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Abstract: Object segmentation is still considered a challenging problem in autonomous driving,
particularly in consideration of real-world conditions. Following this line of research, this paper
approaches the problem of object segmentation using LiDAR–camera fusion and semi-supervised
learning implemented in a fully convolutional neural network. Our method was tested on real-world
data acquired using our custom vehicle iseAuto shuttle. The data include all weather scenarios,
featuring night and rainy weather. In this work, it is shown that with LiDAR–camera fusion, with only
a few annotated scenarios and semi-supervised learning, it is possible to achieve robust performance
on real-world data in a multi-class object segmentation problem. The performance of our algorithm
was measured in terms of intersection over union, precision, recall, and area-under-the-curve average
precision. Our network achieves 82% IoU in vehicle detection in day fair scenarios and 64% IoU in
vehicle segmentation in night rain scenarios.

Keywords: object segmentation; LiDAR–camera fusion; autonomous driving; artificial intelligence;
semi-supervised learning; iseAuto

1. Introduction

The ability to detect objects in different visibility conditions has caused wide interest
in computer vision techniques, which are comprehensively integrated with modern au-
tonomous vehicles. Being aware of any obstacles around the vehicle is a critical prerequisite
to achieve effective autonomous driving to ensure safe and accurate motion planning. As a
matter of fact, fully autonomous driving requires a detailed classification and segmentation
of objects in different illumination and weather conditions. Currently, advanced driver
assistance systems (ADASs) in many cars provide reliable collision warnings with the help
of radar and sonar sensors. However, ADASs can only detect the presence of obstacles
in the limited premises of the vehicle; they cannot recognize the types of objects and,
particularly, assign a semantic meaning.

Many state-of-the-art methods to classify objects use convolutional neural networks
(CNNs) to detect 2D objects [1,2], and semantic segmentation [3] of image data created by
cameras. As a passive sensor with a long history of development, cameras have advantages
such as reliability and texture-density under fair illumination. However, cameras are no-
ticeably susceptible to changes in lighting conditions. To address the problem of cameras,
light detection and ranging (LiDAR) sensors have attracted broad interest from researchers.
Due to the development of LiDAR sensor manufacturing, the affordability and accuracy
of LiDAR sensors have been improved significantly. Therefore, more LiDAR-data-based
research [4,5] for object detection and segmentation has appeared in recent years. Unfortu-
nately, LiDAR data is sparse and non-uniformly distributed. Furthermore, it lacks texture

Electronics 2022, 11, 1119. https://doi.org/10.3390/electronics11071119 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071119
https://doi.org/10.3390/electronics11071119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5976-6698
https://orcid.org/0000-0003-3692-0688
https://orcid.org/0000-0003-1409-0206
https://orcid.org/0000-0002-8498-3547
https://doi.org/10.3390/electronics11071119
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071119?type=check_update&version=1


Electronics 2022, 11, 1119 2 of 17

and color information compared to camera data. The drawbacks of LiDAR sensors make
LiDAR-only-based object detection and segmentation tasks more challenging to carry out.

Considering all the benefits and downsides of camera and LiDAR sensors, the straight-
forward solution is to combine the information from both LiDAR point clouds and camera
images. We choose to use a fully convolutional neural network (FCN), which was proposed
by Caltagirone et al. [6], to perform 3D semantic segmentation. The integration of point
clouds and images information was conducted at the last layers of the network, and this is
can be described as a late-fusion strategy [7,8]. This choice is due to late-fusion strategies
having a predefined depth level and thus being easier to build. More importantly, late-
fusion systems incorporate single-modality detectors. Therefore, our method projects point
clouds into the camera plane to create a three-channel tensor with the same width and
height of the image, of which each channel encodes one of the 3D spatial coordinates [9].

An additional focus of this work is the domain adaptation analysis of the network
from the public dataset to our custom dataset recorded during an extensive experimental
campaign in the campus of TalTech. Today, open datasets available for autonomous
driving have gained massive attention. For example, KITTI [10] is one of the most popular
datasets that was used in deep learning research for real traffic semantic segmentation.
Though successful for a very long period, KITTI is now outdated, and it no longer fulfills
research needs as it includes only clear weather scenes. The latest open datasets, such as
Waymo [11], Argoverse [12], and nuScenes [13], adopt state-of-the-art sensors and contain
various weather scenarios.

A comprehensive dataset for fully autonomous driving tests covers most traffic cases,
and different illumination and weather conditions. Collecting enough data requires a
considerable amount of expense. As a result, most deep learning studies use a public
dataset as the benchmark. Very little research focuses on evaluating the network for custom
data. To fill this gap, this work analyzes an FCN comparing performance between the
Waymo dataset and our custom dataset recorded by the iseAuto shuttle on the university
campus. iseAuto is an autonomous vehicle (AV) shuttle that was designed and developed
in the Autonomous Vehicles Lab in TalTech, Estonia [14–16]. This paper extends a work
submitted to the IEEE International Conference on Intelligent Transportation Systems.
In comparison, this paper exclusively reviews the relevant literature in the perspectives
of open datasets, semi-supervised learning proposals, and deep-learning-based LiDAR–
camera fusion algorithms. This version contains additional results and figures to describe
many technical details, such as the sensor specifications of the iseAuto shuttle, the workflow
of training procedures, and the description of data augmentation processes carried out
in the data loader; furthermore, the metrics used in this paper to evaluate the models’
performance are described in detail in the methodology section. Therefore, the section
containing results and discussion was presented from a different perspective.

The contributions of this work are summarized as follows:

• The development of a ResNet50 [17]-based FCN to carry out a late fusion of LiDAR
point clouds and camera images for semantic segmentation.

• A custom dataset (https://autolab.taltech.ee/data/) (accessed on 27 February 2022)
that was generated by the real-traffic-deployed iseAuto shuttle in different illumina-
tion and weather scenes. The dataset contains high-resolution RGB images and point
clouds information that was projected into the camera plane. Furthermore, the dataset
contains manual annotations for two classes: humans and vehicles.

• The performance evaluation for the domain adaptation of the neural network from
the Waymo Open dataset to custom iseAuto dataset.

• The evaluation of the contribution of pseudo-annotated data to the performance on
the iseAuto dataset.

The structure of the remainder of this paper is as follows: Section 2 reviews the open
datasets, semi-supervised learning proposals, and deep-learning-based LiDAR–camera
fusion algorithms for autonomous driving. Section 3 introduces the splits of the Waymo and
iseAuto datasets that were used in this work. Specifically, there is also a brief introduction
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of the sensor configurations used to produce the iseAuto dataset. Methodologies including
network structure, LiDAR projection, object segmentation, and metrics for model evaluation
were described in Section 4. Section 5 reports the experimental results and discussion.
Finally, a summary and conclusions were provided in Section 6.

2. Related Work

This section revisits literature on three aspects of LiDAR–camera fusion-based machine
learning for object segmentation. The first part is the existing datasets specifically for
autonomous driving research. The second part is the usage of semi-supervised learning
to improve the overall performance of the models. The last aspect is the popular deep
learning fusion algorithms to leverage the benefits of both camera and LiDAR sensors in
autonomous driving.

In recent times, data is believed to be a valuable asset. Focusing on autonomous
driving specifically, many research groups have dedicated themselves to producing datasets
recorded by mainstream perceptive sensors and covering various scenarios. In [18,19],
autonomous-driving-related datasets over the last 20 years were categorized by time of
acquisition, sensor configuration, illumination, and weather conditions. As it happens,
some datasets only contain sunny (including cloudy) and daytime scenes [20–22]. The
datasets that possess illumination and weather diversity, such as Nuscenes [13], Waymo [11],
and Argoverse [12], soon became the preferable option for training models. However, there
is no consistency of the sensor configuration in all these datasets, which means it is difficult
to merge the knowledge from different datasets together to improve the efficiency of the
learning process. In addition, some experiment-oriented datasets were recorded by highly
customized sensor modules on commercial cars. For example, in the ApolloScape [23]
dataset, a particular acquisition system consisting of two laser scanners, up to six video
cameras, and a combined IMU/GNSS system was mounted on top of a Toyota SUV. A
platform like this requires intensive maintenance routines and is unsustainable for large-
scale deployment. Very few works focus on the actual traffic pilot case considering finance
and reliability. For most open datasets, enormous human effort was applied to data
synchronizing, labeling, and denoising, which is not suitable for evaluating the models’
performance in extreme practical situations.

To reduce the amount of human work on the data processing task, several machine
learning techniques have been conceived. Semi-supervised learning is a machine learning
technique involving a small amount of labeled data and much unlabeled data. It provides
the benefits of supervised learning while avoiding the slow process requiring humans to
review samples one by one and give them the correct label. Recent survey papers [24,25]
summarize both previous and new research on semi-supervised learning, presenting a full
picture of the topic according to various taxonomies. The literature of semi-supervised
learning can be explored in different ways, referring to the availability of labels and
their relationship to the supervised learning algorithms. The classic methods include
generative models [26,27], semi-supervised support vector machines [28], and graph-based
methods [29]; all have a long research history. The method related to our work is pseudo-
labeling, which relies on high-confidence pseudo-labels added to the training split as
labeled data. There are two main patterns of the pseudo-labeling methods. The first one
is based on using disagreeing views from multiple networks to improve performance.
A typical example is co-training [30], a method to train two different models by using
different data splits. It is an iterated process that passes the prediction from one model to
the other; thus, each model is retrained with the additional unlabeled samples given by
the other model. The pattern used in our work is self-training, which is one of the earliest
semi-supervised learning ideas and can be dated back to the 1970s [31]. It starts by training
on the labeled data first. Then, part of the unlabeled data is predicted according to the
current decision function. The most confident prediction will be added to the training
set for the supervised learning algorithm. This procedure is repeated in self-training
methods until all the unlabeled examples have been predicted. The latest self-training
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research, for example [32], first trains a teacher model with a labeled dataset, then uses the
teacher model to generate labels for an unlabeled dataset that is re-used to train a student
model. The authors prove that the student model outperforms the teacher model with
the Cityscapes [33], CamVid [34], and KITTI [10] datasets. Xie et al. [35] propose utilizing
various techniques such as data augmentation, dropout, and stochastic depth to train the
student models. Similar approaches can be found in [36]; in addition to data augmentations,
extra cropping, rotating, horizontal mirroring, and color randomization were also used to
improve the model performance.

Recent breakthroughs in deep learning have significantly improved the capability of
LiDAR–camera fusion algorithms. The main applications that benefit from deep-learning-
based LiDAR–camera fusion methods include depth computation, object detection (bound-
ing box), and semantic segmentation. Although it is possible to extract the 3D geometry
from vision-based systems, LiDAR sensors naturally have the accuracy advantage in long-
range, textureless scenarios (such as nighttime scenes). The purpose of LiDAR–camera
fusion for depth computation is to combine the two sensors’ merits to acquire a dense and
accurate depth map. Ma et al. [37] propose a self-supervised learning model that requires
only sequences of RGB and sparse depth images for training. The deep regression model
learns a direct mapping from sparse depth input to dense depth prediction. In [8], early-
and late-stage fusions were combined in an image-guided framework that consisted of
a global and local network to process RGB data and depth information in parallel. The
stereo-cameras system is also widely used for depth completion because of the rich 3D
geometry in its disparity map. An example work is [38], which shows a two-stage CNN
design that first produces fused disparity by LiDAR and stereo disparity, then computes the
final disparity by fusing the fused disparity and left RGB image at the feature level. Three-
dimensional object detection aims to recover the pose and the bounding box dimensions for
all objects of interest in the scene. An example of early-stage fusion, [39] uses a ResNet [17]
and a PointNet [40]-based network to process cropped image and raw point cloud data.
Afterward, two fusion networks were used to regress the box corner locations and predict
the spatial offset of each corner relative to an input point, respectively. Liang et al. [41]
present a multi-task multi-sensor 3D object detection network. The authors exploit the
fact that multiple complementary tasks such as 2D object detection, ground estimation,
and depth completion are helpful for the network to learn better feature representations.
In contrast to 3D object detection that classifies the bounding boxes of objects, semantic
segmentation aims to predict per-pixel and per-class labels. Su et al. [42] employ bilateral
convolution layers in their network to compute spatially aware features of point clouds
data. Features from images and point clouds were fused to predict per-point labels. An-
other common semantic segmentation application for autonomous driving is road surface
detection; related research includes [6,43,44].

3. Dataset

As mentioned in the introduction, the primary purpose of this work is to evaluate
the model’s performance when adapting it from a public dataset to a realistic and coarser
environment. To train the supervised learning baseline models, we use the Waymo Open
dataset [11]. The dataset for semi-supervised learning and domain adaptation analysis is
collected using our custom vehicle, the iseAuto shuttle.

3.1. Waymo Open Dataset

Waymo Open dataset is an open-source autonomous driving dataset captured by
a high-quality camera and LiDAR sensors. The diversity across different weather and
illumination conditions of Waymo Open dataset offers opportunities in the research for
domain adaptation, which is one of the primary purposes in our work. Therefore, we
manually partition a total of 22,000 frames of data into four sub-categories based on
weather (fair or rain) and illumination (day or night) conditions. This includes a total of
14,940 frames in the day-fair subset, 4520 frames in the day-rain subset, 1640 frames in
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the night-fair subset, and 900 frames in the night-rain subset. Note that the proportions of
different weather conditions are highly unbalanced in the Waymo dataset since more data
was recorded under sunny daytime. Correspondingly, more frames (80%) were used for
training in the day-fair subset, while 60% of total frames were used in training for the other
three subsets.

Theoretically, K-fold cross-validation should be applied to reduce the performance-
dependence from the specific data split. However, the focus of this paper is transferring the
best knowledge gained in supervised learning to the new domain. Therefore, combining
the holdout method and early-stopping validation is more suitable in our case and saves a
large amount of training time. All frames were randomly shuffled before splitting them
into the training, validation, and testing datasets. The proportion for early-stop validation
is 10% of all four subsets, and the remaining data were used for testing.

3.2. iseAuto Dataset
3.2.1. iseAuto Sensor Configuration

The sensor configurations of the iseAuto shuttle evolved along with the comprehensive
practical tests [45]. The location of primary range sensors changed from two front-top
corners to the middle of the front-top and back-top. Two 90◦ vertical field-of-view (FoV)
LiDARs on two sides of the shuttle were installed to cover the essential side-blind zones,
especially in the proximity of door areas. Our latest upgrade is installing two solid-state
LiDARs on the inside-door-top and outside-front-bottom for the door-movements safety
and emergency brake, respectively. The main camera was installed inside the cabin, located
in the front and behind the windshield. Figure 1 illustrates the positions and orientations
of all perceptive sensors for the iseAuto shuttle.

Figure 1. Perceptive sensors layout. The Benewake CE-30C LiDAR is located inside the shuttle and
attached on top of the door.

In this work, the data collection was conducted by using the front-top Velodyne VLP-
32C and front-inside FLIR Grasshopper3. As the two primary perceptive sensors for the
iseAuto shuttle, the Velodyne VLP-32C has 32 channels that provide dense points clouds.
The resolution of FLIR Grasshopper3 is up to 4240 × 2824 to guarantee a sharp vision of
small objects such as traffic signs in the distance. Table 1 contains detailed specifications of
the camera and LiDAR sensors.
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Table 1. Specifications of the primary camera and LiDAR sensors of the iseAuto shuttle.

FoV (◦) Range (m)/Resolution Update Rate (Hz)

Velodyne VLP-32C 40 (vertical) 200 20

Grasshopper3
89.3 (D)
77.3 (H)
61.7 (V)

4240 × 2824 7

3.2.2. iseAuto Dataset Split

The environment of the iseAuto dataset is the TalTech campus, where the experimental
campaign was conducted. Compared to the Waymo dataset used in the supervised learning
baseline model, the night subset of the iseAuto data has a lower illumination condition.
The ambient light of the campus is typically darker than the urban area where Waymo
records their night data (shown in the first column of Figure 2). The partition of the iseAuto
dataset follows the same principle as the Waymo dataset partitions, with four categories:
day-fair, day-rain, night-fair, and night-rain. Both LiDAR and camera sensors were set to
work at 7 Hz, which is the maximum frequency that the camera can shoot at 4k resolution.
Correspondingly, one out of every seven frames of all point clouds and images were
selected. To avoid the unbalanced data allocation that exists in the Waymon dataset (more
data in day and fair conditions, less in night and rain), the total number of frames in each
subset of the iseAuto dataset is 2000, to make sure that the same amount of knowledge can
be gained from different weather and illumination conditions. For each subset, 600 frames
were manually annotated with vehicle and human pixel-level classes. The data splits for
training, early-stopping validation, and testing of all subsets have 300, 100, and 200 frames,
respectively.

Figure 2. Extract from the iseAuto dataset (a–c) on the first row; the second row represents the
Waymo dataset (d–f). For additional details, please refer to Section 4.

4. Methodology

Our work is an extension of the research presented in [9], where the authors differenti-
ate the Waymo dataset by illumination (day/night) and weather (fair/rain) conditions to
perform LiDAR–camera fusion and semi-supervised learning for semantic segmentation.
We first follow the same principle to partition the Waymo dataset into four subsets (day-fair,
day-rain, night-fair, and night-rain), then use them for the baseline model training. Sec-
ondly, we transfer the knowledge gained in the baseline supervised learning to the iseAuto
dataset, in order to evaluate the network’s performance in new domains. At last, we
conduct semi-supervised learning, which was expected to further improve the performance
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and domain adaptation. This section describes the data processing, model construction,
and training procedures specifically designed for our work.

4.1. LiDAR Point Cloud Projection

One of the most common methods to process LiDAR data is converting 3D point
clouds to 2D occupancy grids to efficiently exploit existing 2D convolutional networks.
The late-fusion FCN used in this work requires both LiDAR and camera input as 2D
images. Therefore, we apply perspective projection to project the point clouds into the
camera plane for the Waymo and iseAuto datasets. This means that both LiDAR data and
camera information need to be transformed into tensors. The usual procedure is to build
n-2D tensors of a specific size (for instance, the input of the CNN); thus, the 3D LiDAR
information should be projected into 2D tensors. For our case, the camera image tensor
is Ci ∈ Rh,w,3, where h is the height of the camera image, w is the width, and 3 is for the
RGB color channels. Analogously, the LiDAR tensor is Li ∈ Rh,w,3, where h and w are
the same height and width, and we use the three channels to represent the LiDAR data
projection into the XY-YZ-ZX planes. The projection is carried out in a typical reference
frame. For our case, the camera reference frame was chosen. Let pL

i = [xi, yi, zi]
T be the i-th

point of the point cloud obtained as a LiDAR reading, in its own reference frame. Please
observe that the reflective intensity value is ignored. The first step is to transform the point
cloud from the LiDAR to the camera reference frame using a homogeneous transformation
matrix, pC = TL

C pL, where pC = [x, y, z, 1] is a point represented in the camera reference
frame, pL = [x, y, z] is a point represented in the LiDAR reference frame, and TL

C ∈ R4,4 is
the LiDAR–camera transformation matrix.

Now, it is possible to simply project each point in a 2D image, and thus each pixel value
(u, v) of a generic point pi, where u = 1, . . . , h is the row pixel coordinate, v = 1, . . . , w is
the column coordinate in pixels, and h, w are the height and width of the camera image.
Let R be the rectification matrix, and P the projection matrix; then, [u, v, 1]T = PRpC.

The procedure above is applied to all points in the point clouds data. To ensure that
the projected LiDAR plane has the same dimensions as the camera image, only the points
within the field of view will be selected.

The Waymo dataset encodes the LiDAR data as range images with the same camera
images format. Each pixel in the range image corresponds to a laser point reading. All the
point information, such as range, vehicle pose, and camera projection, are included in the
range image pixel. With the assistance of the toolkit, developers can directly extract point
clouds images and well-overlaid camera projection from the Waymo dataset; thus, there no
need to deal with the raw data.

For the iseAuto dataset, since the shuttle was operated upon by the robot operating
system (ROS), LiDAR and camera data were captured as corresponding ROS formats and
stored as the bag files. Pre-processes are needed to handle the point clouds and images.
Extrinsic calibration of the LiDAR and camera first must be executed to compute the camera
projection matrix and the LiDAR–camera transformation matrix. The rectification matrix
was set to identity when projecting point clouds to images for the iseAuto dataset because
rectification has been done internally by the camera. An example output of point clouds
projection is shown in the second column of Figure 2. Note that the alignment of LiDAR
points and image pixels is not ideal without extra operations to optimize the calibration
and synchronization of LiDAR and camera sensors. Nevertheless, errors and interference
always exist in the real world, which are the factors that we want to consider in this work
through the iseAuto dataset.

4.2. Object Segmentation

Ground truth annotation is essential in machine learning and requires many labor
costs. In the Waymo dataset, annotations were created separately for LiDAR and camera
data. There are four kinds of objects (vehicles, pedestrians, signs, and cyclists) labeled
in LiDAR sensor readings and three kinds of objects (vehicles, pedestrians, and cyclists)
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labeled in camera images. Both 3D and 2D annotations were represented by bounding
boxes. Our process for the Waymo dataset is based on their LiDAR annotations. We select
all LiDAR points within the 3D bounding box and project them into the image plane. Each
projected point corresponds to a pixel in the image; the set of all projected points creates
the semantic mask of the objects. Compared to the 2D annotations, the most important
advantage of 3D annotations is that they provide a contour of the objects at a close distance.
Correspondingly, the drawback of using 3D annotation is that some pixels in the semantic
mask do not have labels because no LiDAR points fall into this area (see the third column
of Figure 2).

The annotations of the iseAuto dataset were created based on camera images, as our
high-resolution images contain more details of small objects (or objects that are far away).
We develop a labeling tool that allows human annotators to draw objects’ contours in
images and save the segmented area with its corresponding label. Semantic masks in the
iseAuto dataset are flood-filled, which means all pixels in the mask have a unique label.
Moreover, our annotations have an awareness of the contour of objects. It is a fact that
human error is inevitable in manual labeling work. For scenarios with poor illumination
conditions, point cloud projection was also used to identify possible objects that are not
clearly visible in the camera image. For the scope of this work, the resolution of annotation
images in the iseAuto dataset is 1920 × 1280; only vehicles and humans were masked out.
Further work includes labeling higher-resolution images and more object classes. More
objects and label verification are also needed.

Figure 2 shows some extracts of both datasets. The first row corresponds to the
iseAuto dataset, while the second row shows the Waymo dataset. The comparison of the
illumination condition in night scenarios is shown in the first column. Please note that, in
similar scenes, the iseAuto dataset is typically darker than the Waymo dataset due to the
external illumination and light source from the vehicle itself. The second column contains
an example of the point clouds projection. The camera coordinate of points was used to pick
out the corresponding pixels in the image. The colors of the pixels were assigned using the
HSV palette, based on the depth information of the point. An upsampling process was used
to make the iseAuto projection, as the point projection into a 4k resolution image is visually
sparse. The third column illustrates the annotations of two datasets. As discussed above,
no-label-zones exist in the Waymo dataset annotations because of the nature of LiDAR
sensors. These areas must be excluded from the metrics calculation. The annotation of the
iseAuto dataset is based on the camera image, in which the object masks are solid-filled
and contain contour information.

4.3. Model

The model implemented in this work can be considered the composition of three
different submodels. All of them are based on a well-known pre-trained ResNet50 [17]
model. The first model works only on camera images with their respective labels. The
second model has LiDAR data input instead. Lastly, the fusion model works as a joint
combination of feature maps coming from the camera images and the LiDAR point clouds,
which can be considered a late-fusion strategy. For each step, the loss function can be
calculated at the output of each submodel. This strategy is further described in [9].

4.4. Training

There are three training procedures for transfer learning experiments. The first step
is training supervised learning baseline models with only the Waymo dataset. The saved
models in this step were tested separately by the Waymo and iseAuto datasets. The second
procedure is the transfer learning experiment. Supervised learning baseline models of the
Waymo were continuously trained by the iseAuto dataset. To assess the contribution of the
knowledge attained from the Waymo dataset in the transfer learning process, there is also a
training process to get iseAuto baseline models (trained by only the iseAuto dataset from
scratch) in this step. The last procedure is semi-supervised learning (SSL). The literature is
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rich for SSL methods, such as the teacher-student model, co-training, or pseudo-labeling.
Machine-made annotations of the unlabeled dataset were made by the transfer learning
models from the Waymo to iseAuto dataset. Then unlabeled and labeled iseAuto data
were mixed to continuously train the transfer learning models, and to train the iseAuto
baseline model from scratch. Figure 3 summarily illustrates the training procedures that
were mentioned above.

Waymo baseline modelsWaymo labeled splits

iseAuto labeled splits iseAuto TL models

iseAuto labeled splits iseAuto baseline models

iseAuto SSL-TL modelsiseAuto unlabeled splits

iseAuto SSL modelsiseAuto unlabeled splits

Figure 3. The workflow of the training procedures. ‘TL’ and ‘SSL’ stand for transfer learning and
semi-supervised learning, respectively. ‘Waymo labeled splits’ and ‘iseAuto labeled splits’ represent
the Waymo and iseAuto manual-labeled data. ‘iseAuto unlabeled splits’ means the iseAuto machine-
labeled data produced by the iseAuto transfer learning fusion model. ‘Waymo baseline models’
and ‘iseAuto baseline models’ stand for supervised learning baseline models of the the Waymo
and iseAuto dataset. ‘iseAuto TL models’ means the Waymo-to-iseAuto transfer learning models.
‘iseAuto SSL-TL models’ and ‘iseAuto SSL models’ are iseAuto semi-supervised learning models with
and without knowledge adapted from the Waymo dataset, respectively. Please refer to Section 4.4 for
further details.

Cross-entropy loss fusion and Adam optimization [46] were used in this work. The
hardware used for training is an Nvidia RTX2070 Super GPU. The batch size is 16. An early
stopping mechanism was applied to all training processes. The learning rate decay follows
the equation:

n(i) = n0(1−
i
N
)a (1)

where the n0 is the starting learning rate, a is 0.9, and N was denoted as the total iterations.
Data augmentation was composed of random crop, random rotate, color jitter, and random
horizontal and vertical flip. Figure 4 shows an example of the data augmentation. The
output size of the random crop is 128 × 128. The random rotate range is (−20◦, 20◦),
referring to the center of the images. The probability of executing the random vertical
and horizontal is 50%. To maximize the diversity of the data augmentation, the order
of the five augmentation processes was shuffled in every iteration. Remarkably, data
normalization plays a vital role in this work, especially for the LiDAR data. Given the
significant differences in specifications of the LiDAR sensors used in the Waymo and
iseAuto datasets, the normalization of point clouds data of the two datasets has different
factors. The x, y, z coordinates of all points were appended together to compute mean
and standard deviation values. Further fine-tuning to the normalization parameters was
conducted to ensure the best performance.
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Figure 4. Data augmentation processes: (a) is the original image, (b) is color jitter, (c) is horizontal
flip, (d) is random rotate in the range (−20◦, 20◦), (e) is the random crop of dimension 128 × 128.

4.5. Metrics

The measurements that were used to evaluate the performance of models include
intersection over union (IoU), precision, recall, and area-under-curve average precision
(auc-AP) [47].

IoU, also known as Jaccard index, is a measure to compare the similarity between
two sample sets. The practical applications of IoU are mainly related to object detection,
especially in the field of machine learning, to train a model to output boxes that fit around
the objects. In this case, the ground-truth boxes (the hand-labeled bounding boxes that
specify the location of the objects in the image) are needed to compute the IoU. The
calculation is as follows:

IoU =
AI
AU

(2)

where AI is the overlap area, and AU is the union area of predicted and ground-truth boxes.
The overlap and union area calculation is based on the image coordinates of the bounding
box corners. However, our model produces instance segmentation of objects (per-pixel
labeling), instead of bounding boxes. Therefore, we adopt a pixel-wise multi-class IoU
algorithm to evaluate the model. Two object classes (vehicles and humans) were detected
in this work. It was assumed that V represents the vehicle class and H represents the
human class. The total number of pixels inferred as vehicle class (or human class) in both
prediction and ground-truth was denoted as VpVg (or Hp Hg). Vp Hg represents the number
of pixels indicated as a vehicle in prediction, but human in ground-truth. Similarly, HpVg
is the number of pixels labeled as human in prediction, but a vehicle in ground-truth. The
IoU of two classes is attained by:

IoUV =
VpVg

VpVg + Vp Hg + HpVg
(3)

IoUH =
Hp Hg

HpHg + HpVg + VpHg
. (4)

Precision is a metric to reflect the model’s reliability in classifying samples as positive.
It is defined as the ratio between the number of positive samples correctly classified and the
total number of samples classified as positive (either correctly or incorrectly). In our case,
the total number of pixels detected as vehicle or human by the model is the denominator
of the precision calculation. Therefore, the precision of the two classes is given by the
following equations:

Precision of vehicle =
VpVg

VpVg + VpHg
(5)

Precision of human =
Hp Hg

Hp Hg + HpVg
(6)

Recall indicates the capability of the model to detect the positive result. It is the
ratio between the number of positive samples correctly classified as positive and the total
number of positive samples. In our work, the recall of two classes is calculated by:

Recall of vehicle =
VpVg

VpVg + HpVg
(7)
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Recall of human =
HpHg

Hp Hg + Vp Hg
(8)

In general, precision measures the capability of the model to classify the positive
samples, but it does not consider correctly classifying all positive samples. On the contrary,
recall measures the number of positive samples that the model correctly classified, but it
neglects if the negative samples were classified as positive. High-precision-and-low-recall
means that the model is reliable if it classifies a sample as positive, but only a few positive
samples were classified. By contrast, low-precision-and-high-recall means most positive
samples were correctly classified, but there are also many negative samples classified as
positive by the model.

Plotting precision (y-axis) against recall (x-axis), named the precision-recall curve, is
an efficient way to analyze the tradeoff between precision and recall at various thresholds.
Average precision (AP) summarizes the information of a precision-recall curve into a single
value. Typically, AP is defined as the area under the precision-recall curve between 0 and 1.
In practice, the integral is simplified as the sum over the precision of different thresholds
multiplied by the corresponding change in the recall. The auc-AP that was used in this
work was proposed by PASCAL VOC 2010 [47], and it computes the AP as a numerical
integration, with precision monotonically decreasing, by setting the precision for recall
r to the maximum precision obtained for any recall r′ ≥ r. The equation for computing
auc-AP is:

auc_AP =
N

∑
k=1

∆r(k)max
k̃≥k

p(k̃) (9)

5. Results and Discussion

As mentioned in Section 4.4, we conduct three training procedures in this work,
which are described in this section and structured in the following way. We first evaluate
the supervised learning baseline model of the Waymo dataset. Next, we analyze the
transfer learning from the Waymo dataset to the iseAuto dataset. Finally, semi-supervised
learning was applied for both iseAuto baseline and transfer learning models to assess its
performance.

5.1. Waymo Supervised Learning Baseline

The Waymo supervised learning baseline models were trained by using all weather
and illumination sequences of the Waymo dataset. As described in Section 3.1, the holdout
method was used in the Waymo dataset to create the testing splits. Table 2 refers to the
result of the models trained and tested using the Waymo dataset only, corresponding to
RGB, LiDAR, and fusion modes. This first test shows that our network compares well with
other state-of-the-art works in terms of instance segmentation for the Waymo dataset [48,49].
Please note that this paper does not aim to outperform the Waymo benchmarks, but rather
to analyze how much knowledge gained from the Waymo dataset can be transferred to a
custom dataset to achieve good performance with only a limited amount of labeling work.
Therefore, the same model trained by the Waymo dataset was tested by the iseAuto data
without any additional training; the result is shown in Table 3.

As the most represented class in the two datasets, the IoU and auc-AP of vehicles
detection in the Waymo dataset reaches 93% and 96%, respectively. In the iseAuto dataset,
the fusion model’s performance in vehicles detection is acceptable, ranging from 45% to 56%
for IoU, and from 52% to 68% for auc-AP in challenging nighttime scenarios. By contrast,
humans, which are smaller than vehicles in size and less represented in both datasets, show
a lower segmentation accuracy than vehicles in the iseAuto dataset. Particularly for the
LiDAR model, the performance degrades, as shown in Table 3. The knowledge gained
from the Waymo LiDAR data seems to be less effective in detecting humans in the iseAuto
dataset. This was expected due to the different LiDAR sensors used to capture the two
datasets. It is not easy to compare data from various sensor technologies.
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Table 2. Performance of supervised learning Waymo baseline models tested by the Waymo dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 88.08 55.57 91.21 59.77 96.25 88.77 92.60 71.13
LiDAR 88.58 53.04 91.23 55.94 96.82 91.08 93.23 69.89
fusion 91.07 62.50 93.05 65.16 97.72 93.87 94.35 76.05

Day-Rain
camera 88.54 52.13 91.14 57.43 96.88 84.97 94.04 76.12
LiDAR 89.47 50.06 91.38 53.04 97.73 89.92 94.83 73.63
fusion 92.77 64.66 94.35 68.53 98.23 91.97 95.80 84.55

Night-Fair
camera 81.16 42.87 86.77 49.33 92.62 76.60 86.74 61.10
LiDAR 86.16 48.83 89.35 52.51 96.02 87.46 92.38 68.98
fusion 89.41 60.33 91.96 65.08 97.00 89.22 92.18 73.02

Night-Rain
camera 74.49 43.14 83.39 51.91 87.47 71.87 85.83 53.04
LiDAR 87.51 46.68 90.72 48.44 96.11 92.77 92.90 53.87
fusion 89.90 56.70 92.86 60.84 96.58 89.28 94.52 66.81

Table 3. Performance of supervised learning Waymo baseline models tested by the iseAuto dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 63.64 64.39 84.15 66.74 72.07 94.81 83.04 71.30
LiDAR 40.56 0.06 63.19 57.87 53.12 0.06 49.68 0.35
fusion 60.07 12.68 81.48 76.20 69.57 13.20 72.45 24.98

Day-Rain
camera 51.51 13.66 54.28 16.60 91.00 43.58 68.11 27.39
LiDAR 43.56 2.86 67.96 11.96 54.81 3.62 51.98 7.62
fusion 69.19 14.75 81.86 40.28 81.73 18.89 75.84 35.33

Night-Fair
camera 45.06 29.42 73.21 63.85 53.96 35.30 62.84 55.86
LiDAR 41.75 0.54 56.92 20.72 61.04 0.55 48.20 1.61
fusion 55.68 5.07 75.33 69.82 68.09 5.18 68.26 13.36

Night-Rain
camera 17.34 5.64 19.34 13.71 62.72 8.74 24.43 20.33
LiDAR 33.55 0.01 48.09 0.33 52.59 0.01 41.26 0.08
fusion 44.90 7.72 59.60 55.61 64.53 8.23 51.83 56.41

Specifically, in Table 2, precision values are lower than recall values (more significant
difference for human class), which means that most of the objects were correctly classified.
However, models also recognize some pixels belonging to other classes (e.g., background)
as humans. In Table 3, it is the opposite: recall values are typically lower than precision
values, which means that models cannot classify most of the objects correctly, but detection
is relatively reliable. This shows that models trained by only the Waymo dataset realize
the locations of the objects in the iseAuto dataset, but cannot draw out the whole object’s
contour.

5.2. Transfer Learning to iseAuto

In the transfer learning experiment, supervised learning baseline models of Waymo
were continuously trained using 1200 frames of iseAuto data that included different illumi-
nation and weather scenarios. Table 4 provides the metric results of the Waymo-to-iseAuto
transfer learning models. For comparison, the same amount of iseAuto data was also used
to train the iseAuto baseline models. The models’ performances are shown in Table 5.

By comparing Tables 4 and 5, one can note that, with the exception of human seg-
mentation in the LiDAR model, all other metric results increase with transfer learning, as
expected, even in challenging conditions such as night and rain. However, compared to
the iseAuto baseline model, the transfer learning camera model significantly improves
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human segmentation, which results in the fusion model in the transfer learning process
also generally performing better than the baseline. Please note that the amount of iseAuto
data for training, 1200 frames in total, is much smaller than the Waymo data (16,188 frames)
used for transfer learning and domain adaptation. The transfer learning fusion model has
the best accuracy at this stage and is used to generate the machine-made labels for the
unlabeled iseAuto data.

Table 4. Performance of the iseAuto transfer learning models from the Waymo dataset.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 77.10 75.87 85.02 79.40 89.22 94.46 84.59 81.67
LiDAR 72.14 55.71 81.07 57.48 86.75 94.75 80.65 61.08
fusion 83.27 74.24 89.41 76.46 92.38 96.24 88.34 82.91

Day-Rain
camera 80.26 48.11 85.82 67.13 92.53 62.93 84.15 72.22
LiDAR 77.33 40.27 82.35 45.06 92.70 79.11 81.48 63.36
fusion 84.92 57.61 88.75 65.08 95.16 83.37 87.99 73.99

Night-Fair
camera 66.07 52.38 75.02 61.38 84.71 78.13 77.61 74.58
LiDAR 74.50 45.38 80.58 47.78 90.79 90.04 82.93 60.75
fusion 80.43 64.03 86.55 73.18 91.92 83.67 87.66 76.88

Night-Rain
camera 51.70 41.39 63.11 47.21 74.09 77.06 61.50 63.29
LiDAR 62.51 26.46 68.24 27.05 88.15 92.38 73.02 50.79
fusion 67.89 45.68 75.26 49.48 87.40 85.61 79.46 74.34

Table 5. Performance of the supervised learning iseAuto baseline models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 75.97 71.31 86.43 74.10 86.26 94.99 84.26 79.01
LiDAR 71.19 56.87 78.74 59.01 88.14 94.03 78.00 66.99
fusion 80.39 74.56 87.26 77.63 91.08 94.97 86.40 83.10

Day-Rain
camera 77.71 39.87 81.15 51.82 94.82 63.35 82.28 66.49
LiDAR 76.00 42.10 81.44 46.52 91.93 81.58 80.43 59.12
fusion 83.20 56.24 87.37 65.16 94.58 80.43 87.52 75.12

Night-Fair
camera 68.89 54.98 76.04 62.79 87.99 81.54 79.27 73.55
LiDAR 74.25 47.19 80.03 50.52 91.13 87.75 82.96 54.16
fusion 76.79 62.48 85.75 75.66 88.02 78.19 87.11 77.40

Night-Rain
camera 52.17 29.40 60.88 32.26 78.49 76.81 66.67 54.27
LiDAR 59.49 36.76 64.82 37.91 87.85 92.33 82.30 62.08
fusion 64.68 46.09 74.42 50.30 83.17 84.64 78.96 76.59

5.3. Semi-Supervised Learning with Pseudo-Labeled Data

Semi-supervised learning uses the unlabeled iseAuto dataset, applied to the iseAuto
baseline models and Waymo-to-iseAuto transfer learning models. For each subset, there
are 1400 frames of data labeled by the Waymo-to-iseAuto transfer learning fusion model
(the best-performing model in earlier experiments). The machine-labeled data was mixed
with human-labeled frames to perform the semi-supervised training. The same iseAuto
data was used in all testing processes to ensure a parallel comparison. The evaluation of
semi-supervised learning models is illustrated in Tables 6 and 7.

Referring to Table 6, the semi-supervised learning iseAuto baseline models show 84%
IoU and 89% auc-AP for vehicle segmentation in fair illumination and weather conditions.
By comparing Tables 5 and 6, it is possible to see that the vehicle segmentation shows
robust performance improvement even in more challenging scenarios with the help of the
semi-supervised learning. The human segmentation is a weak point in this stage, which
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can be explained by the fact that the humans class is less represented in the dataset; too few
human samples are being recorded in the iseAuto dataset. Please note that recall shows
an effective increase in semi-supervised learning baseline models, which means that there
is an improvement of the models’ capability to detect the positive human samples. This
corresponds to the general principle in machine learning that more data can bring higher
performance. While there is a minor decline in precision, which means models detect
more negative samples as the human class, it proves the extra unlabeled data increases the
model’s uncertainty about the human class in semi-supervised learning.

Table 6. Performance of the semi-supervised learning iseAuto baseline models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 79.85 67.06 85.27 68.18 92.63 97.62 85.86 75.88
LiDAR 73.69 58.05 81.61 59.37 88.37 96.32 80.55 64.68
fusion 82.38 68.98 87.24 69.98 93.67 97.96 87.72 76.36

Day-Rain
camera 80.27 53.61 82.57 56.91 96.64 90.24 84.41 67.23
LiDAR 80.58 44.09 84.84 48.41 94.13 83.14 84.25 59.23
fusion 83.98 54.28 87.13 56.95 95.87 92.06 88.63 66.87

Night-Fair
camera 73.14 55.07 78.67 61.71 91.23 83.66 81.74 69.23
LiDAR 75.75 49.59 79.99 52.96 93.46 88.63 84.24 60.42
fusion 79.28 56.32 82.34 59.81 95.52 90.61 86.68 71.81

Night-Rain
camera 60.42 42.06 66.33 43.80 87.16 91.37 69.26 68.97
LiDAR 64.89 41.32 70.75 42.21 88.69 95.15 75.68 67.30
fusion 63.97 43.63 69.38 44.74 89.13 94.59 75.67 67.84

Table 7. Performance of the semi-supervised transfer learning iseAuto models.

IoU (%) Precision (%) Recall (%) auc-AP (%)

Vehicle Human Vehicle Human Vehicle Human Vehicle Human

Day-Fair
camera 80.32 69.25 87.41 70.53 90.83 97.45 85.04 76.99
LiDAR 76.10 61.81 83.28 63.30 89.83 96.34 81.32 71.22
fusion 82.85 71.09 87.93 72.55 93.49 97.24 87.91 78.48

Day-Rain
camera 82.49 57.12 86.33 60.85 94.87 90.31 87.75 69.98
LiDAR 81.00 44.85 85.03 49.57 94.48 82.50 85.05 60.68
fusion 85.04 54.84 88.16 61.61 96.00 83.32 88.36 70.4

Night-Fair
camera 75.97 55.46 83.13 65.45 89.81 78.41 84.64 71.00
LiDAR 76.01 51.63 80.16 55.07 93.63 89.20 84.01 64.51
fusion 79.82 60.21 83.88 67.71 94.28 84.46 88.20 73.43

Night-Rain
camera 60.79 48.30 69.38 51.45 83.07 88.76 71.65 72.03
LiDAR 64.40 41.15 69.95 42.17 89.04 94.45 73.63 64.49
fusion 66.92 48.36 73.19 50.64 88.65 91.49 77.76 72.81

Table 7 evaluates the semi-supervised learning iseAuto models with the transfer
learning knowledge from the Waymo dataset. The best-performing Waymo supervised
learning baseline models were continuously trained by full-annotated iseAuto dataset.
Comparing the results to Table 6, major improvement can be seen in all modalities and
domains, which means the knowledge gained from the Waymo dataset is still valuable
for the semi-supervised learning stage. Compared to the transfer learning iseAuto models
without semi-supervised learning (Table 4), the individual RGB and LiDAR networks
have a maximum of 10% increase in some cases. At the same time, the fusion model does
not show further improvement with additional machine-annotated data in training. This
effect is more evident in challenging scenarios with the human class. The reason might be
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attributed to a lack of accuracy in the labels, particularly in the semi-supervised learning
mode, and a scarcity of data points for smaller objects, such as a human.

In summary, through all the above scenarios, it is possible to say that domain adapta-
tion and semi-supervised learning can lead to an average increase between 2 to 5 percentage
points in vehicle segmentation. Specifically, in the average of all above scenarios, vehicle
segmentation in fusion mode improves from 76% in the iseAuto baseline to 79% in the
semi-supervised transfer learning mode, an increase of three percentage points. How-
ever, accurately segmenting less-represented classes with fewer points in the scenario,
such as the human class, remains a challenge due to the scarcity of data and inaccurate
machine labeling.

6. Conclusions

In this paper, the results of our machine learning algorithm involving LiDAR–camera
fusion, transfer learning, and semi-supervised learning on our custom dataset are shown.
The data used in this work are acquired using our custom autonomous shuttle, iseAuto.
This work extends the results presented in a previous conference paper by giving a deep
insight and analysis of the performance of our machine learning algorithm. Our algorithm’s
performance is first shown on a publicly available dataset, the Waymo data, used as a
benchmark to show that this algorithm is aligned with the state of the art. As the main focus
of this paper is to show that it is possible to achieve reasonable performance on a custom
dataset with only a limited amount of annotation, we have trained the network with little
data (only 10% of Waymo), showing an already reasonable performance. The baseline was
compared against a network trained on Waymo and combining iseAuto data in transfer
learning, providing over 80% performance in IoU in day-fair conditions and using the
fusion algorithm. In the future, this work can be extended by adding more labeled and
unlabeled data to the iseAuto dataset with more diversity for different weather conditions
and traffic scenarios, and including more classes. The performance of the fusion model has
enormous potential to be further improved. A different line of work could be adaptation
research of our algorithms for different dataset sources to improve the networks’ capability
in domain adaptation and detecting more challenging object classes.
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