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Abstract: Recently, the rapid growth of technology and the increased teleworking due to the COVID-19
outbreak have motivated cyber attackers to advance their skills and develop new sophisticated
methods, e.g., Advanced Persistent Threat (APT) attacks, to leverage their cybercriminal capabilities.
They compromise interconnected Critical Information Infrastructures (CIIs) (e.g., Supervisory Control
and Data Acquisition (SCADA) systems) by exploiting a series of vulnerabilities and launching
multiple attacks. In this context, industry players need to increase their knowledge on the security of
the CIs they operate and further explore the technical aspects of cyber-attacks, e.g., attack’s course,
vulnerabilities exploitability, attacker’s behavior, and location. Several research papers address
vulnerability chain discovery techniques. Nevertheless, most of them do not focus on developing
attack graphs based on incident analysis. This paper proposes an attack simulation and evidence
chains generation model which computes all possible attack paths associated with specific, confirmed
security events. The model considers various attack patterns through simulation experiments to
estimate how an attacker has moved inside an organization to perform an intrusion. It analyzes
artifacts, e.g., Indicators of Compomise (IoCs), and any other incident-related information from
various sources, e.g., log files, which are evidence of cyber-attacks on a system or network.

Keywords: Indicators of Compomise (IoC); evidence chains; attack path; attack graph; vulnerability
chains; attack behavior; cyber-attack; attack course

1. Introduction

In recent years, the development of digital communication technology and the in-
creased teleworking all over the world due to the global spread of the coronavirus disease
(COVID-19 pandemic) [1] have raised the chances of cyber-attacks in the global commu-
nity affecting a great variety of industries, such as healthcare, transportation, and energy.
Adversaries are evolving their skills exponentially and despite the continuous effort for
security technological progress, it still appears difficult to address the emerging cyber
threats and/or respond to ongoing security events in cyber-dependent infrastructures.

According to the EU Directive 2008/114/EC on the identification and designation of
European Critical Infrastructures (ECIs) and the assessment of the need to improve their
protection (ECI Directive), Critical Infrastructures (CIs) are considered those that are “essen-
tial for the maintenance of vital societal functions, health, safety, security, economic or social
well-being of people”, and their disruption or destruction could lead to significant impact
in an EU member state due to the “failure to maintain those functions” [2]. In addition,
the ECI Directive considers Critical Information Infrastructures (CIIs) those Information
Communication Technologies (ICT) systems that are “Critical Infrastructures for themselves
or that are essential for the operation of Critical Infrastructures” (e.g., telecommunications,
computers/software, Internet, satellites, etc.) [2].
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During the last decade, high-skilled hackers (e.g., “Anonymous”, “FireEye”, “Shadow
Brokers”, “Baby Elephant”, etc.) have managed to conduct multiple and sophisticated
attacks across ICT networks, i.e., Advanced Persistent Threat (APT) attacks. Furthermore,
sophisticated cybercriminals target industries’ heterogeneous CIIs by penetrating intercon-
nected nodes as a stepping stone, either to infiltrate deeply into such infrastructures and
cause serious damage to a variety of interrelated entities or to reach a specific target to serve
malevolent goals. Significant examples of cyber-attacks with great impact are the WannaCry
ransomware attacks of 2017, where a quarter million machines were compromised in more
than 150 countries globally affecting several entities, including NHS, Spain’s Telefonica,
the US company FedEx [3], and the Colonial Pipeline ransomware attack of 2021 [4].

To respond to the continuous evolving threat landscape, risk management techniques
need to focus on exploring cyber-attack features, such as the cyber attack’s course, the
adversary’s profile, the cyber-attack potential, attacker’s location through the network,
etc., to detect threats and estimate risks on CIIs. Attack Trees or Attack Graphs, have been
recognized as well-established approaches for employing threat modeling investigating
and analyzing risk propagation during the risk assessment performance. Moreover, they
aim to represent potential attack paths that can be exploited by attackers to penetrate
systems and obtain unauthorized access through a gradual exploitation of a series of
vulnerabilities (vulnerability chains) among interconnected assets. Several attack path
discovery algorithms in the literature are able to efficiently estimate and deliver all possible
attack paths an adversary could follow to compromise CIIs. Nevertheless, there is still
room for investigation and improvement on estimating attack paths based on real security
(confirmed) events by analyzing digital artifacts extracted from various sources (e.g., traffic
data, log files). In this respect, Indicators of Compromise (IoCs) that are considered critical
pieces of incident analysis (e.g., data found in system) and denote potentially malicious
activity on a system or network can be utilized by IT professionals and security specialists
to acquire a greater understanding of the security posture of their organization. In this vein,
attack generation research needs to be enhanced with approaches that combine different
security-related information, including IoCs and vulnerability assessment results.

The proposed attack simulation and evidence-based chains generation approach aims
to leverage awareness of the cyber-attack surface. It enables the cybersecurity knowledge
representations, modeling and evaluation of possible cyber threats, and attack paths and
chains of evidence associated with confirmed ongoing unwanted security events. The
incident-related information residing in different and heterogeneous ICT systems may
include various types of data (i.e., active/unpatched vulnerabilities in the technological
infrastructure; misuse/anomaly detection in the network or in the systems, network usage
and bandwidth monitoring; SCADA vulnerabilities; etc.). To this end, the attack simulation
and evidence chain generation model aims to employ an attack path discovery algorithm
that computes all possible attack paths an adversary could follow in relation to (a) specific
confirmed security event(s) by taking advantage of incident-related information from
various sources (i.e., log files, network traffic analysis). The developed model undertakes a
hybrid approach that combines incident analysis and vulnerability analysis and therefore
it can benefit the decision-making of CII operators both proactively and for incident
handling. In addition, the proposed approach simulates attacks via the development
of real-life scenarios to give the ability to further experiment through results and validate
the procedures.

Attack modeling techniques could additionally assist in privacy assessment. Since
2018, companies have been encouraged to comply with the General Data Protection Regu-
lation (GDPR) on a global scale [5]. This compliance process was already a rough task and
error-prone for many enterprises based on two identified problems according to [5]: the
first arises from the unawareness and uncertainty of people on the regulations that have to
apply and the second is that some entities do not have the ability to develop policies that
leverage compliance. The organizations’ inability to be privacy-aware raised challenges
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and issues that enable the execution of successful cyber-attacks that can highly impact an
organization (e.g., ransomware attack compromising sensitive information).

The proposed approach relies on a standard-based risk assessment methodology
that considers information security and security management standards (e.g., ISO27001,
ISO28000). The attack simulation and evidence chains generation model detects and as-
sesses vulnerabilities by combining and analyzing incident data during the risk assessment
process. In this context, the model can explore vulnerabilities related to privacy, develop
attack paths associated with privacy incidents, such as data breaches and information
exposures, and analyze an attack’s technical aspects. In this vein, it can assist CII operators
to improve their decision-making on strengthening their defense against privacy risks and
thus reinforce their compliance to GDPR.

The remainder of this paper is structured as follows: Section 2 provides an overview
of current efforts on attack graphs, attack simulation, and knowledge-based security mod-
els. Section 3 outlines the methods and algorithms utilized in the current research work.
Section 4 presents the proposed attack simulation and evidence chain generation approach.
In Section 5, a real-life threat scenario on CIIs is analyzed to demonstrate and validate the
approach. Section 6 discusses the research findings and their contribution and suggests
avenues for future enhancements. Section 7 draws conclusions. Appendix A includes
auxiliary tables of measurements used in the current approach. Appendix B provides a list
of acronyms and mathematical symbols applied in this work to facilitate readability.

2. Attack Graphs, Attack Simulation, and Security Knowledge-based Models

Cyber resilience is the ability to anticipate, withstand, recover from, and adapt to
adverse conditions, stresses, attacks, or compromises on cyber resources [6]. To better
define and estimate a CII system’s cyber resiliency, the measurement of its performance,
properties, capabilities, effectiveness, the attacker’s activity, or other risk factors need to be
considered. The European Commission (EC), through the NIS Directive [7] and the new
NIS 2 Directive proposal [8], aims to stress the need to European Union (EU) member states
for the application of EU-wide cybersecurity legislation to enhance cybersecurity across the
EU, open opportunities for cross-border collaboration between EU countries, supervise the
cybersecurity of critical EU markets and encourage operators of essential and important
services of industries to further invest on cybersecurity in terms of increasing their security
knowledge on the CIIs they operate and thus strengthen their cyber resilience.

Security management-related standards, such as ISO/IEC 27000 family [9] for infor-
mation security and ISO 31000 [10] for risk management, are applicable to all types of
organizations addressing any type of risk and as they can be adjusted to all activities, they
could leverage the decision-making of CII operators. From another point of view, security
incident management-related standards, such as the ISO/IEC 27035 series [11], address
basic concepts and phases of information security incident management and combine them
with principles in a structured approach that can leverage detection, reporting, evaluation,
and response to incidents promoting lessons learnt. Scoring methodologies that focus on
assessing a system in terms of reaching its operational or mission objectives and comparing
alternative produced solutions can raise the security knowledge of CIIs operators and
guide them to improve their security policies and thereby raise the cyber resilience of their
CIIs. Attack modeling techniques, simulation experiments, and knowledge-based security
approaches are core components of such methodologies.

This section aims to depict the current research work related to attack graphs and
modeling, attack simulation, and knowledge-based risk management techniques.

2.1. Current Efforts on Attack Modeling and Attack Graphs

The evolving cyber-threats’ landscape and the enormous effort needed to efficiently
secure data in the context of a Critical Information Infrastructure (CII), such as SCADA,
IoTs, and ICTs utilized in a variety of industries, such as healthcare, maritime transport,
and energy, denoted the necessity of adopting more advanced environments capable of
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providing a holistic picture of the system. For that reason, over the last years, several types
of attack modeling and simulation techniques have been developed to deal with networks’
vulnerabilities, behavioral analysis of a cyber-threat, and the potential objectives of an
attacker. A proper utilization of such techniques not only provides improved planning of a
rapid response to a security incident, but it can also improve the automation procedure
of threat modeling through simulation-driven approaches. Moreover, their results could
facilitate security practitioners and CII operators further exploring technical aspects of
composite attacks and deeply comprehend the security specificities and technical particu-
larities of their IT infrastructures and thereby expand their security knowledge. As a result,
this could help them to better manage the corresponding cyber risks and strengthen their
defense and security policies.

A vulnerability assessment is considered a thorough analysis of assets’ security weak-
nesses through which the existing and potential threat landscape within a network can be
valued. The development of threat scenarios can delineate the underlined threat landscape
and thus facilitate threat knowledge and improve visualization [12].

Attack modeling is a part of the vulnerability analysis which contributes to the evalua-
tion of risk metrics during the risk assessment process. It utilizes Attack Trees or Attack
Graphs, which are well-established approaches to employ threat scenarios during the risk
assessment process [12]. An indicative example is presented in [13], where cybersecurity
threat modeling for supply chain organizational environments is introduced to investigate
threat actors, threat reporting among supply chain stakeholders requirements domain
aiming to better understand supply chain threats. In recent years, attack modeling has
been considered a useful tool in the risk assessment of complex cyber-physical systems
(i.e., SCADA systems) [14]. In such systems, attack vectors are strongly dependent on
considerations regarding the technical and operational environment where an attack takes
place. A typical process of vulnerability analysis can be conducted via scanning tools
identifying individual vulnerabilities. Local vulnerability information together with net-
work information (i.e., connectivity between hosts) is capable of developing attack graphs.
To evaluate the vulnerability of CIIs in complex networks, the effects of interconnected
relations must be considered.

Attack graphs are data structures that are able to model all possible avenues of a
network attack. According to Jha et al. [15], attack graphs are considered a series of exploits,
the so-called atomic attacks, which can drive the process to an undesirable state (e.g., an
adversary gains administrative access to a critical host). They can be utilized for detection,
defense, and forensic analysis purposes [15]. Attack graphs can be assumed to be direct
graphs in the form of representing a network (nodes are states and edges are the application
of an exploit that can transfer a network state into another, more compromised network
state) [16]. The ending states of the attack graph represent the network states in which the
adversary has met his goals. In addition, an attack graph can be considered in the form of a
dependency graph exploit [16].

Attack paths are the identification of one or more vulnerabilities that can be exploited
by threat actors (attackers) to obtain access to specific assets and move between them within
a network and thereby form an exploitable path between the assets.

Attack modeling first appears in the late 1980s to estimate computer attacks manually,
which was a tedious and error-prone process, especially in cases of extensive numbers of
nodes [16]. During the end of 1990s, automatic generation of attack graphs, research efforts
of computer aided tools, and methods to model network risks were presented counting on
mathematical models [17,18]. In recent years, cyber-attack prevention technologies have
utilized attack graph generation and analysis methods to identify all possible paths that
attackers can exploit to gain unauthorized access to a system [19,20].

There is considerable work for attack graph generation and analysis. The model
checking algorithm of [15] is a technique to check if a formal model M of a system satisfies a
given property p. According to Kundu et al. [21], attack graph network measurements can
be classified into structure and probability-based metrices to quantify network security [22],
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time-based metrices [23,24] to illustrate the network’s agility in taking preemptive measures
to respond to attacks, and stochastic-based metrices to estimate large nodes of networks [17].

Dependability is engaged by the following attributes: availability of service (readiness
for correctness), reliability (continuity) of service, safety (absence of negative/catastrophic
consequences) of users and the environment, confidentiality (unauthorized disclosure),
integrity, and maintainability (repair) [16]. Cyber-attacks can be considered either inten-
tional or unintentional (accidental) and dependability can be evaluated through stochastic
analysis (sophisticated method to measure the probability/acceptability of faults) [16].
In case a large network analysis is either an explicit or strict requirement, a quantitative,
much more complex analysis is preferred, which can be achieved through probabilistic
models [16]. Advanced (sophisticated) attacks can be represented with probabilistic attack
graphs that can depict the different states of a system as nodes and the relations between
different states as directed edges whereas computation of all potential attack paths to a
target of interest is feasible. One single path describes the various steps of an attack, where
exploiting one vulnerability grants access to other vulnerabilities, e.g., by gaining some
privileges. Even for small networks, attack paths may become quite complex and several
tools may be required to develop the attack graphs [25].

As far as dependency evaluation is concerned, the traditional techniques for ensuring
the correct operation of a service that cover the “absolute necessities” are block diagrams
(BDs) and fault trees (FTs), while more sophisticated approaches are based on Markov mod-
els [17,18]. Attack trees as a method to formalize the security of systems and subsystems
against different attacks were introduced by Schneier (1999) [26]. A tri-level optimization
model to evaluate the performance of power systems for their optimal defending resource
allocation to enhance cyber-physical security is presented by Lai et al. (2019) [27].

Topological Analysis of Network Attack Vulnerability (TVA) builds a so-called exploit
dependency graph which contains information about the conditions of an exploit and then
searches this graph to combine a variety of vulnerabilities [19]. The MulVAL, logic-based
network security analyzer was initiated by [28] and it is a vulnerability analysis tool that
models the interaction of software flaws along with network configurations. NetSPA is a
network security planning architecture that very efficiently develops the worst-case attack
graphs [29].

A component metric is attached to each attack node derived from the Common Vul-
nerability Scoring System (CVSS) metric vector [30]. In [31], a novel systematic method
for discovering and analyzing attack paths in real-world scale interdependent cyber phys-
ical systems is described. A threat intelligence approach exploring attack data collected
using cloud-based web service to support the active threat intelligence is presented in [32].
Through the Pyramid of Pain, the level of difficulty in handling cyber threats is indicated
by establishing different levels of Indicators of Compromise (IoC) to show the various
levels of technical difficulty and understand attackers’ behavior. A methodology that
classifies and attributes the attack surface of mobile malware with known threat actors
through automated TTP and IoC analysis is described in [33]. The TTP analysis relies on
two methods: mathematical modeling of the ATT&CK matrix and IoC pairing to avoid
false flags.

Despite the rising effort of adopting IoC analysis to improve the understanding of the
technical aspects of IT infrastructures and to increase awareness of the attack’s course and
behavior, there is still potential to study how to assess specific attack paths connected to
real security (confirmed) events. The proposed approach on attack simulation and evidence
chains generation targets at promoting attack path results by analyzing, modeling, and
evaluating all possible cyber threats to produce chains of evidence according to specific
and confirmed security events. To achieve this, it combines incident-related information,
such as IoCs, with the vulnerability assessment results obtained during the performance
of an existing risk assessment methodology. This hybrid approach aims to analyze two
aspects: the exploitability capability of vulnerability (e.g., explore where the vulnerability
exploitation is possible, whether specific configurations are required, etc.) chains and the
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cyber attack’s characteristics (e.g., adversary’s profile, available equipment, attack’s course,
opportunities, etc.) that can be elaborated to construct the attacker’s timeline towards a
detected security event and increase the knowledge both for proactive management and
incident handling.

2.2. Attack Simulation and Security Knowledge-Based Models

Simulation techniques can facilitate the assessment environment and deepen the
analysis of attacks. A simulation-driven approach is a composite process aiming to discover
and execute possible attack plans and it can assess how the availability of information
about the system implementation influences the success of attack plans [34]. Moreover,
a framework to support the attacks discovery and the calculation of the probabilities of
successful attacks and their impact is shown [34]. A variety of approaches explore attack
simulation and computation of attack graphs over IT infrastructures (i.e., agent-based
model, semi-automated attack-graph generation model) to calculate very large attack
graphs, allowing attacks’ simulation in the domain of interest [35].

Ontology-based solutions are dynamic solutions to measure security variables, such
as cyber-attacks that can infer risk knowledge and thus enhance situational awareness.
Lambe (2013) [36] identifies four types of knowledge risk; knowledge continuity risks,
knowledge acquisition risks (new knowledge), knowledge outsourcing risks (risks coming
from external parties), and knowledge articulation risks (combine and leverage knowledge
capabilities). Risk management is a complex procedure across the complex interdependent
nodes of networks. CII operators must be aware of the risks-related information both at
organizational and cross-sectorial level. Knowledge Risk Management (KRM) is a new
research field which aims to enhance the decision-making of entrepreneurs regarding risk
response actions. KRM can have a significant value on SC organizations’ performance
expanding the borders of the enterprise’s innovativeness, responsiveness, sustainability,
and agility [37]. Adopting Knowledge Management (KM) techniques in risk manage-
ment can facilitate academic researchers and practitioners better comprehending the risk
management processes [37] against the evolving threat landscape of CIIs.

There is considerable research work of KM applications for risk management. For
instance, Massingham (2010) [38] proposes a KRM model to differentiate amongst risks
and reduce the cognitive bias inherent in traditional decision methods for risk assessment
to improve its accuracy. Durst and Zieba (2019) [39], in their systematic and comprehensive
review, identify state-of-the-art gaps in analyzing essential organizational risks along with
their relations. They consider that the development of a knowledge risk taxonomy can be
reasoned to improve risk awareness, to obtain a holistic view of organizational knowledge,
to build a fruitful ground for expanding the research of KRM, and to offer a diagnostic
tool for practitioners to better scrutinize their knowledge aspects. Lu (2019) [40] illustrates
gaps in the MITRE’s ATT&CK adversarial behavior framework and mentions the lack of its
hierarchical structure proposing OWL semantic language and reasoning mechanisms to
populate domain-specific knowledge or solve instances of structural issues and syntactic
errors. Concerning further semantic ontology contribution in the security domain, the
ARGUS semantic framework has been proposed for storing data retrieved from existing
sensors and extract information on assessing security risks [41].

The current attack simulation and evidence chain generation-proposed approach
aims to facilitate knowledge representations of alternative attack paths that deepen the
analysis of the technical components of CIIs and advance learning on the attack course
and attacker’s characteristics. In this regard, it will facilitate the design and execution
of joint/collaborative simulation experiments of various threat scenarios and security
incidents to identify, analyze, model, and represent the course of a cyber-attack as it
propagates across the CIIs. Such knowledge uptakes can leverage the decision-making of
CII operators and inspire them to improve their defense and implemented security policies.
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3. Applied Methods and Algorithms for Simulation and Evidence Chains Generation

This section aims to delineate all methods, algorithms, and techniques that have been
adopted to support the proposed attack simulation and evidence chains generation approach.

3.1. Overview of Applied Methods and Algorithms

As described in the previous sections, the main objective of the attack simulation
and evidence chain generation approach is to enable the representation, modeling, and
evaluation of all possible attack paths and to identify chains of evidence related to real
security events. For this reason, the approach employs a simulation environment that
allows the design and execution of complex threat cases to identify, analyze, and model the
technical aspects of a cyber-attack (e.g., course of the attack, attacker’s profile, the capability
to implement attack paths, etc.) as it propagates across the CIIs’ network. To this aim,
the cascading effects of a risk implementation can be evaluated through the production
of all possible attack paths that would enable an attacker to reach one or more targeted
assets from one or more asset entry points discovered. In this regard, the current approach
adopts the Collaborative, Evidence-driven Risk Assessment methodology [42–44] which
performs multi-order risk assessment, impact assessment, and provides dynamic decision
support capabilities required for the identification, analysis, and assessment of risks, threats,
and incidents, and the estimation of their impact on CIIs. The methodology can predict
potential security incidents, mitigate and minimize the consequences of divergent security
threats and their cascading effects in the most cost-effective way through the investigation
of simulated scenarios and the generation, and scrutinize and model all possible attack
paths and attack patterns following a Vulnerability Chains Discovery method [19,44].

The proposed attack simulation and evidence chains generation model aims to en-
hance the attack path generation process of this Vulnerability Chains Discovery method by
estimating, producing, and prioritizing all potential attacks that match to specific confirmed
events of a given predefined threat scenario according to the information retrieved from
artifacts, such as Indicators of Compromise (IoC). To achieve this, it analyzes malware
techniques and attackers’ behavior based on digital forensics. The current attack simula-
tion and evidence chains approach utilizes algorithmic techniques of graph chains and
interdependency graphs as well as mathematical and quantitative methods.

3.2. Adoption of a Multi-Order Risk Assessment

The adopted multi-order risk assessment empowers CII operators to identify and
calculate risks, provide risk propagation, and analyze potential cascading effects over their
CIIs in a holistic manner. The proposed approach implements the risk assessment method-
ology by utilizing mathematical modules, interdependency graphs, and quantification
techniques that enable the execution of a bundle of automated processes and routines. In
particular, these processes and routines capture and analyze all threats arising from CIIs
interdependencies, quantify their cascading effects, and explore cyber-attacks’ course and
features to mitigate and alleviate the consequences of divergent security threats. This is
supported dynamically through a simulation environment and by deriving evidence-based
knowledge of data acquired from online sources and repositories, such as NIST reposito-
ries and CAPEC attack patterns list. In this regard, forecasting techniques are used that
implement Natural Language Processing (NLP) algorithms to heuristically select a basic set
of keywords associated with the overall infrastructural topology and elicit data (i.e., CVE
details) from Open Intelligence Sources (OSINT) using cloud-based techniques and Big
Data analytics to tackle vast amounts of data and handle redundant information.

The adopted Evidence-driven Risk Assessment methodology relies on interdepen-
dency graphs, game theory, and percolation theory; it is built on a set of steps which are
briefly described in the following. An analytical presentation of its steps can be found
in [42–44].

The adopted methodology consists of the following sequential steps.
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3.2.1. Asset Cartography and Modelling

Using process-centric and asset-centric approaches presented in [45], the under-
examination scenario is analyzed according to the embedded business processes, business
partners involved, and CIIs/assets operating for the execution of these processes. The imple-
mentation of this step delivers a cyber-asset inventory per involved organization engaging a
set of characteristics for a cyber asset “An” (cf. Table A8, Appendix B), i.e., type of asset, ven-
dor, version, etc., based on the CPE model of MITRE [46]. In addition, cyber-dependencies
between assets are identified indicating their type of interdependency (1. hosting; 2. ex-
change data/information; 3. storing; 4. controlling; 5. processing; 6. accessing; 7. installing;
8. trusted; 9. connecting) and the access vector (Local/Adjacent Network/Network) which
are further analyzed in [43,47]. Such identifications will allow the underlined cyber assets
to be related to respective threats and vulnerabilities in the coming steps.

3.2.2. Threat Assessment

Threat scenario is assumed to be a use-case in which a threat can compromise an
asset by exploiting vulnerabilities and weaknesses as well as taking advantage of the
lack of adequate security controls. After developing an asset cartography, identification
of individual cyber threats against each recorded cyber asset are recognized, according
to business partners’ expertise and knowledge, existing cyber threat repositories, social
media, and crowdsourcing exploitation. To implement this step, the CAPEC classification
of MITRE [48] is adopted to synchronize the MITRE attack identifiers and associate the
vulnerabilities that will be identified in the next step with one or more weakness identifiers.
Afterwards, a threat assessment is conducted to estimate the expected probability of
occurrence given a specific scenario utilizing the quantification method upon specific
criteria (previous historical data, CII operators’ intuition, social engineering). A static asset
map with threats using semantic frameworks and reasoning mechanisms is produced [45].
The outcome of this step is to provide a threat level for each scenario under examination to
each identified asset and thus to increase CII operators’ threat awareness:

- Threat “Ts” is considered all cyber threats, “s”, applied to the cyber asset “An”.
(cf. Table A8, Appendix B).

- The Threat Level “TLs” of a cyber threat, “s”, is the expected probability of occurrence
of the threat scenario under examination to the cyber asset “An”.

3.2.3. Vulnerability Assessment

The execution of this step provides individual vulnerability identification associated
with the CII assets declared in the first step of asset modeling. All confirmed and un-
known/undisclosed (zero-day) vulnerabilities are gathered in a list. This is accomplished
by utilizing open data sources, such as adopting a CVE metamodel which illustrates the
disclosed vulnerabilities, replicating all of them, and matching them with the identified
assets of the first step through synchronization mechanisms and knowledge-based rules. In
addition, unknown/undisclosed (zero-day) vulnerabilities can be declared and treated by
CII operators. To quantify vulnerabilities, a set of metrics is considered according to CVE
characteristics [49]. After confirmed and unknown (zero-day) vulnerabilities are identified
the asset mapping process continues, the MITRE attack identifiers are synchronized, and
the identified vulnerabilities are associated with one or more weakness identifiers. Then,
a vulnerability assessment process takes place delivering individual, cumulative, and
propagation values:

• The individual vulnerability assessment measures the probability that an adversary
can successfully reach and exploit a specific vulnerability (either confirmed or un-
known) in a given asset. Using the CVSS 2.0 vulnerability severity metrics [50] and
considering the implemented security controls, the severity of the identified vulnera-
bilities on the CII assets of the first step is estimated. The Individual Vulnerability level
“VLv“ is the probability that an attacker can successfully reach and exploit a specific
(confirmed or zero-day) vulnerability “v” in a given cyber asset “An” (cf. Table A8,
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Appendix B). The Individual Vulnerability level VLv is calculated considering the
mapping of CVSS 2.0 exploitability metrics depicted in Table A1 of Appendix A.

• The cumulative vulnerability assessment measures the Exploitation Level (EL) of the
identified vulnerabilities (confirmed and unknown) considering the adversary’s indi-
vidual actions to satisfy the preconditions required for the exploitation. In particular,
it measures the conditional probability that an attacker can successfully reach and
exploit each of the vulnerabilities identified in the previous steps (confirmed and
unknown) in a given vulnerability chain. To accomplish this, the calculated indi-
vidual vulnerability levels, the assets’ cyber-dependencies produced in the first step,
and the attacker’s (adversary) profile are considered. The attacker’s profile relies on
the attacker’s relationship with the organization (insider, outsider), attacker’s skills
(ICT skilled, premature), and attacker’s target (level of damage aimed). Within this
performance, a rule-based propagation and path construction reasoning approach is
followed [42], aiming to generate the chain of sequential vulnerabilities on different
assets that arise from consecutive multiple attacks starting from all possible asset entry
points to exploit a series of vulnerabilities that could reach a specific asset target point.

• The propagated vulnerability assessment estimates how deep into the network an
attacker can penetrate in view of exploiting a series of vulnerabilities. Moreover,
it measures the conditional probability that an attacker can successfully reach and
exploit vulnerabilities (confirmed and unknown) identified in the previous steps in a
given vulnerability dependency graph. Accordingly, in the propagated vulnerability
assessment, a rule-based propagation and path construction reasoning approach is fol-
lowed [42], aiming to generate the chain of sequential vulnerabilities on different assets
that arise from consecutive multiple attacks starting from a specific asset entry point
to exploit a series of vulnerabilities that could reach all possible asset target points.

Within this step, a Vulnerability Chains Discovery method [20] is followed to generate
vulnerability chains and predict potential attack paths. The methodology investigates the
exploitation of vulnerability chains through inferred attack paths to conduct vulnerability
assessment and estimate the cascading effects of risk implementation and risk propagation.
To predict attack paths and forecast attacks, features from collaborative filtering recom-
mender (decision support) systems and attack path discovery methods analyzed in [51]
are captured.

3.2.4. Impact Assessment

Similarly, the impact from the vulnerabilities exploitation on assets is estimated on
individual, cumulative, and propagated values.

The individual impact assessment promotes a single estimation of the overall impact
of a specific asset/vulnerability combination. The Impact Level “Iv” measures the effect
that can be expected as a result of the successful exploitation of a vulnerability “v” that
resides in asset “An” (cf. Table A8, Appendix B). On this account, the CVSS 2.0 Impact
metrics Confidentiality, Integrity, Availability [50] are juxtaposed with a qualitative five-tier
scale (i.e., “Very Low” (VL), “Low” (L), “Moderate” (M), “High” (H), “Very High” (VH)) as
presented in [42]:

• The cumulative impact assessment estimates the impact that occurs after a spe-
cific asset/vulnerability combination has been exploited by an attacker using any
possible (asset) entry point. This is only related to the impact of this specific as-
set/vulnerability combination.

• The propagated impact assessment illustrates the attacker’s intention to cause damage
on the way at any asset/vulnerability combination. It is defined as the overall impact
that takes place when an attacker exploits a specific asset/vulnerability combination
and further moves on into the network starting from a specific (asset) entry point.
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3.2.5. Risk Analysis

The risk metric “Rs” represents how dangerous all threats, “s”, are to the specific asset
“An” [44] (cf. Table A8, Appendix B).

After collecting all Threat Levels “TLs” (Threat Assessment step), Vulnerability Levels,
“VLv” (Vulnerability Assessment step), and Impact Values “Iv” (Impact Assessment step)
for each identified asset “An” (Asset Cartography and Modeling step), the Risk Level “Rs”
is estimated for every asset “An” for the threat, “s”, according to the general multiplication
of risk equation:

Risk Level = Threat Level x Vulnerability Level x Impact Level (1)

Rs = TLs, × VLv × Iv

This step produces:

• Individual risk analysis, to estimate how dangerous a threat appears on a specific
cyber asset;

• Cumulative risk analysis, to estimate the risk exposure of the successful exploitation of
multiple vulnerabilities, targeting a specific cyber asset starting from different (asset)
entry points; and

• Propagated risk analysis, to calculate how deep into the network an attacker may
penetrate in case he/she successfully exploits vulnerabilities identified in (asset) entry
points corresponding to threats.

The risk level can be calculated either in qualitative or quantitative values, following
the Probability Scale of Table A2, Appendix A.

3.2.6. Defense and Risk Mitigation

The inferred attack path constructions performed during the vulnerability assessment
(which are enhanced and further analyzed in the proposed approach) produced vulnerabil-
ities chains to estimate the risk exposure of the under-examination CII assets. Within this
framework, CII operators are guided by indications for the most effective security controls,
following a rational analysis and optimization practices, to minimize as far as possible
the expected damage. Moreover, a zero-sum game approach of a worst-case scenario is
followed, considering the attacker is oriented to cause as much damage as possible [47]. In
particular, an attacker-defender scenario is addressed by:

• The strategies of the players (attacker/defender): a characterization of what actions
both players can undertake; and

• The payoffs for each scenario: an assessment of the damage occurring to the defender
for each combination of attack and defense strategy.

4. The Attack Simulation and Evidence Chains Generation Approach

This section is the core component of the current work. At first, an overview of the
approach is illustrated. Afterwards, the attack simulation and evidence chains generation
model is extensively illustrated following a step-by-step structure.

4.1. Overview of the Approach

The attack path discovery algorithms described in the previous section compute and
deliver all possible attack paths an adversary could follow across all potential asset entry
points. Moreover, such algorithms are also able to estimate all the cascading effects and all
possible attack paths arising from a specific vulnerability in a given entry point to show
how deeply the adversary is able to penetrate the system. Nevertheless, they lack the
ability to deliver the specific attack paths that concern chains of evidence linking to real
security events.

The incident-related information that resides in different and heterogeneous cyber
systems may include various types of data, i.e., active/unpatched vulnerabilities in the
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technological infrastructure; misuse detection in the network or in the systems, including
both Host-based Intrusion Detection System (HIDS) and Network-based Intrusion Detec-
tion System (NIDS) deployment and integration; anomaly detection in the network or in the
systems; system availability signals; network usage and bandwidth monitoring; industry
proprietary protocol anomalies; supervisory control and data acquisition (SCADA) [43];
ICT vulnerabilities; etc.

In this vein, the proposed attack simulation and evidence chains generation approach
will enhance the calculation of the utilized attack path discovery algorithm in terms of
computing all possible attack paths an adversary could follow in relation to a specific
confirmed event that can be identified from various sources (i.e., log files, network traffic
analysis). This raises research investigation into how to reconstruct attack paths, rebuild
their timeline, and prioritize them according to specific confirmed events.

The current approach can represent various cyber-attack patterns according to dif-
ferent security incidents within the CIIs generating multi-order evidence dependencies.
Furthermore, it will scrutinize the inherent relationships between devices and evidence and
represent a timeline of the incident, engaging a map of affected devices and an evidence
chain model comprising credible and meaningful chains of evidence. In this manner, the
proposed approach can leverage the computation of the adopted risk assessment approach
with such evidence which will facilitate the rational analysis. Taking into account all
received incident-related information, the Attack Simulation and Evidence Chains Gen-
eration model will estimate the cascading effects of various cyber-attack patterns and
security incidents of the CIIs. By utilizing novel processes of near real-time identification of
anomalies, threats, and attacks, abnormal behaviors and malicious activity that match the
structural patterns of possible intrusion on the cyber assets will be recognized and ongoing
attacks will be identified along with attack related information indicating the status of the
attack and the attacker’s location. Once the cyber-attack is identified, a simulation process
will be performed to reconstruct the attack scenarios and represent the linked evidence.
This attack path regeneration will enable deep evaluation performance of the underlying
vulnerabilities to detect where the attack is heading and eventually to identify the entry
and target points of the attack.

To address such case, a calculation of all the attack paths that are related to the specific
asset or assets according to the evidential data derived from a variety of sources will be
carried out, delivering payoffs that match to the predefined scenario and produce secure,
credible, and valid chains of evidence.

The proposed approach will be capable of identifying how an attacker has moved
inside the infrastructure and further scrutinize their malicious activity. In this context, it
can provide valuable insights on a cyber-attack’s course and therefore it could drive the
CII operators and decision-makers to handle the incident effectively and formulate their
incident response processes in an efficient manner.

An overview of the Attack Simulation and Evidence Chains Generation model is
depicted in Figure 1.

4.2. Step-by-Step Analysis of the Approach

As described in the previous section, the current approach aims to enhance the Vul-
nerability Chains Discovery method, described in the risk assessment process of Section 3,
with the re-construction of all possible attacks paths to generate chains of evidence that lead
to specific confirmed security events. The proposed model which classifies and calculates
the attack paths to create and represent knowledge of evidence chains is divided into
consecutive steps presented as follows.
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Figure 1. The Attack Simulation and Evidence Chains Generation model.

4.2.1. Step 1: Generation of Vulnerability Chains

The attack path discovery and development algorithm follows the steps and tasks
of the Risk Assessment methodology related to the “Asset Cartography and Modeling”,
“Individual Vulnerability Assessment”, and the Vulnerability Chains Discovery method [20],
presented in Section 3. Moreover, it is implemented to reproduce attack paths in order to
provide all vulnerability chains whose exploitation can lead to possible attack paths on
given cyber-dependent assets. The attack path discovery relies on unique characteristics,
i.e., assets dependency graphs (step 1.1), to calculate all possible non-circular paths attackers
could undertake to implement an intrusion. CIIs incorporate a number of dispersed nodes
that can be exploited by adversaries to infiltrate a system. Depending on the number of
vulnerabilities that can be identified in a communication network and how reachable they
are, the size of the attack graphs may differ [51]. Namely, as the exploitation capabilities
increase, the attack graph is able to expand. The attack graphs are constructed using
security information from online repositories, such as the Common Weakness Enumeration
(CWE) [48] and the Common Vulnerabilities and Exposures (CVE) [49].

The algorithm that discovers and analyzes all potential attack paths on CIIs for complex
attack scenarios given a specific asset cartography adopted by the attack simulation and
evidence chain generation approach is presented through subsequent steps, analyzed
in [20,45]. As the Vulnerability Chains Discovery method does not calculate all possible
attack paths that match to specific confirmed security event, the method is implemented
only to generate a list of vulnerability chains (potential attack paths) and to estimate the
Individual Vulnerability Level (IVL), described in Section 3. The steps to accomplish this
are set as follows.

4.2.2. Step 1.1: Identify Asset Dependency Graphs

The current step relies on the Asset Cartography and Modeling corresponding step
of the risk assessment methodology (illustrated in Section 3). In this step, assets are
identified, analyzed, and modeled to identify asset characteristics (e.g., asset category, asset
vector, version), asset cyber-dependencies, according to specific types of interdependencies
(1. hosting; 2. exchange data/information; 3. storing; 4. controlling; 5. processing;
6. accessing; 7. installing; 8. trusted; 9. connecting), and the Access Vector (AV) (Local,
Adjacent Network, Network) to develop an asset inventory of an organization and design
asset dependency graphs. Detailed description and analytical examples of the application
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of the above assets’ characteristics and relations on real-life scenarios have been illustrated
in previous works [43,45].

4.2.3. Step 1.2: Define Entry Points

Security operators must identify assets that can be highly approachable by adversaries
to initiate an attack, considered as entry points.

4.2.4. Step 1.3: Define Target Points

Security operators must identify the most “attractive” assets (critical) for attackers to
intrude, considered as target points.

4.2.5. Step 1.4: Perform Individual Vulnerability Assessment

The Individual Vulnerability Level (IVL) estimates the probability an adversary can
successfully reach and exploit a specific (confirmed or zero-day) vulnerability “v” on
a given asset “An”. Using the CVSS 2.0 score Exploitability Metrics [50], namely the
Access Vector (Local/Adjacent/Network), Access Complexity (High/Moderate/Low), and
Authentication (Multiple/Single/None) and concerning the implemented security controls,
the Individual Vulnerability levels of all identified vulnerabilities on the CII assets are
estimated. The IVL for each identified vulnerability is calculated considering the mapping
of CVSS 2.0 exploitability metrics, depicted in Table A1 of Appendix A.

4.2.6. Step 1.5: Produce Vulnerability Chains

Adoption of a rule-based reasoning approach (filters) presented in [51] which im-
plements the attack path generation algorithm described in [20] to produce the chain of
sequential vulnerabilities on different assets that arise from consequential multi-steps at-
tacks, initiated from all Entry Points in order to exploit the vulnerabilities of all possible
Target Points.

The Individual Chain Vulnerability Level (ICVL) measures the probability that a vul-
nerability “z” which resides in an Asset Target Point “”can be exploited given the specific
kth-Vulnerability Chain C originated from an Asset Entry Point “Am” with vulnerabil-
ity “v”.

The proposed Attack Simulation and Evidence Chains Generation approach aims
to identify all possible attack paths that are linked to the specific security event that has
been detected. The current step builds all possible vulnerability chains in general either
from a given asset entry point or a given asset target point. Incident-related information is
analyzed in the next step (Step 2.1) and considered for the attack path re-construction to
capture only the attack paths related to the specific security event (Step 2.2).

4.2.7. Step 2: Recurring Process Activation

To implement the current step, the Attack Simulation and Evidence Chains model
follows the developed algorithmic process, presented below.

4.2.8. Step 2.1: Points of Compromise (PoC) and Indicators of Compromise (IoCs)

Analyze artifacts, such as Indicators of Compromise (IoCs), which can be considered as
digital evidence of potential attacks on a system or network, to gather security knowledge
regarding the intrusion attempts detected or other malicious traffic or activities. A deep
analysis is carried out on these indications provided (i.e., incident alerts that are raised
along with the respective notifications, lateral movement, or data exfiltration) to explore
which parts of the underlined infrastructure have been compromised, namely to identify
the Points of Compromise (PoC) and elicit information on the particular intrusion technique
and malicious behavior.
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4.2.9. Step 2.2: Reconstruction of Potential Attack Paths

Once all the security data have been explored and correlated, the obtained information
is used to reconstruct the potential attack paths according to the analyzed IoC. Attack paths
that do not match with the received indications are erased. With respect to the reconstructed
attack paths, all vulnerability chains that are linked to the IoC are generated.

4.2.10. Step 2.3: Attacker’s Profile Identification

The attacker’s profile is identified by the attacker’s location (local/adjacent/network),
the attacker’s capability (very low/low/moderate/high/very high) due to specific char-
acteristics, i.e., expertise, available resources, and opportunities (shown in Table A3 of
Appendix A), meaning the likelihood of an attacker to perform a cyber-attack or a sequence
of cyber-attacks relies on these characteristics, and the attacker’s target (can be either a
specific asset or cause general harm).

Within this step, the computation of Exploitation Levels and Exploitation Level Chains
is provided.

To estimate the exploitability of the potential attack paths remained from the recon-
struction process of step 2.2, the attacker’s capability along with the Individual Vulnerability
Level (IVL) will compute the Exploitation Level “ELv” of an identified vulnerability v on an
asset An, as described in the “Vulnerability Assessment” step of Section 3. This is achieved
by consulting Table A4 of Appendix A which maps the IVL onto the attacker’s capability.
The gained values are used to build the Exploitation Level Chains (ELCs).

ELCs are considered a sequence of exploitation levels “ELv” of individual vulnera-
bilities “v” on specific asset/vulnerabilities combinations, related to an IoC. The ELC is
used to calculate the exploitability probability. A multiplication operation is performed to
illustrate how a set of Exploitation Levels are mapped onto new levels [42].

ELC = EL1 × EL2 × . . . × ELv, v ∈ N (2)

Exploitability Probability is the likelihood “P” of exploitation of a specific attack path
given a specific IoC, where PIoC = 1. The outcome is a quantitative value.

The exploitability probability is calculated, the quantitative value is converted to a
qualitative value using Table A2 of Appendix A, to estimate the Attack Path Exploitability
Level (APEL). The APEL illustrates in a qualitative value the level of exploitation for a
given attack path towards a specific confirmed event with a specific IoC.

4.2.11. Step 2.4: Prioritization of Potential Attack Paths

The current step relies on the specific attacker’s profile (i.e., capability, location through
the network) identified in step 1.3. All assets from the graph that the attacker does not have
the ability or the access required shall be erased. Attack course is reconstructed and asset
entry and asset target points are identified for each given attack path. In this regard, all
possible evidence chains that match to the confirmed incident are prioritized according to
the worst-case scenario, to the greatest impact (security, financial, environmental) the assets
compromization can cause harm to the interconnected CIIs and the organization, which
reveals from categorizing the identified attack paths from highest to lowest APEL.

4.2.12. Step 2.5: Pruning Process Activation

Since the attacker’s profile and APEL are identified, these two metrics are mapped
to specify the attacker’s exploitation capacity towards a given attack path. The attacker’s
capability is related to a set of characteristics, presented in Tables 1 and A3 of Appendix A,
i.e., knowledge/expertise, available resources, and opportunities required to exploit a
single or a sequence of vulnerabilities. Thus, an attacker with low knowledge/ limited
available resources and opportunities is not capable of successfully conducting complex and
advanced cyber-attacks which have low exploitability potential. As a result, the following
mapping is developed (Table 1):
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Table 1. Mapping of the attacker’s capability and the attack path exploitability to identify the
attacker’s exploitability potential.

Attacker’s Exploitation Capacity

Qualitative Values
of Attacker’s Capability Description of the Attacker’s Capability Attack Vector towards Exploitability

Very High (VH)

The adversary has a very sophisticated level of
expertise, is well-resourced, and can generate
opportunities to support multiple successful,

continuous, and coordinated attacks.

The adversary is capable of
implementing an attack path that has VL, L,

M, H, or VH level of exploitability in a
sequence of vulnerabilities.

High (H)

The adversary has a sophisticated level of
expertise, with significant resources and

opportunities to support multiple successful
coordinated attacks.

The adversary is capable of implementing
an attack path that has

L, M, H, or VH level of exploitability in a
sequence of vulnerabilities.

Moderate (M)
The adversary has moderate resources, expertise,

and opportunities to support multiple
successful attacks.

The adversary is capable of implementing
an attack path that has M, H, or VH level of

exploitability in a sequence
of vulnerabilities.

Low (L) The adversary has limited resources, expertise, and
opportunities to support a successful attack.

The adversary is capable of implementing
an attack path that has H or VH level of

exploitability in a sequence
of vulnerabilities.

Very Low (VL)
The adversary has very limited resources,
expertise, and opportunities to support a

successful attack.

The adversary is capable of implementing
an attack path only with VH level of

exploitability in a sequence
of vulnerabilities.

Eventually, the prioritized attack paths are reviewed and evaluated against the at-
tacker’s exploitation capability and less important paths are pruned. The remaining attack
paths are capable of addressing the given confirmed event and credible evidence chains
are generated. The results can be further explored and guide the CII operators to set
recommendations, to undertake an effective incident response handling policy that could
either address or mitigate the effects of the incident.

The subsequent steps of the proposed approach are visualized in Table 2 along with
the corresponding tasks, construction, and semantic rules applied in the current algorith-
mic process.

Table 2. Steps, tasks, and rules applied in the Attack Simulation and Evidence Chains genera-
tion model.

Step Number Step Name Tasks and Rules

Step 1 Generation of
Vulnerability Chains

Construct all possible Asset/Vulnerability combinations
between an Asset Entry Point and an Asset Target Point

Step 1.1 Identify Asset
Dependency Graphs

a. Identify assets
b. Identify assets characteristics (e.g., type, vendor)
c. Identify assets interdependencies
d. c.1 Access Vector (AV)
e. c.2 Asset Cyber-dependencies
f. Construct asset dependency graphs

Step 1.2 Entry Points
Identification

g. CII operators define assets that are more reachable by
h. the attackers to initiate an attack.
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Table 2. Cont.

Step Number Step Name Tasks and Rules

Step 1.3 Target Points
Identification

i. CII operators define assets of high criticality on their
infrastructures that may attract attackers to reach.

Step 1.4
Perform

Individual Vulnerability
Assessment

j. Estimate Individual Vulnerability Level (Exploitability of a
vulnerability to an asset).

Step 1.4
Produce

Vulnerability
Chains

k. Generate the chain of sequential vulnerabilities on different
assets arising from Entry Points to exploit the vulnerabilities
of the Target Points.

Step 2 Recurring Process Activation Construct all possible Attack Paths related to a
specific security confirmed event

Step 2.1 PoCs/IoC
l. Analyze artifacts and incident-related information.
m. Investigate for PoC.

Step 2.2 Reconstruction of
Attack Paths

n. Identify all vulnerability chains connected with the IoC.
o. Erase all Attack Paths that are not connected with the IoC.

Step 2.3 Attacker’s Profile
Identification

p. Define Attacker’s Profile (Location, Capabiliy).
q. Erase Vulnerability Chains with Asset Entry Points that are

not reachable to the attacker.
r. Estimate the Exploitation Levels of vulnerabilities on the

developed attack paths (they must all link to the IoC).
s. Estimate the exploitability probability of all attack paths

(APEL) (they must all link to the IoC).
t. The likelihood of exploitation of vulnerabilities that reside in

the infected asset is 1: exploitability probability PIOC = 1 as
the asset has already been compromised.

Step 2.4 Prioritization of
Potential Attack Paths

u. Prioritize the attack paths to the worst-case scenario (Classify
the APEL from “Very High” to “Very Low”).

Step 2.5 Pruning Process Activation

v. Map attacker’s profile and APEL to specify the Attacker’s
Exploitation capacity towards a given attack path.

w. Pruning Process Activation for all attack paths; the attacker
has no exploitability capacity and review remaining
attack paths.

x. Evidence Chains generated.

5. Application of the Evidence Chain Generation Approach

This section illustrates the evidence chains generation approach, described in Sec-
tion 4, via a simplified business scenario. The scenario selected is close to real life and
aims at demonstrating the proposed model, and validating the approach by checking
the applicability.

The scenario refers to the maritime transport industry and implements a process that
is executed during the performance of the General Cargo Transport Service. The Service
relies on the transportation of the general cargo from a port of origin to the destination
port, including loading/unloading procedures and inbound/outbound logistics to deliver
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the cargo to the final consumer. A critical document during cargo transportation is the
Standard Cargo Manifest which includes all the information related to a vessel and the
cargo transported though this vessel. Suppose a Ship Agent sends a Standard Cargo
Manifest request to the Port Authority.

These communications are accomplished using the Port Community System (PCS),
which provides the users a client application to launch the service rapidly and be able to
fulfil the requirements to send documentation electronically to the involved entities. The
port operator of the Port Authority who handles the current transaction with the Ship Agent
(through the PCS) uses also other web services to implement port activities (i.e., Customs
Clearance).

The Port Authority’s assets that are operating in the current scenario are the following:
A Web Application for the Standard Cargo Manifest request (A1) hosted on a Web

Server (A2) which is installed on the PCS Operating System (A3). Customs Clearance is
supported by another Web Service (A4) of the Port Authority which is also hosted on the
Web Server (A2). A Database Server (A5) stores the PCS data and is installed on the PCS
Operating System (A3). The Database Server (A5) exchanges information with the Standard
Cargo Manifest request Web Application (A1). When the Ship Agent sends the Standard
Cargo Manifest request, relevant data are stored on the Database Server (A5).

The Port Authority assets communicate with various port stakeholders (e.g., the Ship
Agent, Vessels, Customs, etc.).

Assuming that the Port Authority has activated the presented risk assessment process,
during the vulnerability assessment process, the proposed model is implemented to assess
vulnerabilities and estimate their exploitation. The steps of the proposed approach are
implemented consequently, utilizing tasks and rules presented in Table 2 and described in
the following.

5.1. Generation of Vulnerability Chains (Step 1)

In the current step, the Vulnerability Chains Discovery method is activated (step 1.1–step
1.5) to generate all possible vulnerability chains that are potential attack paths. To generate
vulnerability chains, the first and third steps of the Risk Assessment methodology must
be implemented (Asset Cartography and Modeling and the Vulnerability Assessment in
terms of generating vulnerability chains).

5.1.1. Identify Asset Dependency Graphs (Step 1.1)

According to the first step of the methodology, asset modeling is performed. The
engaged assets are presented in Table 3 along with their cyber-dependency types in asset
pairs (cf. Step 1.1, Section 4).

Table 3. Assets and their cyber-dependencies of the current business scenario.

Asset Source Asset Destination Cyber-Dependency Type

Asset Asset Category Asset Asset Category
1. Hosting; 2. Exchange Data/Information; 3. Storing;

4. Controlling; 5. Processing; 6. Accessing;
7. Installing; 8. Trusted; 9. Connecting

A1 Web Application A2 Web Server hosted_by
A2 Web Server A3 Operating System installed_on
A4 Web Service A2 Web Server hosted_by
A5 Database Server A3 Operating System installed_on
A1 Web Application A5 Database Server exchange_data

A visualization of the assets cyber-dependencies can be viewed in the developed asset
dependency graph of Figure 2.
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Figure 2. Assets cyber-dependency graph of Port Authority assets.

5.1.2. Define Entry Points (Step 1.2)−Define Target Points (Step 1.3)

According to the developed assets cyber-dependencies, CII operators of the Port
Authority define Asset Entry Points (Step 1.2) and Asset Target Points (Step 1.3) that are
considered critical to be examined.

5.1.3. Perform Individual Vulnerability Assessment (Step 1.4)

In the current scenario, thirteen vulnerabilities (confirmed and unconfirmed) are
detected among those assets as follows:

• three vulnerabilities (V1,V2,V3) are identified on asset A1,
• two vulnerabilities (V4,V5) are identified on asset A2,
• three vulnerabilities (V6,V7,V8) are identified on asset A3,
• three vulnerabilities (V9,V10,V11) are identified on asset A4, and
• two vulnerabilities (V12,V13) are identified on asset A5.

According to the CVSS 2.0 score metrics [50] (referred in Section 3), the thirteen
identified vulnerabilities (V1, V2, . . . , V13) along with their attributes are presented in the
following Table 4 with respect to the corresponding asset.

Then, the Individual Vulnerability Level (IVL) is estimated upon these asset/vulnerability
combinations, according to what has been described in the Vulnerability Assessment
corresponding step of the Risk Assessment methodology in Section 3.2. Moreover, taking
into account the Access Vector, Access Complexity, and Authentication policy vulnerability
attributes of Table 4 and the matrix of mapping the CVSS Exploitability to the IVL, displayed
in Table A1 of Appendix A, the IVL is estimated on a qualitative nature of a five-tier
nominal scale, which is reflected by the probability scale of Table A2 of Appendix A. For
each asset/vulnerability combination (illustrated in Figure 3), the IVL is calculated and
depicted in Figure 4, whereas it is enlisted in Table 5. For instance, the probability an
attacker successfully reaches and exploits the vulnerability V10 of asset A4 is “Very High”.
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Table 4. Vulnerabilities identified on assets and corresponding CVSS 2.0 metrics.

Vulnerability Asset

CVSS Exploitability CVSS Impact
Access Vector

(AV)
(Local (L),

Adjacent (A),
Network (N))

Access
Complexity

(AC)
(Low (L),

Moderate (M),
High (H))

Authentication
policy (Auth)
(Multiple (M),

Single (S),
None (N))

Confidentiality (C)
(Complete (C),

Partial (P),
None (N))

Integrity (I)
(Complete (C),

Partial (P),
None (N))

Availability (A)
(Complete (C),

Partial (P),
None (N))

V1 A1 N L S C C C
V2 A1 A M S P P N
V3 A1 N M N C C P
V4 A2 N M N N P N
V5 A2 N H N N P N
V6 A3 L L N C C C
V7 A3 N L N N N P
V8 A3 L M N C C C
V9 A4 N M N P P N
V10 A4 N L N P N N
V11 A4 N L N P P N
V12 A5 N M S C C C
V13 A5 N H N C C C

5.1.4. Produce Vulnerability Chains (Step 1.5)

At this point, considering the graph of Figure 4, a great number of possible sequential
vulnerability chains can be generated. For instance:

• the V1→ V5→ V6 vulnerability chain for A1,V1→ A2,V5→ A3,V6 asset/vulnerability
combinations,

• the V5 → V7 vulnerability chain for A2,V5 → A3,V7 sequence of asset/vulnerability
combinations,

• the V9 → V4 → V6, vulnerability chain for A4,V9 → A2,V4 → A3,V6 asset interdepen-
dency chain, etc. . . . .

Figure 3. Combinations of assets and vulnerabilities are developed for the current business scenario.
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Table 5. Estimation of the Individual Vulnerability Level (IVL) for each identified as-
set/vulnerability combination.

Vulnerability Asset Individual Vulnerability Level (IVL)

V1 A1 VLV1 = VH
V3 A1 VLV3 = VH
V4 A2 VLV4 = VH
V5 A2 VLV5 = H
V6 A3 VLV6 = M
V7 A3 VLV7 = VH
V8 A3 VLV8 = M
V9 A4 VLV9 = VH
V10 A4 VLV10 = VH
V11 A4 VLV11 = VH
V12 A5 VLV12 = H
V13 A5 VLV13 = H

5.1.5. Produce Vulnerability Chains (Step 1.5)

At this point, considering the graph of Figure 4, a great number of possible sequential
vulnerability chains can be generated. For instance:

• the V1→ V5→ V6 vulnerability chain for A1,V1→ A2,V5→ A3,V6 asset/vulnerability
combinations,

• the V5 → V7 vulnerability chain for A2,V5 → A3,V7 sequence of asset/vulnerability
combinations,

• the V9 → V4 → V6, vulnerability chain for A4,V9 → A2,V4 → A3,V6 asset interdepen-
dency chain, etc. . . . .
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According to the above and taking into account Tables 4 and A1, the IVL is calculated
as presented in Table 5.

The Vulnerability Chains Discovery algorithm of step 1 of the current approach,
presented in Section 4.2, is executed and all vulnerability chains are developed to illus-
trate potential attack paths. All generated vulnerability chains of the current scenario
are depicted in Figure 4 and the exhaustive list of these chains is shown in Table A5 of
Appendix A. Reviewing Table A5 of Appendix A, from 13 vulnerabilities that have been
identified, 84 vulnerability chains are generated, which can be potential attack paths in
case of being exploited by an adversary.

5.2. Recurring Process Activation (Step 2)
5.2.1. Points of Compromise (PoC) and Indicators of Compromise (IoCs) (Step 2.1)

Within this step, cyber threats are detected on the defined asset network and the
IoC is analyzed. In particular, in the current scenario, an unauthorized access to the
Database Server (asset A5) was detected from an analyzed log file. This log file took into
consideration the specific IoC, IoC1, that uncovered the threatening activity that evidenced
the compromization of the specific Database Server (A5) for which the specific PoC has
been identified.

This case enfolds a confirmed event of a cyber-attack. To discover and produce the
potential cyber-attack paths for the compromised asset A5, a simulated scenario will run
only for the assets that are cyber-dependent with the PCS Database Server (A5). In relation
to what has been described in the current scenario, all possible asset cyber-dependencies
related to the compromised asset A5 are written down and shown in Table 6. According to
Table 6, in the current scenario the PCS Database Server is cyber-dependent with the Stan-
dard Cargo Manifest Application (A1) and the Operating System (A3). Figure 5 delineates
all potential cyber-attack paths that link the compromised PCS Database Server (A5) with
the Standard Cargo Manifest Web Application (A1) and the PCS Operating System (A3)
concerning the specific identified IoC1. The A5,IoC1 combination symbolizes the PoC on
the PCS Database Server (A5).

Table 6. Assets cyber-dependencies linked to the detected compromised asset A5.

Asset Source Asset Destination Cyber-Dependency Type

Asset Asset Category Asset Asset Category
1. Hosting; 2. Exchange Data/Information; 3. Storing;

4. Controlling; 5. Processing; 6. Accessing; 7. Installing;
8. Trusted; 9. Connecting

A5 Database Server A3 Operating System installed_on
A1 Web Application A5 Database Server exchange_data

5.2.2. Reconstruction of Potential Attack Paths (Step 2.2)

The potential cyberattack paths are reconstructed according to the received evidence
of the compromised PCS Database Server (A5). In particular, all redeveloped attack paths,
related to the PoC1, where PoC1 = A5,IoC1, are presented in Figure 5 and listed in Table 7.
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Figure 5. Potential cyber-attack paths related to the compromised PCS Database Server (A5) given
the specific PoC1 derived from the analyzed IoC1.

Table 7. Attack paths are reconstructed according to the confirmed security event and potential
evidence chains.

Asset Interdependency Chains Attack Paths Evidence Chains

A1,V1 → A5,V12 →A3,V6
A1,V1 → A5,IoC1 → A3,V6 V1 → IoC1 → V6

A1,V1 → A5,V13 →A3,V6

A1,V1 → A5,V12 → A3,V7
A1,V1 → A5,IoC1 → A3,V7 V1 → IoC1 → V7

A1,V1 → A5,V13 → A3,V7

A1,V1 → A5,V12 → A3,V8
A1,V1 → A5,IoC1 → A3,V8 V1 → IoC1 → V8

A1,V1 → A5,V13 → A3,V8

A1,V1 → A5,V12
A1,V1 → A5,IoC1 V1 → IoC1

A1,V1 → A5,V13

A1,V2 → A5,V12 → A3,V6
A1,V2 → A5,IoC1 → A3,V6 V2 → IoC1 → V6

A1,V2 → A5,V13 → A3,V6

A1,V2 → A5,V12 → A3,V7
A1,V2 → A5,IoC1 → A3,V7 V2 → IoC1 → V7

A1,V2 → A5,V13 → A3,V7

A1,V2 → A5,V12 → A3,V8
A1,V2 → A5,IoC1 → A3,V8 V2 → IoC1 → V8

A1,V2 → A5,V13 → A3,V8

A1,V2 → A5,V12
A1,V2 → A5,IoC1 V2 → IoC1

A1,V2 → A5,V13

A5,V12 → A3,V6
A5,IoC1 → A3,V6 IoC1 → V6

A5,V13 → A3,V6
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Table 7. Cont.

Asset Interdependency Chains Attack Paths Evidence Chains

A5,V12 → A3,V7
A5,IoC1 → A3,V7 IoC1 → V7

A5,V13 → A3,V7

A5,V12 → A3,V8
A5,IoC1 → A3,V8 IoC1 → V8

A5,V13 → A3,V8

A1,V3 → A5,V12
A1,V3 → A5,IoC1 V3 → IoC1

A1,V3 → A5,V13

A1,V3 → A5,V12 → A3,V6
A1,V3 → A5,IoC1 → A3,V6 V3 → IoC1 → V6

A1,V3 → A5,V13 → A3,V6

A1,V3 → A5,V12 → A3,V7
A1,V3 → A5,IoC1 → A3,V7 V3 → IoC1 → V7

A1,V3 → A5,V13 → A3,V7

A1,V3 → A5,V12 →A3,V8
A1,V3 → A5,IoC1 → A3,V8 V3 → IoC1 → V8

A1,V3 → A5,V13 →A3,V8

The Asset Interdependency Chains shown in Table 7 are considered asset/vulnerability
combinations that involve the compromised PCS Database Server (A5) according to the
evidence found from IoC. If we compare the results of Table A5, Appendix A, retrieved
from Step 1.5 and the results of Table 7 derived from Step 2.2, we notice that the previously
84 developed Asset Interdependency Chains are now limited to 30. On this account, the
84 potential attack paths, identified in Table A5, Appendix A of Step 1.5 (Section 5.1), have
been redeveloped to 15 potential attack paths and displayed in Table 7. This means that
70 attack paths are now left considering the results of Table A5, Appendix A, some of which
were erased as they were not related with the infected PCS Database Server (A5) and some
others were shrunken/merged because the likelihood of exploitation of all vulnerabilities
that reside in the infected asset is 1: probability PIOC = 1 as the asset has already been
compromised.

Hence, the two potential attack paths
A1,V1 → A5,V12 →A3,V6 and
A1,V1 → A5,V13 →A3,V6
that would have been constructed from the 2 different vulnerabilities V12, V13 are now

shrunk into one attack path: A1,V1 → A5,IoC1 →A3,V6
In addition, all potential attack paths associated with IoC1 are generated and displayed

in Table 7.

5.2.3. Attacker’s Profile Identification (Step 2.3)

In the current step, the attacker’s profile is recognized based on his/her location and
capability. Considering the location, it is assumed that the attacker is an outsider and can
initiate an attack on the described assets only remotely through the Web. On this account, a
graph of assets/vulnerabilities combinations is developed in Figure 3, engaging asset entry
points from vulnerabilities that have the access vector “Network”.

To compute the EL, the IVL already calculated on each asset/vulnerability combina-
tions must be taken into account in combination with the attacker’s profile. In particular,
the EL is identified from the “Likelihood of Exploitation” matrix, shown in Table A4 of
Appendix A, which maps the IVL with the attacker’s capability, utilizing the nominal scale
mentioned previously. Following the Vulnerability Chains Discovery method presented in
Section 4.2, asset entry points, asset target points, and attacker’s profile are identified.

According to what has been described, the EL is defined for each identified asset
combination, shown in Table 8.
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Table 8. Estimation of the Exploitation Level (EL) for each identified asset/vulnerability combination.

Vulnerability Asset Exploitation Level (EL)
(Attacker’s Capability = Low)

V1 A1 ELV1 = H
V3 A1 ELV3 = H
V4 A2 ELV4 = H
V5 A2 ELV5 = M
V6 A3 ELV6 = L
V7 A3 ELV7 = VH
V8 A3 ELV8 = L
V9 A4 ELV9 = H
V10 A4 ELV10 = H
V11 A4 ELV11 = H
V12 A5 ELV12 = M
V13 A5 ELV13 = M

To estimate the exploitability for each reconstructed attack path, different attackers’
profiles are taken into account following Table A3 of the Appendix A. To estimate the
EL per vulnerability, with respect to the analyzed IoC1, only vulnerabilities of the assets
interconnected with the IoC1, namely, vulnerabilities of the Web Application and Oper-
ating System assets, are considered. Considering that the adversary is identified in the
broader network, asset/vulnerability combinations starting from V2 of A1, V6 of A3 and
V8 of A3 are excluded in the current scenario as their access vector from the CVSS 2.0 is
“Adjacent Network” and “Local”, respectively (combination V7 of A3 is also assumed to
be excluded). In relation to the IVL and attacker’s capability mapping to provide the EL,
reflected in Table 9, the specific IVL mapping of V1, V3 vulnerabilities of A1 and V6, V7,
and V8 vulnerabilities of asset A3 with each attacker’s capability respectively shown in
Table 8. Supposing the attacker’s capability is “Low”, the Attacker’s Exploitability Level is
calculated from the appropriate column of Table 9.

Table 9. Likelihood of exploitation estimation towards addressed vulnerabilities of the current
threat scenario.

Vulnerability Asset
Individual

Vulnerability
Level (IVL)

Attacker’s Exploitability Level

Attacker’s
Capability =

Very Low
(VL)

Attacker’s
Capability =

Low (L)

Attacker’s
Capability =

Moderate
(M)

Attacker’s
Capability =

High (H)

Attacker’s
Capability =
Very High

(VH)

V1 A1 VLV1 = VH M H H VH VH

V3 A1 VLV3 = VH M H H VH VH

V6 A3 VLV6 = M L L M H H

V7 A3 VLV7 = VH M H H VH VH

V8 A3 VLV8 = M L L M H H

Considering the ELs calculations of Table 8, the ELC is estimated. To compute the
probability of attack path exploitation and given that IoC1 indicates the compromization of
A5, IoC1 has exploitation probability equal to 1. In Table 10, the exploitation probability
is calculated in quantitative values and then according to Table A2 of Appendix A. These
values are converted to qualitative values to estimate the Attack Path Exploitability Level
(APEL) defined in Section 4. This is depicted in the following Table 10, in which the attacker
is characterized with “Low” (L) capability.
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Table 10. The likelihood of the attack path exploitation and the Attack Path Exploitability Level
(APEL) are estimated given the IoC1.

Attack Paths Evidence Chains

Exploitation Level
Chain (ELC)
Attacker’s

Capability = Low (L)

Exploitation
Probability

Attack Path
Exploitability
Level (APEL)

A1,V1 → A5,IoC1 → A3,V6 V1 → IoC1 → V6 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V1 → A5,IoC1 → A3,V7 V1 → IoC1 → V7 H→ IoC1 → H 0.75 × 1 × 0.75 = 0.56 M

A1,V1 → A5,IoC1 → A3,V8 V1 → IoC1 → V8 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V1 → A5,IoC1 V1 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H

A5,IoC1 → A3,V6 IoC1 → V6 IoC1 → L 1 × 0.25 = 0.25 L

A5,IoC1 → A3,V7 IoC1 → V7 IoC1 → H 1 × 0.75 = 0.75 H

A5,IoC1 → A3,V8 IoC1 → V8 IoC1 → L 1 × 0.25 = 0.25 L

A1,V3 → A5,IoC1 V3 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H

A1,V3 → A5,IoC1 → A3,V6 V3 → IoC1 → V6 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V3 → A5,IoC1 → A3,V7 V3 → IoC1 → V7 H→ IoC1 → H 0.75 × 1 × 0.75 = 0.56 M

A1,V3 → A5,IoC1 → A3,V8 V3 → IoC1 → V8 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

As a result, from 15 attack paths, only 11 attack paths remained.

5.2.4. Prioritization of Potential Attack Paths (Step 2.4)

Within this step, the 11 remaining attack paths are prioritized regarding their APEL
with the worst case scenario, namely, from the highest probability to the lowest to occur as
depicted in Table A6 of Appendix A.

5.2.5. Pruning Process Activation (Step 2.5)

As regards the received information from the IoC analysis, the estimation of the APEL
and the attacker’s expertise is reconsidered according to his/her capability, namely, the
level of his/her expertise towards the APEL of the addressed vulnerabilities. According to
the attacker’s exploitation capacity presented in Table 1, in case the attacker’s capability is
“Low” (L), the adversary is capable of implementing an attack path that has either “High”
(H) or “Very High” (VH) level of attack path exploitability.

In this context, a pruning process is applied to keep the meaningful attack paths
according to the defined attacker’s capability with APEL = H and APEL = VH and thereby
set credible evidence chains. Eventually, in Table 11, all possible attack paths that address
the current predefined scenario are illustrated, which have generated Evidence Chains of
vulnerabilities between the assets A1, A5, and A3. Eventually, from the 11 attack paths of
the previous step, only three attack paths and the respective evidence chains remain.

Table 11. Attack paths that satisfy the current predefined threat scenario and the generated Evidence
Chains are illustrated.

Attack Paths Evidence Chain
Exploitation Level Chains (ELC) Exploitation

Probability
Attack Path

Exploitability
Level (APEL)Attacker’s Capability = Low (L)

A1,V1 → A5,IoC1 V1 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H

A5,IoC1 → A3,V7 IoC1→ V7 IoC1 → H 1 × 0.75 = 0.75 H

A1,V3 → A5,IoC1 V3 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H
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Figure 6 reflects the final results from the application of the proposed approach to the
current threat scenario of the Cargo Transportation Service. Three Evidence Chains are
generated colored in green, blue, and orange in Figure 6 to show how the attacker could
have moved inside the network:

• Option a: The attacker used the Standard Cargo Manifest Web Application as an entry
point to reach the PCS Database Server by exploiting either the vulnerability V1 or V2
of the asset.

• Option b: The attacker used the PCS Database Server as an entry point to reach the
PCS Operating System by exploiting the vulnerability V7 to enter the targeted asset.

Figure 6. The application of the proposed approach to the General Cargo Transportation scenario
generated three Evidence Chains for the PCS Database Server compromization.

The three results have the same APEL which means that they have equal possibility
of occurring. To this end, we run the proposed algorithm to identify the attack’s course
and gather information about the attacker’s malicious behavior which was successfully
accomplished.

6. Results and Discussion

The research work presented proposes a hybrid approach which combines vulnera-
bility analysis with incident analysis practices to explore an attack’s technical aspects and
simulate how the adversary moved inside an organization’s network to launch an attack
and reach a target. The proposed model developed an algorithm which can be utilized by
CII operators to assess vulnerabilities and develop evidence chains of an attack considering
information gained from artifacts analysis, e.g., IoC, and from other various sources. To
achieve this, the current work:

• measures the exploitability of a vulnerability to a given asset, the exploitability of a
vulnerability in a given vulnerability chain, and the exploitability probability of an
attack path;
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• investigates the attacker’s location in the network to identify if an attacker has the abil-
ity to reach and exploit a vulnerability on an asset using incident-related information;

• estimates the attacker’s ability to perform an attack based on his/her expertise, avail-
able resources, and opportunities;

• identifies the attacker’s exploitation capacity on attack paths;
• analyzes IoCs, other artifacts, and data to gather security knowledge;
• promotes IoC analysis;
• reconstructs attack paths and erases those that are not related to the detected security

event through a recurring process;
• prioritizes attack paths to reveal the worst-case scenario;
• following the identified attacker’s exploitation capacity, activates a pruning process to

erase all irrelevant attack paths that do not match to the IoC; and
• generates Evidence Chains on a given event.

The proposed model aimed at addressing the open research problem concerning the
strong need to develop risk assessment techniques that focus the analysis on exploring
cyber-attack features (e.g., cyber-attack course, adversary’s profile, etc.) in order to detect
threats and estimate risks on CIIs. In particular, the contribution of this work relies on the
analysis of the technical aspects of attacks when performing a risk assessment process to
gain new security knowledge that allows CII operators to have a more concrete understand-
ing of the security posture. In this vein, they can improve the decision making and incident
handling procedures. Moreover, the model generates evidence chains by constructing
attack paths related to specific detected security events. Considering all received incident-
related information, the Attack Simulation and Evidence Chains Generation model will
estimate the cascading effects of various cyber-attack patterns and security incidents of the
CIIs. It utilizes novel processes of near real-time identification of anomalies, threats and
attacks, abnormal behaviors, and malicious activity that stresses the structural pattern.

The current approach has been developed within the context of the EU H2020 research
project “CyberSANE”. Close future action plans include the demonstration of the proposed
Attack Simulation Evidence Chains generation model to pilot end-users who reside in
three large-scale industries (healthcare, energy, maritime transport) and its results will be
evaluated under the scope of varied realistic threat scenarios on CIIs of these industry
sectors engaging different technical characteristics in the context of three pilot events.

7. Conclusions

Over the last years, aggressors have highly evolved their skills conducting multiple
and sophisticated attacks across ICT networks compromising interconnected nodes as a
stepping stone either to penetrate into the system as deeply as possible and cause serious
damage or reach a specific target to serve malevolent goals. In this vein, risk management
techniques have increased their focus on exploring cyber-attack features, such as the
cyber-attack’s course, the adversary’s profile, the cyber-attack potential, attacker’s location
through the network, etc., to detect threats and estimate risks on CIIs.

The current research work presented an Attack Simulation Evidence Chains Genera-
tion approach which analyzes artifacts (e.g., IoC) as digital evidence of cyber-attack and
upon the captured information estimates all possible attack paths that could link to specific
confirmed security events. Following a sequential algorithmic procedure, once a security
unwanted event has been detected, incident-related information is deeply analyzed. The
proposed approach implements a simulation environment, where security practitioners can
further experiment on detected threat cases and share their knowledge in a collaborative
manner. To better demonstrate the current approach and validate the applicability of the
proposed model, a real-life scenario was deployed and fruitful results were gathered.
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Appendix A

Table A1. Mapping CVSS 2.0 Exploitability Metrics identified the Individual Vulnerability
Level (IVL).

Auth

ACAV Local Adjacent Network

High (H) Moderate
(M) Low (L) High (H) Moderate

(M) Low (L) High (H) Moderate
(M) Low (L)

Multiple VL VL L L L M M M H

Single VL L M L M H M H VH

None L M M M H H H VH VH

Table A2. The Probability Scale of the Risk Assessment methodology indicating qualitative and
quantitative ranges and values.

Probability Scale

Qualitative Values
Representative

Range Number

Very High (VH) 0.85–1.00 0.93
High (H) 0.65–0.84 0.75

Moderate (M) 0.35–0.64 0.50
Low (L) 0.15–0.34 0.25

Very Low (VL) 0.00–0.14 0.07
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Table A3. Attacker’s capability is ranked using the Probability Scale of the Risk Assessment methodology.

Assessment Scale of Attacker’s Capability
Qualitative Values Semi-Quantitative Values Description

Very High(VH) 85–100 93

The adversary has a very sophisticated
level of expertise, is well-resourced, and
can generate opportunities to support
multiple successful, continuous, and

coordinated attacks.

High(H) 65–84 75

The adversary has a sophisticated level
of expertise, with significant resources
and opportunities to support multiple

successful coordinated attacks.

Moderate(M) 35–64 50
The adversary has moderate resources,
expertise, and opportunities to support

multiple successful attacks.

Low(L) 15–34 25
The adversary has limited resources,

expertise, and opportunities to support
a successful attack.

Very Low(VL) 0–14 7
The adversary has very limited

resources, expertise, and opportunities
to support a successful attack.

Table A4. The likelihood of an attacker successfully exploiting a specific vulnerability identified
on an asset, considering the attacker’s capability and the corresponding Individual Vulnerability
Level (IVL).

Individual Vulnerability Level (IVL)

Attacker’s Capability
Very Low

(VL)
Low
(L)

Moderate
(M)

High
(H)

Very High
(VH)

Very Low (VL) VL VL L L M
Low (L) VL L L M H

Moderate (M) L L M H H
High (H) L M H H VH

Very High (VH) M H H VH VH

Table A5. Depiction of all existing vulnerability chains of all cyber-dependent assets of the scenario
presented in Section 5.

Entry Point Target Point Asset Interdependency Chains Vulnerability Chains

A1,V1

A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A5,V12
A5,V13
A3,V6
A3,V7
A3,V8
A3,V6
A3,V8
A2,V4
A2,V5
A3,V7

A1,V1 → A5,V12 → A3,V6
A1,V1 → A5,V13 → A3,V8
A1,V1 → A5,V12 → A3,V7
A1,V1 → A5,V13 → A3,V7
A1,V1 → A5,V12 → A3,V8
A1,V1 → A5,V13 → A3,V8

A1,V1 → A5,V12
A1,V1 → A5,V13

A1,V1 → A2,V4 → A3,V6
A1,V1 → A2,V4 → A3,V7
A1,V1 → A2,V4 → A3,V8
A1,V1 → A2,V5 → A3,V6
A1,V1 → A2,V5 → A3,V8

A1,V1 → A2,V4
A1,V1 → A2,V5

A1,V1 → A2,V5 → A3,V7

V1 → V12 → V6
V1 → V13 → V6
V1 → V12 → V7
V1 → V13 → V7
V1 → V12 → V8
V1 → V13 → V8

V1 → V12
V1 → V13

V1 → V4 → V6
V1 → V4 → V7
V1 → V4 → V8
V1 → V5 → V6
V1 → V5 → V8

V1 → V4
V1 → V5

V1 → V5 → V7
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Table A5. Cont.

Entry Point Target Point Asset Interdependency Chains Vulnerability Chains

A1,V2

A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A5,V12
A5,V13
A3,V6
A3,V7
A3,V8
A3,V6
A3,V7
A3,V8
A2,V4
A2,V5

A1,V2 → A5,V12 → A3,V6
A1,V2 → A5,V13 → A3,V6
A1,V2 → A5,V12 → A3,V7
A1,V2 → A5,V13 → A3,V7
A1,V2 → A5,V12 → A3,V8
A1,V2 → A5,V13 → A3,V8

A1,V2 → A5,V12
A1,V2 → A5,V13

A1,V2 → A2,V4 → A3,V6
A1,V2 → A2,V4 → A3,V7
A1,V2 → A2,V4 → A3,V8
A1,V2 → A2,V5 → A3,V6
A1,V2 → A2,V5 → A3,V7
A1,V2 → A2,V5 → A3,V8

A1,V2 → A2,V4
A1,V2 → A2,V5

V2 → V12 → V6
V2 → V13 → V6
V2 → V12 → V7
V2 → V13 → V7
V2 → V12 → V8
V2 → V13 → V8

V2 → V12
V2 → V13

V2 → V4 → V6
V2 → V4 → V7
V2 → V4 → V8
V2 → V5 → V6
V2 → V5 → V7
V2 → V5 → V8

V2 → V4
V2 → V5

A1,V3

A3,V7
A3,V8
A3,V6
A3,V6
A3,V7
A3,V8
A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A2,V4
A2,V5
A5,V12
A5,V13

A1,V3 → A5,V12 → A3,V7
A1,V3 → A5,V12 → A3,V8
A1,V3 → A5,V12 → A3,V6
A1,V3 → A5,V13 → A3,V6
A1,V3 → A5,V13 → A3,V7
A1,V3 → A5,V13 → A3,V8
A1,V3 → A2,V4 → A3,V6
A1,V3 → A2,V5 → A3,V6
A1,V3 → A2,V4 → A3,V7
A1,V3 → A2,V5 → A3,V7
A1,V3 → A2,V4 → A3,V8
A1,V3 → A2,V4 → A3,V8

A1,V3 → A2,V4
A1,V3 → A2,V5
A1,V3 → A5,V12
A1,V3 → A5,V13

V3 → V12 → V7
V3 → V12 → V8
V3 → V12 → V6
V3 → V13 → V6
V3 → V13 → V7
V3 → V13 → V8
V3 → V4 → V6
V3 → V5 → V6
V3 → V4 → V7
V3 → V5 → V7
V3 → V4 → V8
V3 → V5 → V8

V3 → V4
V3 → V5
V3 → V12
V3 → V13

A2,V4

A3,V6
A3,V7
A3,V8

A2,V4 → A3,V6
A2,V4 → A3,V7
A2,V4 → A3,V8

V4 → V6
V4 → V7
V4 → V8

A2,V5

A3,V6
A3,V7
A3,V8

A2,V5 → A3,V6
A2,V5 → A3,V7
A2,V5 → A3,V8

V5 → V6
V5 → V7
V5 → V8

A4,V9

A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A2,V4
A2,V5

A4,V9 → A2,V4 →A3,V6
A4,V9 → A2,V5 →A3,V6
A4,V9 → A2,V4 →A3,V7
A4,V9 → A2,V5 →A3,V7
A4,V9 → A2,V4 →A3,V8
A4,V9 → A2,V5 →A3,V8

A4,V9 → A2,V4
A4,V9 → A2,V5

V9 → V4 →V6
V9 → V5 →V6
V9 → V4 →V7
V9 → V5 →V7
V9 → V4 →V8
V9 → V5 →V8

V9 → V4
V9 → V5

A5,V12

A3,V6
A3,V7
A3,V8

A5,V12 → A3,V6
A5,V12 → A3,V7
A5,V12 → A3,V8

V12 → V6
V12 → V7
V12 → V8

A5,V13

A3,V6
A3,V7
A3,V8

A5,V13 → A3,V6
A5,V13 → A3,V7
A5,V13 → A3,V8

V13 → V6
V13 → V7
V13 → V8
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Table A5. Cont.

Entry Point Target Point Asset Interdependency Chains Vulnerability Chains

A4,V10

A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A2,V4
A2,V5

A4,V10 → A2,V4 → A3,V6
A4,V10 → A2,V5 → A3,V6
A4,V10 → A2,V4 → A3,V7
A4,V10 → A2,V5 → A3,V7
A4,V10 → A2,V4 → A3,V8
A4,V10 → A2,V5 → A3,V8

A4,V10 → A2,V4
A4,V10 → A2,V5

V10 → V4 →V6
V10 → V5 →V6
V10 → V4 →V7
V10 → V5 →V7
V10 → V4 →V8
V10 → V5 →V8

V10 → V4
V10 → V5

A4,V11

A3,V6
A3,V6
A3,V7
A3,V7
A3,V8
A3,V8
A2,V4
A2,V5

A4,V11 → A2,V4 →A3,V6
A4,V11 → A2,V5 →A3,V6
A4,V11 → A2,V4 →A3,V7
A4,V11 → A2,V5 →A3,V7
A4,V11 → A2,V4 →A3,V8
A4,V11 → A2,V5 →A3,V8

A4,V11 → A2,V4
A4,V11 → A2,V5

V11 → V4 → V6
V11 → V5 → V6
V11 → V4 → V7

V11 → V5 → V7V11 → V4 → V8
V11 → V5 → V8

V11 → V4
V11 → V5

Table A6. Attack Path Prioritization from highest to lowest probability of occurrence is depicted.

Attack Paths Evidence Chains

Exploitation Level
Chains (ELC) Exploitation

Probability

Attack Path
Exploitability
Level (APEL)Attacker’s Capability

= Low (L)

A1,V1 → A5,IoC1 V1 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H

A5,IoC1 → A3,V7 IoC1 → V7 IoC1 → H 1 × 0.75 = 0.75 H

A1,V3 → A5,IoC1 V3 → IoC1 H→ IoC1 0.75 × 1 = 0.75 H

A1,V1 → A5,IoC1 → A3,V7 V1 → IoC1 → V7 H→ IoC1 → H 0.75 × 1 × 0.75 = 0.56 M

A1,V3 → A5,IoC1 → A3,V7 V3 → IoC1 → V7 H→ IoC1 → H 0.75 × 1 × 0.75 = 0.56 M

A5,IoC1 → A3,V6 IoC1 → V6 IoC1 → L 1 × 0.25 = 0.25 L

A5,IoC1 → A3,V8 IoC1 → V8 IoC1 → L 1 × 0.25 = 0.25 L

A1,V1 → A5,IoC1 → A3,V6 V1 → IoC1 → V6 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V1 → A5,IoC1 → A3,V8 V1 → IoC1 → V8 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V3 → A5,IoC1 → A3,V6 V3 → IoC1 → V6 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

A1,V3 → A5,IoC1 → A3,V8 V3 → IoC1 → V8 H→ IoC1 → L 0.75 × 1 × 0.25 = 0.19 L

Appendix B

Table A7. List of acronyms.

Abbreviation Definition

APEL Attack Path Exploitability Level
APT Advanced Persistent Threat
AV Access Vector
BD Block Diagram
CI Critical Infrastructure
CII Critical Information Infrastructure

CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
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Table A7. Cont.

Abbreviation Definition

EC European Commission
ECI European Critical Infrastructure
EL Exploitation Level

ELC Exploitation Level Chain
EU European Union
FT Fault Tree

GDPR General Data Protection Regulation
HIDS Host-based Intrusion Detection System
ICT Information Communication Technologies
ICS Industrial Control System

ICVL Individual Chain Vulnerability Level
IDS Intrusion Detection System
IoC Indicator of Compromise
IoT Internet of Things
IVL Individual Vulnerability Level
KM Knowledge Management

KRM Knowledge Risk Management
ML Machine Learning

NIDS Network-based Intrusion Detection System
NLP Natural Language Processing
PCS Port Community System
PoC Point of Compromise

SCADA Supervisory Control and Data Acquisition
TVA Topological Analysis of Network Attack Vulnerability

Table A8. List of mathematical symbols.

Mathematical Symbol Symbol Name Meaning/Definition

An Asset The cyber asset “n” of an organization.
s Threat A single cyber threat “s” that is applied to the cyber asset An

Ts A set of cyber threats All cyber threats, “s”, which are applied to the cyber asset “An”

TLs Threat Level The Threat Level “TLs” of a cyber threat, “s”, is the expected probability of
occurrence of the threat scenario under examination to the cyber asset “An”

v Vulnerability A vulnerability “v” (confirmed or zero-day) that is identified to an asset An.

VLv
Individual

Vulnerability Level

The probability that an attacker can successfully reach and exploit a specific
(confirmed or zero-day) vulnerability “v” in a given cyber asset “An”

produces the Individual Vulnerability Level (IVL).

Iv Impact Level It measures the effect that can be expected as a result of the successful
exploitation of a vulnerability “v” that resides in asset “An”.

Rs Risk Level “Rs” represents how dangerous all threats, s, are to the specific asset An.

ICVL Individual Chain
Vulnerability Level

The Individual Chain Vulnerability Level (ICVL) measures the probability
that a vulnerability “z” which resides in an Asset Target Point An, can be
exploited given the specific kth-Vulnerability Chain C originated from an

Asset Entry Point “Am” with vulnerability “v”.
ELv Exploitation Level The Exploitation Level of an identified vulnerability “v” on an asset “An”.

ELC Exploitation Level
Chain

The multiplication of a set of individual vulnerabilities Exploitation Levels
“EL” which apply on specific asset/vulnerability combinations related to an

IoC. Alternatively, ELCs are considered a sequence of exploitation levels
“ELv” of individual vulnerabilities “v” on specific asset/vulnerabilities

combinations, related to an IoC.

P Exploitability
Probability

The likelihood of exploitation of a specific attack path which is related to a
specific IoC, with exploitability probability equal to 1 (PIoC = 1)—as it

indicates compromization. The outcome is a quantitative value.
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Table A8. Cont.

Mathematical Symbol Symbol Name Meaning/Definition

APEL Attack Path
Exploitability Level

It illustrates in a qualitative scale the level of exploitation for a given attack
path towards a specific confirmed event with a specific IoC.

AnVv
Asset/Vulnerability

combination

An asset/vulnerability combination, indicating a vulnerability “v” is
identified on a cyber asset “n”. In the current model, it is used to develop

asset interdependency chains and asset interdependency graphs.
EC Evidence Chain A sequence of exploitable vulnerabilities related to IoC.
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