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Abstract: Photovoltaic module parameter estimation is a critical step in observing, analyzing, and
optimizing the efficiency of solar power systems. To find the best value for unknown parameters,
an efficient optimization strategy is required. This paper presents the implementation of the sooty
tern optimization (STO) algorithm for parameter assessment of a solar cell/module. The simulation
findings were compared to four pre-existing optimization algorithms: sine cosine (SCA) algorithm,
gravitational search algorithm (GSA), hybrid particle swarm optimization and gravitational search
algorithm (PSOGSA), and whale optimization (WOA). The convergence rate and root mean square
error evaluations show that the STO method surpasses the other studied optimization techniques.
Additionally, the statistical results show that the STO method is superior in average resilience and
accuracy. The superior performance and reliability of the STO method are further validated by the
Friedman ranking test.

Keywords: parameter identification; sooty tern optimization; energy harvesting; arithmetic optimization

1. Introduction

Recently, clean energy usage has increased significantly as demand for all other fuels
declined because of environmental concerns. As a result„ the scientific community made
substantial efforts to harvest energy from different ambient sources [1–5]. Solar energy
harvesting has become the most ideal option since it surpasses all traditional nonrenewable
and renewable resources [6]. As a result, the worldwide solar electricity sector is expanding
significantly, with a current value of more than $10 billion each year [6–8].

Solar energy is converted into electrical energy by employing photovoltaic (PV) pan-
els [9]. Numerous PV panels are linked together in serial and/or parallel arrangements to
create bulky solar energy plants equipped with maximum power point tracking (MPPT)
systems to increase power generation. The primary goal of MPPT systems is to regulate the
parameters of the PV system to generate optimum power [9]. The rapid deviation of electri-
cal energy production is a well-known property of solar plants [9]. Many solar facilities
are linked to local grids, and their operation at the same time as the grids causes voltage
instability in distribution lines [10]. Hence, stable and maximized power generation from
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solar plants is an essential requirement of the green energy movement. To obtain maximum
power density, both theoretical and experimental studies were performed to optimize the
parameters of PV panels [4,11–13]. Single, double, and triple diode models of PV cells are
widely employed to identify the current-voltage parameters [14–16]. These parameters are
helpful for determining the accuracy and steadiness of the models. However, parameter
assessment is not an easy task because of unbalanced operational cases such as faults and
ageing. In most cases, the single diode model is employed because of ease and acceptance.
On the other hand, the double diode model is anticipated to be more than the three-diode
model accurate in case of lower solar irradiance.

Different types of algorithms were proposed and studied to get more accurate and
precise parameters from nonlinear implicit equations with high accuracy [17–33]. The
merits and demerits of these algorithms are categorized because of the trade-off between
exploration and exploitation capabilities [17]. Some became caught in local optima solu-
tions because of a lack of exploration capabilities for finding an optimal solution in the
search space. Heuristic and deterministic are the two main groups of algorithms. Heuristic
algorithms contain particle swarm optimization (PSO) [18], cuckoo search algorithm [19],
harmony search [20], cat swarm optimization (CSO) [21], differential evolution (DE) [22],
artificial bee colony [23], chaos CPSO [24], simulated annealing [25], biogeography-based
optimization algorithm with mutation strategies [26], genetic algorithms [27], improved
adaptive differential evolution [28], pattern search [29], generalized opposition-based
teaching-learning-based optimization [30], and Nelder–Mead modified PSO [31]. The
Lambert W-functions [32], least squares [33], iterative curve-fitting methods [34], conduc-
tivity method [35], Levenberg–Marquardt algorithm [36], Newton–Raphson, and nonlinear
least square are categorized as deterministic algorithms. The applicability of deterministic
algorithms is restricted because of continuity, differentiability, and convexity related to
objective functions. These algorithms are likewise sensitive to the starting solution and
settle at local optima in most cases. Because they do not include difficult mathematics,
biorelated algorithms are more realistic and robust optimization methods for simplifying
complex transcendental equations.

The sooty tern optimization (STO) algorithm mimics the attack and migration behavior
of sooty terns (birds of tropical oceans). This algorithm provides a good balance between
exploration and exploitation strategy and thus reaches optimal solution without getting
trapped in a local solution. These benefits allow researchers to apply the STO for parameter
extraction of a solar module. The key purposes of this research investigation are as follows:

• To first present the experimental results that verify the performance of the STO in
handling the parameter extraction problem of the solar module.

• To use two test cases—R.T.C France solar cell and SS2018P polycrystalline PV module—
to evaluate the effectiveness of the STO and compare it with other metaheuristic
algorithms.

• To use the experimental results to comprehensively confirm that STO is competitive
compared to other existing methods in literature.

This study utilizes the STO algorithm for the parameter assessment of PV cells/modules.
Initially, the mathematical model for PV cell/module and problem formulation is discussed.
At the second stage, the STO algorithm is briefly introduced and used to assess the optimal
magnitude of undetermined parameters. Next, the output results are examined with a
measured dataset, and the algorithm is compared to pre-existing metaheuristic algorithms.
Section 5 contains the discussion and conclusion of manuscript.
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2. Problem Formulation and Methodology
2.1. Mathematical Modeling of Solar Panels

Figure 1 depicts the PV panel’s comparable circuit model. At the output terminal, the
correlation between voltage (Vl) and current (Il) is expressed as:

Il = Ip − Isd

[
exp

(
q
(
Vl/Ns + Rs Il/Np

)
a kBT

)
− 1

]
−

Vl/Ns + Rs Il/Np

Rsh
(1)

where Np and Ns denote the count of solar cells interconnected in parallel and series
combinations. The kB is the Boltzmann constant (1.3806 × 10−23 m2kgK−1s−2), T is the
cell/module temperature, q is elementary charge, Ip is photovoltaic current, Isd is diode
saturation current, Rs series resistance, Rsh shunt resistance, and a is the module quality
factor. Only five parameters (Ip, Isd, a, Rs, Rsh) are required to calculate the minimum value
of root mean square error (RMSE).
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Figure 1. PV panel module equivalent circuit.

2.2. Objective Function

The main objective of the presented study is to lessen the variance among experimen-
tal and estimated data by optimizing unknown parameters for the single-diode model.
Unknown parameters (Ip, Isd, a, Rs, Rsh) are employed as decision variables during the
optimization process. The accumulative squared variation between calculated and ob-
served data is applied as an objective function. The error objective function is denoted as
follows [37,38]:

RMSE =

√√√√1
k

k

∑
N=1

f (Vl , Il , X)2 (2)

where Vl and Il denote the observed value of voltage and current of the PV module. The
range of experimental datasets is specified by the parameter ‘k’ and the algorithm’s best
answer is indicated by a vector X. In the case of the PV panel module: fsingle(Vl , Il , X) = Ip − Isd

[
exp

(
q
( Vl

Ns +
Rs Il
Np

)
a1kBT

)
− 1

]
−

Vl
Ns +

Rs Il
Np

Rsh
− Il

Np(
X = Ip, Isd, a, Rs, Rsh

)
 (3)

3. Sooty Tern Optimization

The sooty tern optimization (STO) algorithm was proposed in 2019 [39,40]. The
algorithm is inspired by the attacking behavior of sooty tern birds. Generally, sooty terns
live in groups. They employ their intelligence to locate and attack a target. The most
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notable characteristics of sooty terns are their migrating and assaulting behaviors. The
following provide insights into sooty tern birds:

• Sooty terns travel in groups during migration. To avoid collisions, the initial positions
of sooty terns are different.

• In a group, sooty terns with low fitness levels can nevertheless travel the same distance
that the fittest among them can.

• Sooty terns with low fitness can upgrade their preliminary locations on the basis of
the fittest sooty tern.

3.1. Migration Behavior

A sooty tern must meet three requirements during a migration:
Collision avoidance: SA is used to compute a new search agent location to avoid

collisions with its neighborhood search agents (i.e., sooty terns).

→
Cst = sA·

→
P st(z) (4)

where
→
Cst denotes the position of a sooty tern that does not collide with other terns.

→
P st

represents the current location of the sooty tern. z signifies the current iteration, and sA
denotes the migration of a sooty tern in the solution space.

Converge in the direction of best neighbor: Following collision evasion, the search
agents converge in the path of the finest neighbor.

→
Mst = CB·

→
P st(z)

(→
Pbst(z)−

→
P st(z)

)
(5)

where
→
Mst denotes a different position of a search agent (i.e., sooty tern).

→
Pbst(z) shows the

best location of a search agent, and CB signifies the random variable and can be computed
as follows:

CB = 0.5 Rand (6)

where Rand represents any arbitrary number in the range of 0 and 1.
Updating corresponding to best search agent: Finally, the sooty tern can revise its

location in relation to the best search agent.

→
Dst =

→
Cst +

→
Mst (7)

where
→
Dst signifies the difference between the search agent and the best fittest search agent.

3.2. Attacking Behavior

Sooty terns can modify their speed and attack angle during migration. They gain
altitude by flapping their wings. They produce spherical behavior in the air while attacking
prey, which is explained below.

x′ = Radius sin(i) (8)

y′ = Radius cos(i) (9)

z′ = Radiusi (10)

r = uekv (11)

where, Radius denotes the radius of each spiral turn, i signifies the value in the range of
[0 ≤ k ≤ 2π], and the u and v are the constant values.

3.3. Execution Steps of STO for Parameter Estimation

Figure 2 illustrates the flowchart of the STO algorithm for optimized parameter esti-
mation of a solar cell/module. The algorithm works as follows:
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• Step 1. In the search space, begin the population of search agents of the fifth order di-
mension. The photovoltaic current (Ip), diode saturation current (Isd), series resistance
(Rs), shunt resistance (Rsh), and diode ideality factor are all represented by the fifth
order dimension (a).

• Step 2. In the search space, control the fitness of all agents using Equation (2).
• Step 3. At each iteration, the STO is employed to adjust the position of the agents.

Because the algorithm is intended to function in the minimization mode, the location of
the particles with the least cost suggests the best SDM parameters with the minimum
RMSE.
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4. Results and Discussion

In this section, we examine the validity of the STO algorithm and describe how we
tested it under standard temperature conditions (1000 W/m2 at 25 ◦C) utilizing primarily
one R.T.C France solar cell and polycrystalline PV module (SS2018P). The extracted PV
module characteristics were tracked and employed to generate simulated I-V and P-V
data sets. The dependability of the STO algorithm was examined and compared to four
metaheuristic algorithms: GSA [41], SCA [42], GWO [43], and WOA [44]. The size of
the sample and the objective function evaluations for the experiment were fixed to 30
and 50,000, respectively. In addition, at least 30 independent runs were performed to
avoid duplication.

The effectiveness of the proposed method was evaluated using several empirical
constraints, e.g., internal absolute error (IAE), correctness of the curve-fitting, and global
minimum convergence rates. The current and voltage data for the R.T.C France solar
cell [45] and the SS2018P polycrystalline PV module [38] were collected experimentally.
In the SS2018P PV module, 36 polycrystalline cells were connected serially [38]. Table 1
tabulates the exploration ranges for every parameter (i.e., upper and lower bounds). These
ranges were utilized by investigators in this study. The STO algorithm [46] was simulated
on a MATLAB 2018a (MathWorks, Mexico, DF, Mexico) platform with an Intel ® core TM
i5-HQ CPU running at turbo frequency of 4.8 GHz and 8 GB of RAM.
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Table 1. The parameter range for SDM of a solar cell and a PV module.

Parameters
R.T.C France Solar Cell SS2018P PV Module

Lower Bound Upper Bound Lower Bound Upper Bound

Ip(A) 0 1 0 10
Rs(Ω) 0.01 0.5 0.01 2
Rsh(Ω) 0.001 100 0.001 2000
Isd(µA) 0 0.5 0 50

a 1 2 1 100

4.1. Parameter Extraction of the R.T.C France Solar Cell

For a single-diode model, five parameters (Ip, Isd, a, Rs, Rsh) must be estimated. The
values of simulated current and power with their IAE are charted in Table 2. Table 3
shows the values of the STO-optimized parameters and RMSE for comparison. The STO
algorithm has the lowest RMSE of 8.6106 × 10−4 when compared to other algorithms. In
this case, RMSE values are obtained as an index for evaluating results with previously
constructed techniques by the researchers. Figure 3 depicts a redrawn current-voltage
(I-V) and power-voltage (P-V) characteristics curve for a single-diode model based on the
optimum optimized parameters achieved by executing the STO method. The computed
data generated by the STO was found to be very close to the experimental data set across
the whole voltage range.

Table 2. The calculated current and absolute error results of the STO for SDM of the R.T.C France
solar cell.

Observations Vl(V) Il (A) Isimulated (A) IAE (A) Pmeasured
(W)

Psimulated
(W) IAE (W)

1 0.0057 0.7605 0.7817 0.0212 0.0043 0.0044 0.0001
2 0.0646 0.7600 0.7764 0.0164 0.0490 0.0501 0.0010
3 0.1185 0.7590 0.7714 0.0124 0.0899 0.0914 0.0014
4 0.1678 0.7570 0.7669 0.0099 0.1270 0.1287 0.0016
5 0.2132 0.7570 0.7627 0.0057 0.1613 0.1626 0.0012
6 0.2545 0.7555 0.7588 0.0033 0.1922 0.1931 0.0008
7 0.2924 0.7540 0.754 0.0007 0.2204 0.2206 0.0002
8 0.3269 0.7505 0.7501 0.0003 0.2453 0.245 0.0001
9 0.3585 0.7465 0.7441 0.0023 0.2676 0.2667 0.0008
10 0.3873 0.7385 0.7351 0.0033 0.2860 0.2847 0.0012
11 0.4137 0.7280 0.7208 0.0071 0.3011 0.2982 0.0029
12 0.4373 0.7065 0.6987 0.0077 0.3089 0.3055 0.0034
13 0.459 0.6755 0.6648 0.0106 0.3100 0.3051 0.0049
14 0.4784 0.6320 0.6173 0.0146 0.3023 0.2953 0.0070
15 0.496 0.5730 0.5544 0.0185 0.2842 0.2750 0.0091
16 0.5119 0.4990 0.4772 0.0217 0.2554 0.2443 0.0111
17 0.5265 0.4130 0.3857 0.0272 0.2174 0.2030 0.0143
18 0.5398 0.3165 0.2945 0.0219 0.1708 0.1590 0.0118
19 0.5521 0.2120 0.1728 0.0391 0.1170 0.0954 0.0215
20 0.5633 0.1035 0.0582 0.0452 0.0583 0.0328 0.0254

Sum of IAE 0.2891

4.2. Parameter Extraction of the SS2018P PV Module

To properly assess the efficacy of the STO algorithm, parameters for the SS2018P PV
module were computed at 1000 W/m2 and 25 °C, using the SDM model. The values of
simulated current and power with their IAE are tabulated in Table 4. Table 5 shows the
optimized value of all five parameters (Ip, Isd, a, Rs, Rsh) for SDM of the PV module at
standard temperature condition. Figure 4 depicts a redrawn I-V and P-V characteristics
curve for a single-diode model based on the optimum optimized parameters achieved by
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executing the STO method. It was observed that the simulated data provided by the STO
was extremely closely related to the experimental data set.

Table 3. Comparison between the STO and other algorithms for parameter estimation techniques for
R.T.C France solar cell.

Algorithms Ip(A) Rs(Ω) Rsh(Ω) Isd(µA) a RMSE

STO 0.7850 0.0394 10.9985 0.1770 1.4474 8.6106 × 10−4

GSA [41] 0.7607 0.0339 63.7784 0.0500 1.5486 1.2012 × 10−3

SCA [42] 0.7595 0.0519 90.0685 0.002 1.2641 1.9123 × 10−3

GWO [43] 0.7695 0.0269 47.9136 1 1.6232 9.4095 × 10−4

WOA [44] 0.7573 0.053 58.5839 0.016 1.2476 9.9529 × 10−4
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Figure 3. The simulated and experimental I-V and P-V characteristics curves for the single-diode
model of the R.T.C France solar cell. Symbols indicate measured data, while solid lines indicate
optimized data.

4.3. Convergence Analysis

Figures 5 and 6 depict the convergence curves of the R.T.C France solar cell and the
SSS2018 polycrystalline PV cell for examining the computational competency of the STO.
The convergence rate analysis shows that the STO algorithm is more accurate than the GSA,
SCA, GWO, and WOA algorithms. Thus, the STO algorithm produces a realistic answer for
the same amount of evaluation functions (i.e., 50,000).

4.4. Statistical and Robustness Analysis

This subsection offers statistical assessments of the mean, minimum, maximum, and
standard deviation (SD) of RMSE for all recently created strategies. The accuracy and
reliability comparison of the various algorithms in 30 runs is summarized in Table 6. The
RMSE mean and standard deviation were calculated to investigate the durability of the
parameter estimation algorithms. According to the statistical data presented in Table 6, the
STO is found to be the most precise and trustworthy parameter optimization technique.
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Table 4. The simulated current and absolute error results of the STO for SDM of the SS2018 PV
module.

Observations Vl(V) Il(A) Isimulated (A) IAE (A) Pmeasured
(W)

Psimulated
(W) IAE (W)

1 0.0844 1.1698 1.2096 0.0397 0.0988 0.1021 0.00336
2 0.2558 1.1697 1.2088 0.0390 0.2993 0.3093 0.0100
3 0.5550 1.1697 1.2075 0.0377 0.6492 0.6702 0.0210
4 1.0896 1.1697 1.2051 0.0353 1.2745 1.3131 0.0386
5 2.1529 1.1697 1.2003 0.0306 2.5183 2.5843 0.0659
6 2.8780 1.1697 1.1971 0.0273 3.3666 3.4454 0.0788
7 3.8696 1.1697 1.1926 0.0229 4.5265 4.6153 0.0888
8 4.5833 1.1697 1.1895 0.0197 5.3613 5.4518 0.0906
9 5.5482 1.1697 1.1851 0.0154 6.4901 6.5757 0.0856
10 6.2780 1.1697 1.1819 0.0121 7.3436 7.4201 0.0765
11 7.2243 1.1697 1.1776 0.0079 8.4505 8.5079 0.0574
12 8.0501 1.1697 1.1739 0.0042 9.4164 9.4506 0.0342
13 8.7878 1.1696 1.1706 0.0009 10.2789 10.2874 0.00852
14 9.7689 1.1696 1.1662 0.0034 11.4259 11.3926 0.0333
15 10.5181 1.1695 1.1627 0.0067 12.3009 12.2302 0.0707
16 11.3167 1.1692 1.1590 0.0102 13.2324 13.1166 0.11160
17 12.1901 1.1688 1.1548 0.0140 14.2485 14.0774 0.1710
18 12.9947 1.1680 1.1506 0.0174 15.1790 14.9522 0.227
19 13.9457 1.1663 1.1449 0.0213 16.2656 15.9678 0.2980
20 14.6556 1.1638 1.1398 0.0240 17.0574 16.7051 0.3520
21 15.5347 1.1583 1.1312 0.0270 17.9941 17.5742 0.4200
22 16.4330 1.1471 1.1177 0.0294 18.8509 18.3673 0.4840
23 17.1324 1.1312 1.1007 0.0305 19.3812 18.8578 0.5230
24 18.0801 1.0907 1.0600 0.0306 19.7206 19.1662 0.5540
25 18.8065 1.0325 1.0033 0.0291 19.4190 18.8700 0.5490
26 19.7423 0.8906 0.8658 0.0248 17.5832 17.0933 0.4900
27 20.5628 0.6493 0.6315 0.0178 13.3533 12.9868 0.3660
28 21.3013 0.2582 0.2516 0.0065 5.5007 5.3614 0.1390

Sum of IAE 0.5840

Table 5. Comparison of the STO with other parameter estimation methods for the SS2018 PV module.

Algorithms Ip(A) Rs(Ω) Rsh(Ω) Isd(µA) a RMSE

STO 1.1276 2 2000 0.5000 89.85 6.19 × 10−5

GSA [41] 1.0959 0.001 455.528 0.0010 53.59 1.68 × 10−1

SCA [42] 1.1742 0.0011 139.676 0.0092 1.415 1.51 × 10−3

GWO [43] 1 0.001 100 0.0010 1.263 1.59 × 10−1

WOA [44] 1.1810 0.0024 18.166 0.0190 1.289 7.82 × 10−4

In addition to the conventional statistical analysis, we also applied the Friedman rank
test [47] to determine the relevance of the presented study. It is a nonparametric test which
is employed to decide the rank of algorithms for the analysis of PV modules; lower the
rank, better the algorithm. Table 7 illustrates the Friedman ranking test results of different
algorithms. The Friedman ranking test results show that the STO has the highest ranking
compared to WOA, SCA, GWO and GSA. In the Friedman test, the null hypothesis H0
(p-value > 5%) suggests that there are no noteworthy alterations among the compared
algorithms. For all 30 runs, the contrary hypothesis H1 indicates a significant difference
between the compared methods. Each algorithm is ranked in this test depending on its
efficiency.
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Figure 4. I-V and P-V characteristics curves for anticipated and experimental values for the SS2018
PV module. Symbols indicate measured data, while solid lines indicate optimized data.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 5. Convergence plot for the RTC France solar cell. 

 
Figure 6. Convergence plot for the SS2018 PV module. 

4.4. Statistical and Robustness Analysis 
This subsection offers statistical assessments of the mean, minimum, maximum, and 

standard deviation (SD) of RMSE for all recently created strategies. The accuracy and re-
liability comparison of the various algorithms in 30 runs is summarized in Table 6. The 
RMSE mean and standard deviation were calculated to investigate the durability of the 
parameter estimation algorithms. According to the statistical data presented in Table 6, 
the STO is found to be the most precise and trustworthy parameter optimization tech-
nique. 

  

R
M

SE
 (l

og
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations 104

10-5

10-4

10-3

10-2

10-1

100

STOA GSA SCA GWO WOA

Figure 5. Convergence plot for the RTC France solar cell.



Electronics 2022, 11, 564 10 of 13

Electronics 2022, 11, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 5. Convergence plot for the RTC France solar cell. 

 
Figure 6. Convergence plot for the SS2018 PV module. 

4.4. Statistical and Robustness Analysis 
This subsection offers statistical assessments of the mean, minimum, maximum, and 

standard deviation (SD) of RMSE for all recently created strategies. The accuracy and re-
liability comparison of the various algorithms in 30 runs is summarized in Table 6. The 
RMSE mean and standard deviation were calculated to investigate the durability of the 
parameter estimation algorithms. According to the statistical data presented in Table 6, 
the STO is found to be the most precise and trustworthy parameter optimization tech-
nique. 

  

R
M

SE
 (l

og
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations 104

10-5

10-4

10-3

10-2

10-1

100

STOA GSA SCA GWO WOA

Figure 6. Convergence plot for the SS2018 PV module.

Table 6. Statistical RMSE results for various techniques for the R.T.C France solar cell and the SS2018
PV module.

Algorithm
RMSE

Minimum Mean Maximum SD

R.T.C France Solar
Cell

STO 8.6106 × 10−4 9.4761 × 10−4 2.6964 × 10−2 1.0836 × 10−5

GSA [41] 1.2012 × 10−3 5.4701 × 10−3 2.4211 × 10−1 1.3129 × 10−3

SCA [42] 1.9123 × 10−3 9.6515 × 10−3 2.1642 × 10−1 9.4066 × 10−3

GWO [43] 9.4095 × 10−4 1.0441 × 10−3 1.3506 × 10−3 1.4050 × 10−5

WOA [44] 9.9529 × 10−4 9.2032 × 10−4 7.1240 × 10−3 9.0250 × 10−3

SS2018 PV Module

STO 6.1900 × 10−5 5.2500 × 10−4 3.0407 × 10−2 2.3643 × 10−5

GSA [41] 1.6800 × 10−1 1.9462 × 10−1 2.0011 × 10−1 4.4500 × 10−3

SCA [42] 1.5100 × 10−3 5.2657 × 10−3 2.0345 × 10−1 1.0058 × 10−2

GWO [43] 1.5900 × 10−1 1.5940 × 10−1 5.2494 × 10−1 1.6793 × 10−2

WOA [44] 7.8200 × 10−4 1.8268 × 10−3 2.1078 × 10−2 1.3639 × 10−3

Table 7. Friedman ranking of different algorithms for all modules.

Algorithm Friedman Ranking Final Ranking

STO 1 1
GSA [41] 5.12 5
SCA [42] 3.01 3

GWO [43] 4.29 4
WOA [44] 2.03 2

5. Conclusions

In this study, the STO algorithm was employed to assess the parameters of the R.T.C
France solar panel and the SS2018 polycrystalline PV module at typical temperature condi-
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tions. The single-diode model theory was considered for parameter estimation. We also
want to point out that the STO method was being used for the parameter estimation of PV
models for the first time. The main observations of this study are as follows:

• The RMSE values confirm that the STO is generally more accurate and trustworthy to
generate the best optimized parameters than GSA, SCA, GWO, and WOA.

• The IV and PV characteristic curves as well as IAE results show that the STO can
successfully optimize the parameters for different types of PV cells.

• The statistical study illustrates the robustness of the implemented STO technique on
the parameter estimation problem in standard operational conditions.

• The convergence curve confirms that the STO obtains the best values of estimated
parameters in terms of RMSE of 8.6106 × 10−4 and 6.19 × 10−5 for solar cells and PV
modules respectively.

According to the preceding discussion, the STO is an efficient and reliable technique
for estimating the unknown optimum parameters of a solar PV module model under typical
operating conditions.
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