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Abstract: The parameters of muscle ultrasound images reflect the function and state of muscles.
They are of great significance to the diagnosis of muscle diseases. Because manual labeling is time-
consuming and laborious, the automatic labeling of muscle ultrasound image parameters has become
a research topic. In recent years, there have been many methods that apply image processing and
deep learning to automatically analyze muscle ultrasound images. However, these methods have
limitations, such as being non-automatic, not applicable to images with complex noise, and only being
able to measure a single parameter. This paper proposes a fully automatic muscle ultrasound image
analysis method based on image segmentation to solve these problems. This method is based on
the Deep Residual Shrinkage U-Net (RS-Unet) to accurately segment ultrasound images. Compared
with the existing methods, the accuracy of our method shows a great improvement. The mean
differences of pennation angle, fascicle length and muscle thickness are about 0.09°, 0.4 mm and
0.63 mm, respectively. Experimental results show that the proposed method realizes the accurate
measurement of muscle parameters and exhibits stability and robustness.

Keywords: ultrasound image; skeletal muscle; deep residual shrinkage net; U-Net

1. Introduction

Muscle is an important tissue that constitutes part of the human body. It is densely
distributed around organs and bones. Its function is to produce contractions and facili-
tate the body’s movement. According to its distribution and function, the human body’s
muscle tissue can be divided into three categories: skeletal muscle, cardiac and smooth
muscle. Skeletal muscle is attached to bones and accounts for about 40% of body weight.
Its contraction and regulation have a great impact on the human body’s mobility, function
and health [1]. Studies have shown that biological tissues’ mechanical properties and
pathological changes are related to morphological changes. Therefore, the morphological
information of skeletal muscle has a important reference value for disease diagnosis. Ac-
curately quantifying changes in muscle structure parameters during exercise is of great
significance to understanding muscle function and judging muscle state [2].

As a new method of non-contact sensing of lesions, ultrasound technology began to
be used in medicine in the mid-1950s [3]. Initially, ultrasound technology was used in
reproductive system imaging and fetal viability monitoring, such as heart valve motion
imaging and abdominal organ imaging [4]. With the development of ultrasound imaging,
it has been widely used in the diagnosis and treatment of many clinical diseases, such as
skeletal muscle ultrasound images. Sonomyography (SMG) [5] is a method used to measure
muscle morphologic parameters in ultrasound images. Muscle structure parameters can be
easily obtained from the SMG, such as muscle thickness, pennation angle and the length
of muscle fibers. The pennation angle reflects the axial torque of aponeuroses and its
sub-torques. The changes in length of muscle fibers directly reflect muscle contraction, and
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the changes in muscle thickness demonstrate the position and state of the muscle. These
dynamic or static muscle structure parameters [6] have important guiding significance
for evaluating muscle function changes, muscle rehabilitation training and prosthetic
control [7].

Since ultrasound imaging has been widely used in clinical medicine because of its
painless, portable, and inexpensive features, the data interpretation of ultrasound images
has always been a pivotal task. Traditionally, the quantitative parameters of skeletal muscle
ultrasound images are manually measured or annotated using interactive software, but
it is time-consuming, cumbersome and error-prone. Therefore, developing a convenient
and accurate method for automatic measurement of muscle ultrasound images poses a
new challenge. Recently, several methods of applying image processing technology to
measure and quantify muscle ultrasound image parameters have emerged [8–13]. Zhao
et al. [8] proposed an automatic linear extraction method based on local radon transfor-
mation (LRT) and rotation strategy to detect the pennation angle in ultrasound images.
However, this method relies on the choice of edge detector. The measurement of images is
often semi-automatic, and is not suitable for images containing different complex noises.
Zhou et al. [12] combined the Gabor wavelet with the Hough transform, and used prior
knowledge of the geometric arrangement of fascicles and aponeuroses in ultrasound im-
ages to realize the automatic measurement of pennation angle and muscle fiber length.
Although this method performs well on images with high speckle noise, it lopsidedly relies
on the parameterization of some features. The selection of parameters is empirical, and
there are some uncertainties in practical application. Salvi et al. [13] proposed a method
called MUSA to measure the muscle thickness on different ultrasound images of skeletal
muscle. This method detects the fascicles in the middle of the aponeuroses through the
Hough transform, and performs an iterative heuristic search on fascicles in the region of
interest to identify contours of the aponeuroses and calculate muscle thickness. This feature
detection method can locate the direction of representative fascicles. However, the speckle
noise and the presence of intramuscular blood vessels tend to blur the critical features of
muscle fibers, which will increase the difficulty of measurement. In addition, the MUSA
method only measures the parameter of muscle thickness, which does not help to fully
reflect the muscle state and structure. These image processing methods have initially solved
the problem of data interpretation of muscle ultrasound images and performed well in
accuracy. However, there are still various shortcomings that need to be further improved.

The advent of deep learning is undoubtedly attractive. It brings a new learning and
prediction methods based on the inherent law of data. Deep learning methods have greatly
improved the state of art in speech recognition, visual object recognition, object detection,
and many other fields such as drug discovery and genomics [14]. The application of deep
learning in various areas has also shown great potential in clinical medical research. Shen
et al. [15] summarized the application of some deep generation models [16] in the medical
field, such as deep belief networks (DBN) and deep Boltzmann machines (DBMs) and
proposed that they have been successfully applied to brain disease diagnosis [17,18], lesion
segmentation [19,20], cell segmentation [21] etc. This intelligent method can automati-
cally acquire image features from ultrasound images through data training, effectively
’learning’ to recognize new images. Cunningham et al. [22] first used convolutional neural
networks to analyze muscle structure. They proposed a model based on deep residual
networks(Resnet) and convolutional neural networks (CNN) to measure the direction
and curvature of human muscle fibers. After that, the method was further improved.
The deconvolution and maximum deconvolution (DCNN) were used to quantify muscle
parameters [23]. Through the comparison of various deep learning methods, the DCNN
method was selected due to its remarkable muscle region localization ability. However, the
difference of the pennation angle measured by this method is as high as 6 °, and there is
still a lack of accuracy. Another automatic measurement method of the pennation angle
based on deep learning has been proposed by Zheng et al [24]. In this method, a reference
line is introduced to help detect the direction of muscle fibers, and a deep residual network
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determines the relative position of the line and muscle fibers. Then the pennation angle
is calculated by adjusting the line until it is parallel to the fascicles. The results show that
this method can accurately measure the pennation angle, but the measurement parameter
is single and requires a large number of datasets to support it. With the development of
image segmentation, the proposal of U-Net [25] makes medical image segmentation and
recognition easier. J. Cronin et al. [26] constructed an ultrasonic image analysis method
based on image segmentation using U-Net. The muscle parameters are obtained by calcu-
lating the segmentation results. We identify the DL method, which realizes the automatic
measurement of muscle parameters. However, this method is cumbersome due to the
separate training of two networks for aponeuroses and muscle fibers. When the image has
complex noise, the measurement error rate is also high.

In general, there are some problems in the above methods: (1) the measurement
method is not fully automatic. It relies on manual selection of filters or adjustment of
preprocessing steps; (2) the measurement results are not ideal for ultrasound images with
complex noises; (3) it is difficult to obtain all the essential parameters in muscle ultrasound
images solely by one method, which is not conducive to a comprehensive analysis of muscle
status.

In this study, in order to amend the limitations of above methods, we propose a method
with an improved neural network structure based on U-Net and deep residual shrinkage
networks (DRSN), called RS-Unet, for accurate segmentation of muscle ultrasound images.
Firstly, the manually labeled datasets are input into the model for training, and the trained
model is used to segment the muscle ultrasound images to obtain clear and accurate
results. On this basis, the segmentation results are further processed, aponeuroses and
muscle fibers are linearly fitted, and the intersection points are calculated. Finally, the
structure parameters of muscle ultrasound images are accurately measured, including
muscle thickness, pennation angle and fascicle length. The method we proposed is a fully
automatic muscle parameter detection method without any manual preprocessing steps.
Experimental results show that our method produced similar results to the manual method,
and has good performance in automatic and accurate measurement of muscle parameters.

The main contributions of this study are as follows:

• We analyzed the existing muscle ultrasound image analysis methods, including those
using image processing technology and deep learning technology, and summarized
their advantages and limitations.

• We propose a fully automatic muscle ultrasound image analysis method based on RS-
Unet. It can analyze muscle ultrasound images with complex noise more accurately
without any manual preprocessing. The parameters of muscle thickness, pennation
angle and fascicle length can be easily calculated.

• A new network model called RS-Unet is proposed for muscle ultrasound image
segmentation. It is stable and robust. In the future, it has the potential to be applied
in other ultrasonic image analysis fields.

The remaining parts of this study are as follows. In section two, we introduce the spe-
cific research methods. Section three is the experimental study of our proposed method on
muscle ultrasound images. Section four is the discussion and comparison of experimental
results. Section five summarizes the whole paper.

2. Materials and Methods

In our method, the processing process of a muscle ultrasound image is divided into two
modules shown in Figure 1. In the training module, manually labeled dataset is input into
our neural networks for training, and the optimal model is obtained. In the segmentation
and calculation module, the ultrasound image without any preprocessing is entered into
the trained model, and the results of segmentation are obtained. The segmentation results
are then subjected to a series of post-processing, including contour extraction, line fitting,
and calculation of intersection points. Finally, the length of muscle fibers, pennation angle
and muscle thickness are calculated. The accurate measurement of this method is based
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on the precise segmentation of RS-Unet, and the network structure of RS-Unet will be
described in detail below.

Samples

Researchers
manually label

aponeuroses and
muscle fascicles

Masks

Input the network
& Training model

Trained model

Input

Detect the contours
of

aponeuroses and
fascicles

Output
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Calculate
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fascicle length,
pennation angle
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in the figure

Result 
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Image segmentation and parameter calculation

Figure 1. Processing flow of the proposed method. The process consists of two parts, namely model
training and image analysis. In the training part, the manually labeled dataset is fed into RS-Unet
for training. The trained model can segment the muscle ultrasound images directly. The outputs are
calculated to obtain the final muscle parameters.

2.1. Network Architecture of RS-Unet

Our proposed network structure is called Deep Residual Shrinkage U-Net (RS-Unet),
which is an improved neural networks model based on the design idea of U-Net and
combined with the deep residual shrinkage networks. Figure 2 shows the architecture of
RS-Unet. The U-Net is a neural network model proposed by Ronneberge et al. [25] in 2015
for medical image segmentation tasks. It consists of an encoder and a decoder with the
same number of convolutions. The down-sampling of the encoder is used to extract the
semantic information of the image, and the up-sampling of the decoder restores the size
of image. The skip connection between the up-sampling layer and the down-sampling
layer helps to recover the detailed information of the image, but will also send some noise
or useless information to the decoder and negatively affect the final segmentation result.
Therefore, although U-Net achieved some results in many fields including medical image
segmentation, it is difficult to achieve desirable results in the face of such a complex task
as muscle ultrasound image segmentation. To solve this problem, we propose RS-Unet,
which uses residual shrinkage blocks instead of the traditional convolutional blocks in
the encoder. While deepening the network and expanding the receptive field through the
structure of residuals, the attention mechanism and soft thresholding is introduced into the
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residual block to form the residual shrinkage block, which enhances the feature extraction
ability and suppresses the noise.
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Figure 2. The network architecture of the RS-Unet. The Res-Shink block represents a residual
shrinkage block in the DRSN.

The large size images of 512 × 512 are selected as the input, which is different from
the methods of inputting small images for neural networks training fast. Because muscle
ultrasound images are generally blurred and the quality of images is poor, a larger size of
images avoids the loss of pixel information in the down-sampling layers, so as to ensure
more accurate segmentation. As shown in Figure 2, each unit in the encoder includes a
residual shrinkage block for extracting image features and a down-sampling layer which
uses a max-pooling of 2 × 2 to reduce the feature map size by half. The decoder is the same
as the standard U-Net, and the feature map is restored to the original size through multiple
3 × 3 deconvolutions. The deconvolution is essentially transposed convolution, which was
proposed by Zeiler [27] in 2010. The feature fusion of the RS-Unet is in a typical U-Net
fashion by skip connection. It transmits feature information by clipping and splicing the
same level feature maps of encoder and decoder. It enables spatial information to be directly
applied to deeper layers to obtain more accurate segmentation results. The skip connection
in RS-Unet adopts direct splicing without clipping, which preserves the edge information
of the image as much as possible. In the last layer, the feature map passes through a softmax
function to output a three-channel mask. Each channel corresponds to a different pixel
classification, which are muscle fibers, aponeuroses and background. Because each pixel in
the mask represents the probability of each classification. The channel with the maximum
probability value is selected by the threshold, which ensures the accuracy and clear of
segmentation results.

2.2. Deep Residual Shrinkage Block

At each level of the RS-Unet encoder, the feature map goes through a residual shrink-
age block. It is a part of the Deep Residual Shrinkage Networks (DRSN). It was proposed by
Zhao et al. [28] as a variant of Deep Residual Networks (ResNet) that uses soft thresholding
to remove noise-related features. Soft thresholding is often used as a key step in many
signal denoising methods [29,30]. It is a function that reduces the input data to near zero.
It removes the features whose absolute value is less than a certain threshold and makes
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the features whose absolute value is greater than this threshold shrink to near zero. Soft
thresholding is defined as follows:

y =


x− τ x > τ

0 −τ ≤ x ≤ τ

x + τ x < −τ

(1)

where x is the input feature, y is the output feature, and τ is the threshold. The derivative
of the soft thresholded output with respect to the input is:

∂y
∂x

=


1 x > τ

0 −τ ≤ x ≤ τ

1 x < −τ

(2)

It can be observed that the derivative of output to input is 1 or 0, which can reduce the
risk of the deep learning algorithm encountering gradient disappearance and explosion.

The setting of the threshold in soft thresholding of the deep residual shrinkage net-
works is different from that in signal processing. The threshold will be automatically
learned in deep learning without the need for experts to set it manually. Figure 3 shows the
structure diagram of the residual shrinkage block. First, the input is convolved twice to
obtain feature map x. In the special module, the feature map is compressed using global
average pooling (GAP) to obtain a set of one-dimensional vectors (that is, a set of channel
weights are learned). The one-dimensional vectors are passed through two FC layers to
obtain a set of scaling parameters. The output of the FC network is scaled to the range
(0,1) using:

αc =
1

1 + e−zc
(3)

zc is the feature map of the cth neuron output by the FC network, and αc is the cth scaling
parameter. The next step is to calculate the threshold:

τc = αc ·
1

w× h

w

∑
i=1

h

∑
j=1
|xi,j,c| (4)

τc is the threshold of the cth channel of the feature map, h, w, c are the indexes of width,
height and channels of the feature map x. Through soft thresholding, the features irrelevant
to the current task are set to 0, and the features relevant to the current task are retained, thus
realizing the suppression of noise. Compressing to the channel domain for convolution
enhances the learning ability of the channel features and improves the extraction ability of
the model for important features. The DRSN also retains the characteristics of ResNet [22].
The residual learning structure is realized by shortcut connection, which performs the
equivalent mapping and solves the problem of network degradation in the process of
network layer deepening.
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Figure 3. The structure of a residual shrinkage block. x, z, and α are the feature maps in the block,
which will be used for threshold calculation.

2.3. Loss Function

The outputs of RS-Unet are the result of three classifications (fascicles, aponeuroses
and background), which is actually a process of classifying pixels as samples. Segmentation
networks typically use a cross-entropy (CE) function as a loss function. Still, due to the
number of samples of muscle fibers and aponeuroses being small in ultrasound images,
sample imbalance is severe. The dice loss function was proposed by Fausto Milletari
et al. [31] in the paper of VNet, which is used to solve the problem of sample imbalance
in image segmentation. Therefore, to focus on the characteristics of muscle fibers and
aponeuroses during model training, dice loss function should be used in each dimension:

Ldice = 1− 1
m

m

∑
j=1

2 ∑N
i=1 yijŷij

∑N
i=1 yij + ∑N

i=1 ŷij
(5)

where yij is the true probability value for each pixel, ŷij represents the predicted probability
value, N is the total number of pixels, and m represents the class (fascicles, aponeuroses
and background).

3. Results
3.1. Datasets

We collected ultrasound image datasets from different types of movements conducted
by different groups of the population (including young people, elderly people, etc.). These
data include a large number of videos and images, which are obtained from muscle tissues
in different parts of the body (medial and lateral gastrocnemius, vastus lateralis, tibialis
anterior) using a variety of ultrasound devices.To ensure the diversity of data, we collected
data from different sources. Some of these were collected by experts from Shenzhen
Institute of advanced research, Chinese Academy of Sciences, and some are from the
research of J. Cronin et al. [26]. A set of 508 samples was obtained by cutting images and
randomly extracting videos by frame. Three researchers used FIJI software [32] to manually
label the dataset to generate masks. Each mask is divided into three parts with different
colors, with the blue part representing muscle fibers, the red representing aponeuroses, and
the green representing background. Figure 4 shows the samples of the manually labeled
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dataset. The dataset is divided into a training set and a validation set according to the ratio
of 9:1. Another 50 samples are randomly selected from the videos besides the training set
to form a test dataset, which ensures the reliability of experiment results. These data have
received ethical approval from the relevant committees of Shenzhen Institutes of Advanced
Technology, CAS.

(a) Original images

(b) Masks

Figure 4. Samples from the training dataset. (a) Some original ultrasound images collected from
multiple subjects. (b) The ground truth marked by the experimenters using Fiji software.

3.2. Details and Training

The experiments utilize a Tesla P100 GPU with 128GB of memory for model training.
The images of the training dataset were adjusted to 512 × 512 size to feed the network,
which can avoid the loss of important features. Python was used to run the codes of the
experiment, and the deep learning framework was TensorFlow 1.4.0. The Adam optimizer
iswas applied to optimize experimental parameters while iteratively adjusting the learning
rate. The batch size of the training was set to 4, and 93 epochs were trained totally.

When the training loss of model decreases and the test loss remains unchanged or
increases, that is, the overfitting phenomenon occurs, the training will be stopped in
advance. To obtain the optimal model, we trained on datasets of different sizes. The three
sizes of data set with 208, 358 and 508 images were chosen, respectively. The loss function
of training was calculated using the dice loss function in Equation (5). Figure 5a,b shows
the loss curves and accuracy curves of the training dataset and the validation dataset with
different sizes of data set. The results show that the model performs better when the size of
data set is 508. Complex network models need larger data sets for training to achieve higher
accuracy. Too small data sets, such as those containing 208 pictures, shown in Figure 5,
may lead to over fitting of the model. However, the data set with too large an amount of
data will also contain more noise. So, choosing an appropriate size of data set is important
for training. Through training with 508 images, the training loss and verification loss of
the model decrease continuously until they become stable, and the accuracy rate is high,
indicating that the model training process is successful.
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(a) Loss curves

(b) Accuracy curves

Figure 5. The loss curves and accuracy curves of the proposed model with different sizes of data set.
The dotted line represents training and the solid line represents verification. The colors of green, blue
and red represent data set sizes of 208, 358 and 508, respectively. The model with a data set size of
508 has lower loss and higher accuracy on the validation set.

3.3. Segmentation Results

Figure 6 shows some segmentation results of the model. It can be seen that the
aponeuroses and muscle fibers are well identified and segmented, and the noise and blur are
also successfully suppressed. The model performs well in segmenting ultrasound images of
muscles with different parts of body and with different noises. As shown in Figure 6d, even
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though the noise in the image is still conspicuous, aponeuroses and parts of muscle fibers
can still be successfully segmented, which is enough to accurately calculate the muscle
structure parameters in the post-processing step. This result is undoubtedly gratifying.

(a) (b)

(c) (d)

Figure 6. The segmentation results of 4 groups of ultrasonic images with different noises. The left
side of each group is the original image, and the segmentation result is on the right. (a) The noise
in original image is low, but some fascicles are not clear. (b) The noise in some areas of the original
image is high. (c) The fascicles in the original image are clear, and the noise is low. (d) The noise of
original image is obvious and fascicles are very unclear.

3.4. Post-Processing

After obtaining the segmentation results of the model, images require a series of
post-processing to calculate parameters such as muscle thickness. The following processing
is implemented by OpenCv. First, contours of the deep and superficial aponeuroses and
fascicles are extracted (Figure 7a). The upper and lower edges of the aponeurosis contours
close to fascicles are fitted into a line (Figure 7b). Long fascicles are more accurate and can
represent the overall direction of muscle fibers, while the short fascicles are often affected
by noise. We selected the 10 fascicles with the longest contours for calculation (Figure 7c).
The fascicles were fitted into lines and extended, and intersection points of the fascicles,
along with aponeuroses, were calculated. The length and pennation angle of muscle fibers
were calculated by taking the average of 10 fascicles (Figure 7d). The muscle thickness
is represented by the width at middle of overlapping part of the deep and superficial
aponeuroses. The algorithms for calculating muscle thickness, pennation angle and fascicle
length are described in Algorithm 1 and Algorithm 2, respectively. Figure 8 shows the final
results of post-processing. In order to intuitively display the parameter results, we directly
show the parameters in the figure.
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(a) (b)

(c) (d)

Figure 7. The post-processing steps for outputs. The blue line represents the fascicles; the red line
represents the edge of the deep and superficial aponeuroses. (a) Contour extraction. (b) Linear fitting
of aponeuroses. (c) Linear fitting and screening of fascicles. (d) Calculation of intersection.

Algorithm 1 Calculating the muscle thickness.

Input: Segmentation result from the model, image;
Output: muscle thickness;

1: Init Lc = appropriate threshold;
2: Extract the contours of aponeuroses in image, C = {c1, c2, ..., cn};
3: Choose the length of contours > Lc in C as C′, C′ = {c′1, c′2};
4: Sort the two contours in C′ according to the Y coordinates, SortC′ = {sc′1, sc′2};
5: Obtain the lower boundary of sc′1 and fit it into a line, l1; obtain the upper boundary of

sc′2 and fit it into a line, l2;
6: Select three equally divided points in the middle on l1, p1, p2, p3;
7: Calculate the mean of the distance from p1, p2, p3 to l2 as the muscle thickness;
8: return muscle thickness;
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Algorithm 2 Calculating the pennation angle and fascicle length.

Input: Segmentation result from the model, image;
Output: pennation angle and fascicle length;

1: Extract the contours of fascicles in image, F = { f1, f2, ..., fn};
2: Select the longest 10 contours in F as F′, F′ = { f ′1, f ′2, ..., f ′10};
3: Fit each contour in F′ into a straight line;
4: Extend each line to intersect l1 and l2 in Algorithm1;
5: Calculate the mean length between the intersections of 10 lines as fascicle length;
6: Calculate the mean of angles at the intersection as pennation angle;
7: return pennation angle, fascicle length;

Figure 8. The result of automatic analysis of the muscle ultrasound image. The red line is the contours
of aponeuroses, and the blue line is the longest 10 representative fascicles. The calculation results of
muscle parameters are displayed at the bottom of the image.

4. Discussion

In this section, we evaluate the proposed model and method through a series of
experiments, including the analysis and comparison of models and the discussion of
prediction results. By comparing the segmentation results of different models and the
influence of different network designs on the segmentation outcomes, the effectiveness
and the robustness of our model are demonstrated. The parameter results of our proposed
method and the existing DL method [26] on manually labeled test datasets are used for
parameter results comparison.

4.1. Analysis of the Network Model

To study the effect of the structure of the proposed model, an ablation experiment
was used for discussion. As shown in Table 1, we compared the impact of shrinkage on
model performance. Experiments show that the shrinkage structure has a positive impact
on the performance of RS-Unet and can increase the accuracy of segmentation results. This
is because the residual shrinkage block takes soft thresholding as shrinkage function, and
discriminant features can be learned through a variety of nonlinear transformations to
eliminate the noise-related information. The research on thresholding is shown in Table 2.
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Table 1. Comparison of the model with and without the shrinkage structure.

Models Acc (%) IoU (%) DSC (%)

RS-Unet (without shrinkage) 98.19 97.81 72.95
RS-Unet (with shrinkage) 98.32 97.95 73.72

Table 2. Comparison of soft thresholding and hard thresholding in the model.

Models Acc (%) IoU (%) DSC (%)

RS-Unet (hard thresholding) 98.09 97.77 70.90
RS-Unet (soft thresholding) 98.32 97.95 73.72

We compared the impact of the model with soft thresholding and hard thresholding,
respectively. Hard thresholding is also a common denoising method in signal processing.
The calculation of this is as follows:

Hard(x, τ) =

{
x |x| > τ

0 |x| <= τ
(6)

where x is the input feature and τ is the threshold. The results in Table 2 show that replacing
the soft thresholding in the residual shrinkage block with hard thresholding makes the
performance parameters worse. Soft thresholding can eliminate complex noise, retain the
features with thresholds close to zero and make the segmentation results more precise.

To discuss the performance of RS-Unet, we use the same data set to input different
models. The data set includes 508 samples, of which 51 samples are used as a validation
dataset. Table 3 shows an evaluation of models on U-Net [25], ResU-Net [33], RS-CBAM-
Unet and RS-Unet. The accuracy, IoU, DSC, precision, recall and F-score were used as the
performance measures of the proposed model. They are calculated as follows:

DSC =
2|X ∩Y|
|X|+ |Y| =

2TP
2TP + FP + FN

(7)

IoU =
|X ∩Y|

|X|+ |Y| − |X ∩Y| =
TP

TP + FP + FN
(8)

P =
True positives

predicted as positive
=

TP
TP + FP

(9)

R =
True positives

actual positives
=

TP
TP + FN

(10)

Fscore =
2× P× R

P + R
(11)

where, P represents precision, R represents recall, and Fscore is the harmonic mean of the
two, which is between zero and one. The closer it is to one, the better the result. The X
is the ground truth, and Y is the predicted area output by the model. Table 3 shows that
the segmentation result of RS-Unet is more accurate. The performance of the model has
been improved.

Table 3. The performance comparison with other models.

Models Acc (%) IoU (%) DSC
(%)

Precision
(%) Recall (%) F-Score (%)

U-Net 98.13 97.67 72.00 97.37 97.36 97.36
ResU-Net 97.98 97.87 69.90 97.31 97.33 97.31
RS-CBAM-Unet 98.18 97.82 73.20 97.32 97.31 97.33
RS-Unet 98.32 97.95 73.72 98.74 98.74 99.25



Electronics 2022, 11, 1093 14 of 19

As shown in Table 3, the performance of RS-Unet has been improved. Compared
with other models, each performance measure has been improved to varying degrees.The
RS-CBAM-Unet mentioned in Table 3 is a model formed by adding a Convolutional
Block Attention Module (CBAM) in the middle part of the RS-Unet. CBAM is a mixed
attention module proposed by Woo et al. [34] in 2018, which improves the learning ability
of important features through channel and spatial attention. This module performs well
in classification and regression models, but has not been applied to segmentation models.
According to the experiment, after adding this module, the performance of the model has
not been improved. On the contrary, its accuracy is lower than RS-Unet. This is due to
the fact that the significance of channel information is much higher than that of spatial
information for the segmentation networks we designed. The CBAM may cause the loss of
important channel information originally obtained in the compression process by trying
to obtain spatial attention. In our application, the spatial attention did not promote the
segmentation of samples. Moreover, the number of parameters of RS-CBAM-Unet has
increased drastically, and the loss of the model is also higher than that of RS-Unet, which is
0.29. Therefore, we eventually chose the RS-Unet without CBAM.

We visualized the segmentation results of the samples to observe the effect of different
models. Figure 9 shows some segmentation results of the four models. The first column is
the original muscle ultrasound image, the second, third, fourth and fifth columns are the
segmentation results output from the four models, and the sixth column is the ground truth
annotated by researchers. Although all the models realize the segmentation to images, the
proposed network model shows more accuracy and robustness in detail. It also performs
well in the case of complex noise and low contrast. The identification of aponeuroses is more
coherent, and muscle fibers are clearer. In general, the proposed model can segment muscle
ultrasound images more precisely, which is essential for post-processing and accurate
acquisition of quantitative parameters.

4.2. Analysis of Methods

To validate the proposed method, We used another group of gastrocnemius ultrasound
videos to randomly intercept 50 images by frame as the test dataset. We compare the
experimental results with the DL method and manual method. The DL method trained two
models to identify aponeuroses and muscle fibers, respectively. The segmentation results of
models are shown in Figure 10. In Figure 10b, due to the influence of noise, the DL method
is not accurate enough to segment aponeuroses, and many background noises are mistaken
for aponeuroses. The segmentation result of muscle fibers is shown in Figure 10c. The
feature extraction ability is not strong enough, so the segmentation of muscle bundle is
crude. In contrast, the segmentation result of our method is clearer and more accurate. As
shown in Figure 10d, when the edges of aponeuroses are not clear and muscle fibers are
easily confused with noise, our method can better avoid the influence of noise.
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(a) Original image (b) U-Net (c) ResU-Net (d) RS-Unet (e) Ground truth

Figure 9. Comparison of visual segmentation results of different models. The boxes in white show the
difference of segmentation results. The red area of the segmentation result represents aponeuroses,
the blue area represents muscle fibers, and the green area represents the background. (a) Original
images. (b–e) Segmentation results of different models. The aponeuroses and muscle fibers of the
proposed model are closer to the ground truth.

(a) (b) (c) (d)

Figure 10. The segmentation results of the DL method and the proposed method. (a) The original
image. (b) The segmentation result of aponeuroses by the DL model. (c) The segmentation result of
fascicles by the DL model. (d) The segmentation result by the proposed model.

The quantitative parameters of the muscle ultrasound images are obtained by post-
processing. In order to further validate the effectiveness of our proposed method, we
compare the results of parameters with the DL method and the manual method. As a
classic consistency evaluation method, Bland–Altman plots [35] were proposed in 1986. In
our experiment, they were used to analyze the consistency between the two methods and
the manual method. The 50 images of the test dataset were labeled by three researchers,
respectively. Figure 11 shows the Bland–Altman plots of the DL method and our method
with the manual method by the first researcher. The abscissa is the mean value of two
methods, and the ordinate is the mean difference of the measurement results. The solids
indicate the mean of the differences, and the dashed lines represents the 95% agreement
limit of the mean difference ± 1.96 standard deviation (SD). Figure 11a,c,e is the consistency
analysis of the muscle parameters measured by our method and the manual method. The
results of our method are almost between the 95% consistency bounds, which proves that
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our method is in good agreement with the manual method. Moreover, the mean differences
in the pennation angle, muscle fiber length, and muscle thickness between our method
and manual method were 0.09°, 0.4 mm and 0.63 mm, respectively. The results were less
than the mean difference of 0.14°, 0.9 mm and 0.67 mm between the DL method and the
manual method, as shown in Figure 11b,d,f, respectively. In order to reduce the subjective
factors and make the experiment more convincing, the two methods were compared with
the ground truth labeled by two other researchers. The standard deviation (SD), root mean
square errors (RMSEs), 95% agreement bounds for the DL method and our method are
shown in Tables 4.

Table 4. The DL method and the proposed method are compared with the manual method of two
other researchers.

Methods
RMSEs SD The 95% Confidence Limits

Pennation Length Thickness Pennation Length Thickness Pennation Length Thickness

human2 DL 1.1367 2.7652 0.9456 1.1482 2.3793 0.3911 −0.3153∼0.3373 −2.1248∼−0.7725 −0.9728∼−0.7516
Proposed 1.0090 2.5086 0.8942 0.9956 2.3417 0.3688 −0.4992∼0.0667 −1.6244∼−0.2934 −0.9210∼−0.7114

human3 DL 1.3912 3.3116 0.7354 1.4404 3.2581 0.3238 −0.3506∼0.4477 −1.9526∼−0.1495 −0.7539∼−0.5699
Proposed 1.3218 3.2738 0.6903 1.3230 3.1723 0.3160 −0.5547∼0.1973 −1.4872∼0.3647 −0.7052∼−0.5256

In Table 4, pennation means the pennation angle, length means the muscle fiber length,
and thickness means muscle thickness. The RMSEs represent the difference between the
predicted value and the true value, and the analysis of the results shows that the RMSEs of
our method are smaller than that of the DL method. The SD shows the difference between
the results and means; our results are less different from the mean, and the 95% agreement
bound interval is also smaller. In general, the results of our method are closer to those
obtained by manual labeling and better than those obtained by the DL method. This is
due to the better performance of the RS-Unet, and the seletion of long muscle fibers in
post-processing. It reduces the influence of noise and ensures the robustness of our method.

As a fully automatic measurement method, the advantage of DL method is that it
can measure three important muscle parameters accurately. However, its precision is high
not enough and it does not perform well in the case of high noise. Compared with DL
and other existing methods, our method can automatically and comprehensively measure
muscle parameters. The accuracy of measurement and segmentation is also higher. It uses
a model that removes some noise and enhances feature learning, making also it applicable
to high-noise muscle ultrasound images.

Although our method achieves automatic analysis of muscle ultrasound images accu-
rately, there are still some limitations. Due to the suppression of noise by soft thresholding,
there may be an obstacle tosome muscle fiber recognition in images with high noise inten-
sity and very blurred muscle fibers. In the future, we will try to use an attention mechanism
and other methods to solve this problem. In addition, our method approximately fits the
muscle fibers into straight lines. If the muscle fibers are severely curved in a part of the
ultrasound image, our prediction results may not be accurate enough. In future research,
we will further improve the proposed method, such as focusing on the analysis of muscle
ultrasound videos and the identification of different kinds of muscle tissue.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. The Bland–Altman plots of the DL method and our method. (a,c,e) is the Bland-Altman
plots of our method versus the manual method. (b,d,f) is the Bland-Altman plots of the DL method
versus the manual method.

5. Conclusions

In this paper, we propose an automatic method to analyze muscle ultrasound images
based on image segmentation. In this method, the RS-Unet is used to segment images, and
after post-processing and calculation, the accurate measurement of quantitative parameters
of muscle ultrasound images is realized. The RS-Unet model is a new neural network
model, which uses the residual shrinkage blocks instead of convolution blocks in U-Net to
enhance the ability of feature extraction and noise suppression. The dice loss function is
used to replace the cross-entropy function to solve the problem of unbalanced samples of
muscle fibers, aponeuroses and background. In terms of model performance, compared
with U-Net and other improved networks, the IoU and dice coefficients of our model show
significant improvements, and it works well in the visualization of segmentation results.
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In terms of parameter prediction, we compared our results with the DL method using the
dataset manually labeled by three researchers. Our results were in good agreement with
the manual method, and the accuracy of our results was also better than that of the DL
method. Experiments show that our proposed method can achieve accurate segmentation
of muscle ultrasound images and the accurate prediction of parameters. It is stable and
robust enough to perform well in the case of complex noise.
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