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Abstract: The imbalance of network data seriously affects the classification performance of algorithms.
Most studies have only used a rough description of data imbalance with less exploration of the specific
factors affecting classification performance, which has resulted in difficulty putting forward targeted
solutions. In this paper, we find that the impact of medium categories on classification performance
cannot be ignored, and therefore propose the concept of partial balance, consisting of Class Number
of Partial Balance (β) and Balance Degree of Partial Samples (µ). Combined with Global Slope (α), a
parameterized model is established to describe the difference of imbalanced datasets. Experiments
are performed on the Moore Dataset and CICIDS 2017 Dataset. The experiment’s results on Random
Forest, Decision Tree and Deep Neural Network show increasing α is a conducive step in the
performance improvement of minority classes and overall classes. When β of dominant categories
increases, that of inferior classes decreases, which results in a decrease in the average performance
of minority classes. The lower µ is, the closer the sample size of medium classes is to the minority
classes, and the better the average performance is. Based on the conclusions, we propose and verify
some basic strategies by various classical algorithms.

Keywords: network traffic classification; data imbalance; imbalance degree; minority class; par-
tial balance

1. Introduction

In massive network data, due to different user preferences and service types, data
distribution is often imbalanced. There are majority classes and minority classes, i.e.,
the number of samples in some categories is far less than those in other categories. For
example, the KDD CUP 99 [1] and Moore dataset [2] are typically imbalanced network data
sets. Traditional classification methods usually assume that data distribution is balanced
and the misclassification cost is equal. When the traditional classification algorithms are
used to deal with imbalanced data, taking overall accuracy as the goal will make the
classification model tend to the majority classes and ignore the minority classes, resulting
in low classification accuracy in the minority classes. From the perspective of data mining,
the discovery and identification of minority classes is of higher analysis value, e.g., the
attack data in network intrusion detection [3]. Therefore, researching data imbalance has
important theoretical value and practical significance.

Many methods have made significant progress in addressing data imbalance and
improved classification performance, but there are still unresolved problems. The ex-
isting studies show merely a rough description of data imbalance without considerable
exploration of the essence of data imbalance. The specific impact of data imbalance on clas-
sification performance is not clear enough. The factors affecting classification performance
have not been further explored. Therefore, it is difficult to put forward precise and targeted
guidance for follow-up solution strategies. Garcia et al. [4] investigated the influence
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of both the imbalance ratio and the classifier on the performance of several resampling
strategies. Experiments showed oversampling the minority class consistently outperforms
undersampling the majority class when data sets are strongly imbalanced. Buda et al. [5]
proposed two indicators to describe data imbalance and set imbalanced image datasets
to verify the impact of imbalanced datasets on CNN under different parameter settings.
However, only majority classes and minority classes were considered, and only using
ROC and AUC (area under receiver operating characteristic) as metrics to evaluate the
classifier’s performance was not comprehensive. Fadi et al. [6] studied the precise nature
of the relationship between the degree of class imbalance and the corresponding classifier
performance. By changing class imbalance ratios and using the probabilistic Nave Bayes as
the base classifier, the experiments highlighted the effects of class imbalance. Ajay et al. [7]
resolved two essential statistical elements: the degree of class imbalance and the complexity
of the concept, which helped in building the foundations of a data democracy. They focused
on the main causes of imbalance, which were class overlap and small disjoints.

The actual datasets are complex, as there are not only majority and minority classes
but also medium classes between them. Most oversampling methods aim to balance all
categories by adding the sample size of minority classes [8–11]. However, in the face of
extreme imbalance, it is still not possible to solve the fundamental problem. Therefore,
concerning the improvement of classification performance of imbalanced data, further
exploration of the factors affecting the classification performance of imbalanced data
is a worthy research direction. Research on data imbalance can help us have a clearer
understanding of the essence of the problem. When the optimization objectives required
by different scenarios are different, we can put forward precise and targeted strategies.

The main contributions of this paper are as follows:
(1) Proposal of a parameterized model based on imbalanced network datasets and a

solution to the problem of insufficient description of data imbalance.
(2) Clarification of the factors affecting the classification performance of imbalanced

data, and finding and verifying the influence of partial balance.
(3) Proposal and proof of the basic strategies to solve the problem of network

data imbalance.
The structure of this paper is organized as follows. The Section 2 is about related work.

The Section 3 is the parameterized description of imbalanced datasets. In the Section 4,
we conduct experiments to explore the impact of different parameters on the classification
performance of imbalanced datasets. The Section 5 explores the differences in classification
performance of imbalanced datasets with partial balance and the impact of partial balance.
In addition, some feasible strategies are put forward and proved in several algorithms. The
Section 6 concludes this paper.

2. Related Work

In the past two decades, many representative research results have been achieved around
data imbalance, mainly focusing on two aspects: data resampling and classifier design.

2.1. Data Resampling

Data resampling includes undersampling methods and oversampling methods.
Undersampling methods balance the dataset by reducing the samples of majority

categories. Random Undersampling (RUS) is the basic method to balance the dataset by
randomly reducing the sample size of majority classes. However, this method may result
in losing some valuable information when deleting samples. To overcome this problem,
EasyEnsemble and BalanceCascade were proposed [12]. The EasyEnsemble algorithm
extracts several subsets from majority classes independently and randomly, and mixes each
subset with minority class data to train several base classifiers. Finally, these base classifiers
are combined to form an integrated learning system. BalanceCascade algorithm uses the
previously formed integrated classifier to select the majority class samples for the next
training. In [13], the ENN algorithm was proposed. Here, the idea is to delete the samples
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of two or more categories from the three nearest neighbor samples. Based on ENN, the
NCR method was proposed [14]. Here, the core idea is to find the three nearest neighbor
samples for each sample in the training set. If the sample belongs to the majority class
and more than two of its three nearest neighbors are minority class samples, it is deleted.
On the contrary, when the sample belongs to the minority class and more than two of its
three nearest neighbors are majority class samples, the majority class samples in the nearest
neighbors are removed.

Oversampling methods balance the dataset by adding the samples of minority cat-
egories. Random Oversampling (ROS) is the basic method to balance the dataset by
randomly copying the data or simply rotating the images in image recognition. However,
repeated replication of minority classes may lead to overfitting. Therefore, the classical
algorithm SMOTE was proposed [15]. By randomly selecting samples of the same near-
est neighbor for interpolation, a new sample of the minority class without repetition is
generated, which can effectively solve the overfitting problem and significantly improve
classification performance. However, this method may lead to overgeneralization, sample
overlap, noise and other problems. To solve these problems, some improved SMOTE
algorithms emerged. D-SMOTE generates minority class samples by finding the mean
point of the nearest neighbor samples [16]. Borderline-SMOTE only generates synthetic
samples for minority class samples close to the boundary [17]. In addition, some adaptive
oversampling methods were proposed. ADASYN [18] uses the density distribution as
the standard to automatically determine the number of synthetic samples. By adaptively
changing the weight of different minority classes, a corresponding number of synthetic
samples are generated for each sample.

In addition, deep learning techniques have emerged to address data imbalance. Gener-
ative Adversarial Networks (GAN) are used to expand the minority data and Multi-Layer
Perceptron (MLP) is used to evaluate the performance [8]. The experimental results show
that the recall and F1 of minority class samples increase by 17.0% and 15.6%, respectively,
compared to the original imbalanced dataset. But GAN cannot control the pattern of
generated data and is, thus, uncontrollable. A method called Auxiliary Classifier GAN(AC-
GAN) was proposed [10] to generate traffic samples on the traffic dataset NIMS. However,
the training time was longer compared to other methods. In addition, Long Short-Term
Memory (LSTM) can also be used for oversampling. A data augmentation method based
on LSTM and Kernel Density Estimation (KDE) was proposed [11]. A packet sequence in
a stream is generated by LSTM, and then a random value is generated according to the
distribution of features in the sequence. The feature of the sequence is estimated by KDE to
generate samples of minority classes until the dataset is balanced.

2.2. Classifier Design

As for classifier design and improvement, common strategies include cost-sensitive
learning, one-class learning and end-to-end learning.

Cost-sensitive learning focuses on samples with higher error costs in classifica-
tion [19]. In [20], based on the decision tree algorithm, the idea of cost sensitivity was
injected into the splitting and pruning stages to improve the weight of minority classes.
Different cost factors were given to different categories by [21], based on SVM, to obtain
the best classification result with minimum cost. When the number of minority samples is
too small, cost-sensitive learning is no longer applicable. By combining deep learning with
cost-sensitive learning to solve the problem of data imbalance, the existing works mostly
start with improvement of the loss function. In [22], the loss function was improved based
on the MLP. The average error and the average square error were proposed, which were
more sensitive to the errors from minority classes and suitable for imbalanced data.

One-class learning intends only to train the majority class samples, form a model for
majority classes, and identify the majority class samples from the test samples, rather than
distinguish the minority classes and the majority classes. Representative methods include
one-class SVM [23], SVDD [24], etc. One-class learning can effectively reduce time cost. It
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is suitable for the extreme situation of very few class samples or high imbalance between
classes, but it focuses more on majority classes and easily overfits minority class samples in
the training set.

End-to-end learning is the direct learning of the mapping from the original data to the
expected out. It is completely handed over to the deep learning model, which is different
from the divide and conquer method of machine learning. An end-to-end Tree-Shaped Deep
Neural Network (TSDNN) was designed based on MLP in [25], which classified the data
hierarchically. To better learn minority classes, an algorithm named Quantity Dependent
Backpropagation (QDBP) was proposed, which integrated the knowledge of differences
between classes. A model named Parallel Cross Convolution Neural Network (PCCN) was
designed in [26], which was composed of two branch models in parallel: Convolutional
Neural Networks (CNN) and Fully Convolutional Networks (FCN). Through feature fusion
technology, the traffic features learned from the two branch convolutional neural networks
were cross-fused, and could better learn the traffic features with fewer samples and improve
the detection effect of imbalanced abnormal traffic.

3. Parameterized Model of Imbalanced Dataset

Network services are taken as an example to analyze the existing data imbalance.
Table 1 shows the proportion distribution statistics of the Moore dataset. The dataset

contains 377,526 network flow samples, which are divided into 10 application types. The
Moore dataset is a typical imbalanced dataset, and the sample size of various application
types varies greatly.

Table 1. Distribution of Moore dataset.

Application Type Sample Size Percentage (%)

WWW 328,092 86.91
MAIL 28,567 7.567
BULK 11,539 3.056

DATABASE 2648 0.701
SERVICES 2099 0.556

P2P 2094 0.555
ATTACK 1793 0.475

MULT 576 0.152
INT 110 0.029

GAME 8 0.002

Total 377,526 100

From the perspective of similar applications, the launch of new applications will
lead to a big gap in network data scale between new applications and existing similar
applications. Moreover, influenced by regional cultural differences and user preferences
(such as Skype, used internationally, and WeChat, mainly used in China), there will also
be great differences in data scale between mainstream applications and non-mainstream
applications. In addition, different software data in similar applications with relatively
stable user groups will produce a relative data balance (relatively concentrated area of Type
1–Type 3 in Figure 1) or stable data scale gap (Type 4). From the perspective of different
types of applications, data imbalance is mainly caused by different business attributes. For
example, the number of business flows, such as web data, is huge compared to other data
(majority classes in Type 1–Type 4).

Through the above analysis, the following four dataset types with data imbalance are
further summarized.

As shown in Figure 1, Type 1 includes a majority class, several medium classes and a
minority class, and the distribution area of medium classes is relatively concentrated. We
call this partial balance. Type 2 includes medium classes and a minority class, and medium
classes show partial balance. Type 3 includes a majority class and several minority classes,



Electronics 2022, 11, 1322 5 of 17

and minority classes show partial balance. Type 4 has the characteristics of a majority class
and minority class, but the data scale of the medium classes has no relatively centralized
attribute and has a linear characteristic. We consider that there is no partial balance in this
case. Type 5 is a balanced dataset for comparative analysis.
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Based on the above analysis, the characteristics of the actual dataset types include the
sample size, the class number of majority, minority and medium categories. According to
these characteristics, imbalanced datasets are modeled and several parameters are proposed
to describe imbalanced datasets as follows:

Define a dataset as D = D1 ∪ D2 ∪ . . . ∪ DN , Di ∩ Dj = ∅ (i 6= j) where Di and Dj are
the subclasses of D, and N is the number of categories in D, N = 1, 2, 3, . . . , i, j ∈ N.

Imbalanced Dataset D: {Global Slope, Class Number of Partial Balance, Balance
Degree of Partial Samples}.

Partial Balance: {Class Number of Partial Balance, Balance Degree of Partial Samples}.
Multiple parameters are used to define the balanced part of the imbalanced dataset, which
is a phenomenon in the imbalanced dataset.

Global Slope: α is the ratio of minority class samples to majority class samples in the
dataset, which is defined as:

α =
min|Di|
max|Di|

, i = 1, 2, . . . , N (1)

Class Number of Partial Balance: β is the class number of partial balance. According
to the dataset types in Figure 1, there are βmaj, βmed, βmin which represent the class number
of partial balance of majority classes, medium classes, minority classes, respectively. β
is an integer, 0 ≤ β ≤ N. When β = 0, the dataset shows linear imbalance, i.e., Type 4.
When β = N, the dataset is balanced, i.e., Type 5. The larger β, the higher the degree of
partial balance.

β = {1, 2, . . . , N} (2)

Balance Degree of Partial Samples: µ is the ratio of the partial average sample size
to the average sample size of majority classes, depicting the degree of partial balance. The
lower µ, the lower the height of the partial sample size. µ is expressed as:

µ =

1
βmed

n
∑

m=1
med|Dm|

1
βmaj

j
∑

i=1
maj|Di|

, (3)

where n, j ∈ N.
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The above parameters can describe the main characteristics of dataset types. To
simulate the types of actual datasets, some random fluctuations are added to the sample
quantity of each category. For example, σ = 20% means that all categories’ sample sizes in
the dataset fluctuate by 20%.

4. Impact of Imbalanced Dataset Parameters on Classification Performance

When classifying the same type of imbalanced dataset, the average classification
performance of majority classes, minority classes and the overall classes can be affected by
the parameters. To explore the influence of parameters on classification performance, the
following experiments are designed.

4.1. Experimental Details
4.1.1. Experimental Environment

Our experimental environment is shown in Table 2.

Table 2. Experimental environment settings.

Item Setting

Hardware

CPU Intel(R) Core(TM) i7-10875H CPU
GPU NVIDIA GeForce GTX 2070Ti
RAM 64 GB

OS Windows 10

Language Python 3.6
Software IDE Spyder 4.0.1

Framework Scikit-learn

4.1.2. Data Sets

The datasets used in this paper are the Moore dataset and CICIDS 2017 dataset [27].
Moore Dataset: The Moore dataset is represented by 249 attribute features. To re-

duce redundant features and the amount of calculation, and improve the classification
efficiency, only 10 features used in reference [28] for each network flow are adopted by
our experiments. In addition, only 6 application types are used, namely WWW, MAIL,
BULK, DATABASE, SERVICES, P2P. The reason for choosing these categories is that the
sample size of these categories is more than 2000, which is, conveniently, enough data
for experiments.

CICIDS 2017 Dataset: The CICIDS 2017 dataset is a network traffic dataset close to
the real world, including normal traffic and abnormal traffic. There are 79 features in the
dataset, including a label feature and a duplicate feature. Our experiments use machine
learning CSV data, and, to reduce redundant features, 15 features used in [29] and 6 types
are adopted, namely Benign, DOS Hulk, PortScan, DOS Slowhttptest, DOS Slowloris and
Web Attack.

4.1.3. Basic Experiment Settings

The basic experiment settings are shown in Table 3. In addition, the average sample
quantity of majority classes is always 5000. The classifiers used in these experiments are
Random Forest (RF), Decision Tree (DT) and Deep Neural Network (DNN) in Scikit-learn
package. The parameter settings of the classifiers are set as the default parameters shown
in Table 4. Each category is arranged and combined in turn as the minority category
and the majority category to reduce the impact of the category itself on the classification
performance. Each experiment takes the statistical average results by repeating 100 times.
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Table 3. Dataset Settings.

Dataset Number of Classes Sample Size of
Each Class

Ratio between Training
Set and Testing Set

Moore
Dataset 6 25–5000 7:3

CICIDS 2017

Table 4. Classifier Settings.

Classifier Parameter Setting

n_estimators = 10
criterion = ‘gini’

Random Forest min_samples_split = 2
min_samples_leaf = 1

bootstrap = True
n_jobs = 1

splitter = ‘best’
criterion = ‘ gini’

Decision Tree min_samples_split = 2
min_samples_leaf = 1

presort = False

hidden_layer_sizes = (30,20,10)
optimizer = Adam

Deep Neural Network learning_rate_init = 0.001
epoch = 50

Batchsize = 50

4.1.4. Evaluation Indicators

In machine learning, the commonly used performance metrics are recall rate rec,
precision rate pre and F1-score f 1. pre reflects the proportion of real positive samples in
the positive samples determined by the classifier. rec reflects the proportion of positive
samples correctly judged in the total positive samples. f 1 is the harmonic mean of pre and
rec. Their definitions are given by Equations (4)–(6) for a given category Di.

preDi = TPDi /(TPDi + FPDi ) (4)

recDi = TPDi /(TPDi + FNDi ) (5)

f 1Di = 2 ∗ recDi ∗ preDi /(recDi + preDi ) (6)

TPDi is the correctly labeled number. FPDi denotes the predicted label as Di, but the
actual label is not Di. FNDi implies that the predicted label is not Di, but the actual label is
Di. TNDi means that neither the predicted label nor the actual label is Di.

In addition, macro indicators are used and given by Equations (7)–(9) to measure the
overall classification performance. N is the total number of categories. Aver.Pre is the
average pre, Aver.Rec is the average rec, and Aver.F1 is the average f 1. For example, Macro
Aver. Rec is the average rec of the overall categories and Minor Aver. Rec is that of the
minority categories.

Aver.Pre =
1
N

N

∑
i=1

preDi (7)

Aver.Rec =
1
N

N

∑
i=1

recDi (8)

Aver.F1 =
1
N

N

∑
i=1

f 1Di (9)
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4.2. Parameters’ Impact on Classification Performance of Type 1

Different types of datasets use different parameters. According to the characteristics of
Type 1, three sets of experiments are set up to respectively explore the effects of parameters
α, β, µ on classification performance, as shown in Table 5.

Table 5. Experimental parameter settings of Type 1.

Dataset Type Experiment
Number Parameter Setting

Type 1

1-A α = {0.001, 0.002, 0.003, 0.004, 0.005, 0.01},
βmed = 4, µ = 0.5, σ = 20%

1-B α = 0.01, βmaj = 1, βmed = {1, 2, 3, 4}, µ = 0.5, σ = 20%

1-C α = 0.01, βmed = 4, µ = {0.02, 0.1, 0.2, 0.5}, σ = 20%

4.2.1. 1-A Impact of α

To explore the effect of Global Slope on classification performance of Type 1, α is
changed and other parameters are fixed.

The lower α, the higher the degree of data imbalance. According to the experimental
results shown in Figure 2, with the decrease of α, (1) the average recall rate and F1-score of
minority categories show a downward trend. When α = 0.003, the recall rate of the Moore
dataset by Random Forest is 56.96%, so the classifier is not reliable anymore. It shows that
data imbalance has a large negative impact on the classification performance of minority
classes. (2) The overall classification performance also shows a downward trend.
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that is, the class number of medium classes in the dataset. The larger βmed, the higher the
degree of partial balance.

According to Figure 3, as βmed increases, the recall rate and F1-score in minority
classes decrease. However, the recall rate and F1-score of the overall classification perfor-
mance show an upward trend, which indicates that the increase of βmed is conducive to
improvement of the overall performance.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 

 

                                 (a) 

 
                                 (b) 

Figure 2. The effect of α on the classification performance of Type 1. (a) Moore Dataset; (b) CICIDS 
2017 Dataset 

4.2.2. 1-B Impact of β  

Experiment 1-B explores the effect of Class Number of Partial Balance on the classi-
fication performance of Type 1, so β  is changed and others are fixed. In this case, β  
means medβ , that is, the class number of medium classes in the dataset. The larger medβ
, the higher the degree of partial balance. 

According to Figure 3, as medβ  increases, the recall rate and F1-score in minority 
classes decrease. However, the recall rate and F1-score of the overall classification perfor-
mance show an upward trend, which indicates that the increase of medβ  is conducive to 
improvement of the overall performance. 

 
                                (a) 

Electronics 2022, 11, x FOR PEER REVIEW 10 of 18 
 

 

 
                                (b) 

Figure 3. The effect of β on the classification performance of Type 1. (a) Moore Dataset; (b) CICIDS 
2017 Dataset 

4.2.3. 1-C Impact of μ  

Experiment 1-C explores the effect of the Balance Degree of Partial Samples on the 
classification performance of Type 1. So μ  is changed. The lower μ , the lower the 
height of the medium classes, and the closer the medium classes are to the minority clas-
ses. 

As revealed by Figure 4, with increase in μ , all evaluation indicators of minority 
classes, and the whole, decrease. It shows that the lower μ  is, the better the classification 
performance is. 

 
                                (a) 

 
                                 (b) 

Figure 4. The effect of μ on the classification performance of Type 1. (a) Moore Dataset; (b) CICIDS 
2017 Dataset 

4.3. Parameters’ Impact on Classification Performance of Type 2 
Although the practical significance of Type 2 and Type 3 are different, they can be 

both described by α  and β . From the perspective of modeling, they can be regarded as 
the same case. Therefore, the discussion of Type 2 in this section is equivalent to Type 3. 

Figure 3. The effect of β on the classification performance of Type 1. (a) Moore Dataset; (b) CICIDS
2017 Dataset.

4.2.3. 1-C Impact of µ

Experiment 1-C explores the effect of the Balance Degree of Partial Samples on the
classification performance of Type 1. So µ is changed. The lower µ, the lower the height of
the medium classes, and the closer the medium classes are to the minority classes.

As revealed by Figure 4, with increase in µ, all evaluation indicators of minority
classes, and the whole, decrease. It shows that the lower µ is, the better the classification
performance is.

4.3. Parameters’ Impact on Classification Performance of Type 2

Although the practical significance of Type 2 and Type 3 are different, they can be both
described by α and β. From the perspective of modeling, they can be regarded as the same
case. Therefore, the discussion of Type 2 in this section is equivalent to Type 3. According
to the characteristics of these types, α and β are explored and the experimental parameter
settings can be seen from Table 6.

4.3.1. 2-B Impact of β

Experiment 2-B explores the effect of β on the classification performance of Type 2.
As shown in Figure 6, with the increase in β, the average performance of minority

categories shows a downward trend, but the overall performance is on the rise.
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Table 6. Experimental parameter settings of type 2.

Dataset Type Experiment Number Parameter Setting

Type 2
2-A α = {0.005, 0.01, 0.02, 0.1, 0.2}, βmaj = 1, σ = 20%

2-B α = 0.05, βmaj = {1, 2, 3, 4, 5}, σ = 20%

4.3.2. 2-A Impact of α

Experiment 2-A explores the effect of α on the classification performance of Type 2.
According to Figure 5, with the decrease in α, the imbalance degree intensifies, and the

recall rate and F1-score of minority classes and the overall classes show a downward trend. It
can be calculated that α is the main parameter on the classification performance of Type 2 and
Type 3. The reduction of α is beneficial to the improvement of classification performance.

4.4. Parameters’ Impact on Classification Performance of Type 4

Since Type 4 describes a linear imbalanced dataset, the most obvious feature is the
Global Slope. Therefore, only α is used to describe this type. The experimental settings are
α = {0.002, 0.01, 0.02, 0.1}.

The experimental results are shown in Figure 7. With the decrease in α, the classifica-
tion performance indicators of minority classes, and the whole, decrease.

4.5. Result Analysis

α shows a negative impact on the average performance of minority and overall cate-
gories. As the results in Table 7 show, due to the decrease in α, the sample proportion of
minority classes in the overall dataset decreases and the average classification performance
of minority and overall categories show a downward trend.
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Table 7. Parameters’ impact on classification performance of different dataset types.

Average
Performance Type Condition Recall F1 Condition Recall F1 Condition Recall F1

Minority
Classes

Type 1

α↓

↓ ↓

β↑

↓ ↓

µ↓

↑ ↑
Type 2 ↓ ↓ ↓ ↓ - -
Type 4 ↓ ↓ - - - -

Overall
Classes

Type 1 ↓ ↓ ↑ ↑ ↑ ↑
Type 2 ↓ ↓ ↑ ↑ - -
Type 4 ↓ ↓ - - - -

‘↓’ means decrease. ‘↑’ means increase. ‘-’ means unknown.

When β of dominant categories increases, that of inferior classes decreases, which
leads to the decrease in the average performance of minority classes. In Type1, β = βmed,
the more the class number of medium categories, the less that of minority classes, and the
lower the average performance of minority classes. In Type 2, β = βmaj, the more the class
number of majority classes, the worse the average performance is. In either case, βmed or
βmaj is the class number of dominant categories in the dataset, which can lead to decline in
the average performance of minority classes.

The lower µ is, the closer the medium classes are to the minority classes, and the better
the average performance is. From the results, in Type 1, the decrease of µ represents the
decrease in the sample size of the medium categories, and the classification performance of
minority and overall classes increase.

5. Parameters’ Impact on Classification Performance for Imbalanced Data Sets with
Partial Balance

Further analysis shows Type 1 and Type 2 are more complex. Partial balance exists in
Type 1 and Type 2, in which Type 1 is affected by α, β and µ, and Type 2 is affected by α
and β. To further study the impact of partial balance and the difference in classification per-
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formance of imbalanced datasets with partial balance, the coordinated change of multiple
parameters is carried out in the following experiments.

5.1. Experimental Setup and Results

This section uses the same experimental environment and classifier as Section 3. α and
β are adjusted at the same time to observe the performance difference between Type 1 and
Type 2, where α = {0.001, 0.01, 0.1}, βmin = {1, 2, 3, 4}, µ = 0.5, and βmaj = 1 in Type 1.
There are 12 groups of experiments.

As shown in Figures 8 and 9, with the decrease in α, the degree of data imbalance inten-
sifies, the average performance of minority categories and the overall average performance
shows a downward trend, which is also true when βmin = {1, 2, 3, 4}. With the increase of
βmin, the class number of minority categories increases, while the class number of majority
categories decreases. Accordingly, the average performance of minority categories in Type
1 and Type 2 both increase. The overall performance of Type 1 and Type 2 decrease. The
above is also consistent with the conclusion in Section 4.
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The larger βmin is, the higher the partial balance of minority categories is. The better
the average performance of minority categories is, the worse the overall performance of
Type 1 is. The higher the partial balance of the minority class is, the better the average
performance of the minority class will be.

Therefore, the conclusions can be summarized in the classification performance of
Type 1 and Type 2 being different. For the average performance of minority classes and the
overall classes, Type 2 is better than Type 1.
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5.2. Strategy Validation for Improving Classification Performance

From Section 4, it can be seen α and µ can affect the classification performance of
the minority classes and overall classes. To further verify this conclusion, several clas-
sical algorithms based on the data level are used to conduct experimental comparison
and validation.

5.2.1. Experimental Setup

The oversampling strategy and the undersampling strategy are used on the Moore
dataset. The categories WWW, MAIL and BULK are regarded as majority classes, MULT,
INT and GAME are regarded as minority classes, and the other four categories are medium
classes. The detailed experimental settings are shown in Table 8. Exp. No. 1 is the
original imbalanced Moore dataset. Oversampling is achieved by increasing the sample
size of minority classes and the changed parameter is α. When undersampling acts on
majority classes, the changed parameter is α. When undersampling acts on medium classes,
the changed parameter is µ. Random Forest classifier is used to perform classification
experiments. Each experiment takes the statistical average results by repeating 50 times.

Table 8. Experimental setup and description.

Exp. No Strategy Adjusted
Parameter

Algorithm Experimental Setup

1 Original - - Original imbalanced
Moore dataset.

2

Oversampling α

ROS
Carry out oversampling
for the minority classes.

3 SMOTE

4 ADASYN

5

Undersampling

α

RUS Carry out
undersampling for the

majority classes.
6 ENN

7 NCR

8

µ

RUS
Carry out

undersampling for the
medium classes.

9 ENN

10 NCR

5.2.2. Experimental Results

As shown in Figure 10, in Exp. No. 1, the F1-score of the minority classes is 83%, and
that of the overall classification performance is 91%. By using different algorithms to adjust
the parameters, the classification performance of minority classes can be effectively im-
proved. In Exp. No. 4, α is changed by using the ADASYN algorithm. After oversampling,
the classification performance of minority classes reaches 96%, which is 13% higher than
that of the original imbalanced dataset. The improvement is most obvious. In addition,
the algorithms of different strategies can not only improve the classification performance
of minority classes but also effectively ensure the overall classification performance. The
experiment proves the rationality of the conclusions in Section 4.

Because of the different application scenarios of network data, the categories concerned
are different, and the performance indicators focused on are also different. For example,
network traffic classification is required for network bandwidth allocation and network
resource scheduling, instead of being concerned with the performance of a specific category.
Therefore, the overall classification performance should be given much attention. In
intrusion detection, malicious traffic as minority classes needs to be paid more attention so
that the classification performance of minority classes becomes more important. Therefore,
the classification performance of minority classes and overall classes can be improved by
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changing α and µ. Specifically, undersampling for the majority classes or medium classes
can be carried out; or oversampling for the minority classes can be carried out.
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6. Conclusions

In the existing research on data imbalance, most studies used the ratio between major-
ity classes and minority classes of the dataset to describe the features of data imbalance, but
neglected medium categories. Through analyzing the actual dataset, we find that medium
categories have a significant impact on the classification performance. Therefore, we pro-
pose partial balance, firstly, in the field of network traffic classification. We define Class
Number of Partial Balance (β) and Balance Degree of Partial Samples (µ) to describe the
class number of partial balance and the degree of partial balance, respectively. Combined
with Global Slope (α), a parameterized model is put forward to depict data imbalance.

By using three machine learning classification algorithms on two classical network
traffic datasets, we clarify the factors affecting classification performance. Experimental
results show that the lower α, the worse the classification performance of the minority
classes and overall classes. When β of dominant categories increases, the classification
performance of minority classes decreases. The lower µ, the better the average performance.

Based on these conclusions, the classification performance of minority classes and
the overall classes can be improved through adjusting α and µ, which can be achieved
by resampling strategies. Therefore, we propose that undersampling for majority classes
or medium classes, or oversampling for minority classes, can be conducted to improve
classification performance. Experiments on several classical sampling algorithms verified
the feasibility of the proposed strategies.

There are still some limitations. The experiments were not conducted on the datasets
of other fields, such as the well-known image datasets MNIST, CIFAR, etc. On different
datasets, the same parameter may result in different classification performance.

In future work, deep learning methods can be considered for oversampling, such as
Generative Adversarial Networks. When conducting resampling, the sampling degree at
which the classification performance is best remains to be further studied. Furthermore,
under imbalanced conditions, the problem of unlabeled data and concept drift need to be
further discussed.
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