currents, current in the line between the fourth
leg of the inverters, AC currents of the PV generator and grid currents are all presented.
Since the PV generator operates in a balanced mode, the amplitude of the three-phase
currents is equal. Since those currents are balanced, as shown in Figure 9b, the current
in the line between the fourth leg of the inverters is nearly zero, meaning the circulating
current is also nearly zero. On the other hand, since the PV generator is not operating to
provide ancillary services associated with the unbalanced loads, the grid currents maintain
the imbalance that exists in the load currents. The results for the test in subcompensation
mode can be seen in Figure 10a–d. The multilevel operation of the PV converter can be
seen in Figure 10a, where the transformer primary voltage of phase 1 (V1) is presented. It
is also possible to see through the other figures that the imbalance of the grid currents is
reduced. In fact, the AC currents of the PV generator are unbalanced in order to compensate
for the load imbalance (Figure 10c). The grid currents are still unbalanced (Figure 10d),
but comparing the load (Figure 10b) with an important attenuation. The current in the
line between the fourth leg of the inverters is the difference of the sum of the three-phase
currents (Figure 10b). This is the result of the imbalance; therefore, there is no increase in
current due to circulating currents. Regarding the test results in full compensation mode,
these can be seen in Figure 11a–c. These results confirm that the PV generator injects an
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unbalanced current that practically compensates for the entire imbalance. Since the reactive
current component of the load is not compensated, the grid current will be not zero. The
grid currents are shifted by 90 degrees of the voltage, showing that only they are associated
with the inductive load. As mentioned before, the reason for not compensating this could
be as an option to reduce the inverter’s apparent power. The current in the line between
the fourth leg of the inverters is increased, but proportional to the difference of the sum
of the three-phase currents, which is also increased (Figure 11b). The test results related
to the overcompensation mode can be seen in Figure 12a–c. The results show that the
amplitude of the grid currents is increased but in the opposite phase compared with the
subcompensation mode. This confirms that the generated power from the PV system is
higher that the power that is supplied to the load.
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One of the aspects that is associated with this inverter and its control system is the
regulation of the DC capacitors voltages. There are two strategies used to define the
reference value for these voltages. The first one is when the PV arrays are connected to the
DC inverter capacitors through a DC–DC converter. This is the more used solution, since it
allows to harness more power from the PV panels. In this way, for the input DC side of
the inverters, the PV panels and DC–DC converter behave similarly to a variable current
source. Under this solution, the DC capacitors voltage should be regulated for a specific
reference value. This solution was the one adopted in this work. The results obtained for
the capacitors DC voltage and the test with the PV generator in full compensation mode
can be seen in Figure 13a. It is possible to verify that the voltages fluctuate around the
reference. It must be noted that due to the fact that there are redundant vectors, it is possible
to choose a vector that charges one capacitor and discharges the other. If one of them is
below the reference voltage and the other is above, then that vector should be chosen.
Another aspect is when one of the PV arrays generates a lower DC voltage, meaning that
the solar irradiance is also lower. In this case, the current injected in the DC input of the
inverter associated with that PV array will also be lower. Due to the characteristics of the
proposed vector voltage modulator, in which the redundant vector that leads the voltage
to the reference is chosen, this will not affect the regulation of the inverter DC capacitor
voltages. The result of a test in which the PV array of generator 2 produces less 25% than
the PV array of generator 1 is presented in Figure 13b. It is possible to verify that the
voltages remain within the reference range. Another strategy is when the PV arrays are
directly connected to the DC side of the inverters. In such cases, the reference of the DC
capacitors voltage should be variable. These reference values should be given by the MPPT
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and the DC capacitors voltage should be regulated for these values. To verify the capability
of the inverter to operate in this condition, a test in which the references of the capacitor
voltages are initially equal and suddenly change to 220 V in inverter 1 and 180 V in inverter
2 can be seen in Figure 13c. From this test, it is possible to verify the capability of the control
system to regulate those voltages for different values.
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Figure 13. Simulation results with the PV generator in full compensation mode with a linear load
and compensation of the active power imbalance: (a) voltages in the DC capacitors of the inverter
with the same irradiance for the PV panels; (b) voltages in the DC capacitors of the inverter with
different irradiance in the PV panels; (c) voltages in the DC capacitors of the inverter with a change
in the reference of the capacitor voltages.

Tests with the same linear load were performed, although the compensation scheme
for both active and reactive unbalanced components of the load was used. The test results
for the subcompensation mode are presented in Figure 14. As in the previous tests, since the
system is not fully compensated, the imbalance remains, although with some attenuation.
However, the impact of this different scheme is evident from the test in full compensation
mode. In fact, as the results presented in Figure 15 show, in this full compensation mode
the currents of the PV generator (Figure 15a) are equal to the currents of the load (Figure 9a).
Therefore, the grid currents become zero (which was not verified by the previous scheme).
Regarding the results of the overcompensation mode, they are presented in Figure 16. They
show that the grid current is balanced and in opposite phase to the grid voltage, showing
that a balanced active power in injected into the grid.
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A new set of tests with linear and non-linear loads was also performed. The linear
load consists of a resistor and inductance per phase with 50 Ω and 0.03 mH for phase
1, 32 Ω and 0.03 mH for phase 2 and 64 Ω and 0.03 mH for phase 3. For the non-linear
load, a single-phase diode rectifier per phase with an output capacitor and resistors in
parallel was considered. For the output capacitor, a value of 1000 µF was used, while for the
resistors the values were 160 Ω, 240 Ω and 120 Ω for phases 1, 2 and 3, respectively. As in
the previous tests, several types of compensation, namely sub-, full and overcompensation,
were also considered. The obtained results for the test in subcompensation mode can be
seen in Figure 17a–c. The non-linear characteristics of the load can be seen in Figure 17a.
The other two figures show that the imbalance of the grid currents is reduced. One fact
that is possible to verify is that in the presence of non-linear loads the AC PV system
currents are practically sinusoidal. This confirms that the system only compensates the
unbalanced active power of the load. The advantage of this compensation is that the PV
multilevel inverter does not need to present an important size gap. This aspect can be better
observed through the results obtained in full compensation mode, which can be seen in
Figure 18. Through these results, it is possible to verify that the grid currents are not zero.
However, these currents are practically associated with the harmonics of the non-linear
load current (the fundamental component is practically removed). Regarding the results
in overcompensation mode, which are presented in Figure 19, they show that the grid
currents are now in the opposite phase to the grid voltage. This shows that the PV system
generates higher active power than the load. However, the harmonics are still reflected in
these currents. This last result also shows that the imbalance of the grid currents becomes
very small.
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Tests with the same non-linear load, but in which the compensation scheme for
both active and reactive unbalanced components and harmonics of the load was used,
were also performed. To see the impact of this new compensation scheme, tests for sub-,
full and overcompensation were again performed. The results of the first test (for the
subcompensation mode) are presented in Figure 20. These results show that now the load
current harmonics are reflected in the AC current of the PV generator. Therefore, now
the current amplitude of the grid currents becomes reduced when compared with the
previous test (Figure 17c). The impact of this new scheme can be better seen with the full
compensation mode. The obtained results for this compensation mode are presented in
Figure 21. Analyzing these results, it is possible to verify that now the currents of the PV
system (Figure 21a) are practically equal to the load currents (Figure 17a). Therefore, the
grid currents become practically zero, showing the complete compensation that can be
achieved with this scheme. The compensation of the reactive harmonics can also be seen
with the obtained results for the overcompensation mode, as presented in Figure 22. Now
the grid currents are practically sinusoidal, showing that the harmonics were almost all
removed. The grid currents are also practically balanced (Figure 22b), showing that the
imbalance of the load was not reflected into the grid.
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The performance of the system in response to several types of faults in the low-voltage
grid was also assessed. A first test in which a phase-to-ground fault in the PV generator in
subcompensation mode with a linear load and compensation of the active power imbalance
was performed. This type of fault affects the voltage of the line under fault, namely with
a reduction in its amplitude. In Figure 23, the obtained results for a fault of this type in
phase A are shown. The fault occurs from 0.4 s to 0.5 s, whereby the voltage amplitude
of that phase is reduced by 50%. Due to the fact that the load is linear, the amplitude of
the current associated with the faulty phase is also reduced. However, the PV generator is
not affected, since it keeps the power injected into the grid. In the grid current associated
with the faulty phase, it is possible to verify that during the fault, there is a phase inversion
because the load current of that phase reduces and the PV current is kept. Another test
was performed, although in this case for a phase-to-phase fault in phases B and C. This
fault affects the voltages in phases B and C, namely with a reduction of 50 % (Figure 24a),
meaning there are two phases that are affected, which can be seen from the grid currents
presented in Figure 24c. The power injected by the PV generator is not affected (Figure 24b).
A test for the three-phase fault was also performed. The obtained results are presented in
Figure 25. As expected, now the fault affects all phases. Since the power injected by the PV
generator is maintained during the fault, there are increases in grid current amplitude and
phase inversion for all phases.
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5. Discussion

There are several factors that must be considered when it is intended to provide PV
generators the capability to provide ancillary services associated with the load imbalance.
The first factor to consider is the choice of the inverter topology, since a four-wire, three-
phase inverter must be considered instead of the classical three-wire inverter. Several
studies, such as [19–23], have addressed this issue using classical two-level voltage source
inverters with four wires. However, in this kind of load imbalance compensation, since in
unbalanced mode the currents can be higher than in balanced mode (for the same output
power), higher DC voltages applied to the DC side of the inverter are required. Thus,
this work addresses all of these aspects, since a solution with two four-wire inverters
is adopted, in which it is possible to apply a maximum AC voltage level that is double
that of each inverter’s DC voltage. On the other hand, due to the known advantages
of the multilevel inverters, a solution in which the two inverters provide that capability
was proposed. This scheme keeps the modularity of the classic two-level voltage source
inverters. Another aspect that must be taken into consideration is the compensation, as well
as the type of load. One of the aspects that is crucial is the cost of the system, which affects
the compensation capability. In fact, to introduce the capability to compensate the load
imbalance with the PV generator at full power, the inverter should be oversized. Therefore,
whether the compensation is full or partial must be addressed. In this context, one of the
aspects that was considered was the partial compensation, taking into consideration that
the PV generators are typically designed to only inject active power into the grid. Thus,
considering this principle, the inverter can be designed to only compensate the active
power load imbalances. However, since the load typically is not only resistive, the grid
currents at the PCC remain unbalanced. With this compensation type, the power factor in
the grid PCC will increase. However, since the amplitude of the currents will decrease, the
losses in the system will also decrease. The decrease in this power factor can be achieved
by providing full compensation. The problem is that the inverter should be even more
oversized. This increase in size depends on the load type, since in the case of non-linear
loads, besides the reactive power imbalance, the imbalance of the current harmonics should
also be considered. Therefore, this aspect should be carefully analyzed, since the cost of the
inverter could show a very pronounced increase. On the other hand, in association with
the compensation types, a particular scheme for the PV inverter currents references should
be designed. The scheme for the situation in which only the active power imbalance is
considered is different than the one that allows for a full compensation of the grid current
imbalance at the grid PCC. This aspect was addressed in this work via the presentation of
various schemes taking into consideration the adopted unbalanced compensation.

6. Conclusions

A three-phase, multilevel power converter for grid-connected PV generation systems
with capability to grid-inject an unbalanced active power was proposed. This converter is
characterized by its modular structure. Therefore, the proposed multilevel inverter consists
of two four-leg, two-level inverters that are connected to a three-phase transformer with
an open-end winding arrangement. The other side of the transformer is connected to the
phases and neutral wires of the grid, compensating for unbalanced loads. For the control of
the multilevel inverter AC currents and to balance the DC buses, a control scheme based on
a voltage PI compensator, sliding mode current controller and vectorial voltage modulator
was developed. Furthermore, schemes to generate the current references were proposed,
allowing the compensation of load imbalances. These schemes consider several aspects,
ranging from the linear and non-linear load to assessing whether the PV generator should
also compensate for unbalanced current reactive components or harmonics. This resulted in
an effective multilevel converter and control scheme that transferred to the grid the energy
generated by the PV panels in a way that provided grid support in the form of ancillary
services to compensate for different types of unbalanced loads. The proposed power
condition system and control approach were tested through several computer simulation
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tests. The obtained results with the system operating in steady state and transient conditions
were in good accordance with the proposed theoretical model.
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