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Abstract: The continuous increase in the penetration rate of renewable energy has led to a decrease in
the system’s frequency response capability, which presents great challenges to the safety and stability
of the power system. In order to ensure the safe operation of the power system, online frequency
safety assessment has become necessary. However, the time-varying characteristics of the virtual
inertia HNE of renewable energy stations make it more difficult to accurately predict the lowest point
of the system frequency after a disturbance. Based on the general average system frequency (G-ASF)
model, this paper proposes a G-ASF-H model that considers the time-varying characteristics of the
virtual inertia of renewable energy stations, accurately predicts the lowest frequency point after a
system disturbance, and realizes the online frequency safety assessment of the system. Firstly, a
unified virtual synchronous generator model is established to identify the virtual inertia time constant
of the renewable energy station in real time; then, under the pre-defined frequency safety verification
event, the maximum deviation of the system frequency is periodically calculated and judged based
on the G model to realize the online frequency safety assessment. The example analysis on the IEEE
10-machine 39-node system shows that the model has a high calculation speed and accuracy under
different disturbances or daily load level scenarios and can be used for the online security assessment
of new power systems with time-varying virtual inertia characteristics.

Keywords: security assessment; frequency security; frequency response; virtual inertia; U-VSG
model; G-ASF-H model

1. Introduction

A low-carbon and clean energy structure has become the development direction of
future energy patterns. In this context, the renewable energy industry, represented by wind
power and photovoltaics, has developed rapidly [1–4]. For renewable energy systems,
such as wind energy and photovoltaic (PV) systems, the maximum power point tracking
(mppt) operation mode decouples the rotor kinetic energy from the grid frequency and
cannot provide rotational inertia support for frequency changes when the grid frequency is
disturbed [5]. The increased intermittent renewable energy penetration is accompanied by
the application of a large number of power electronic devices, making the model order high
and the time domain simulation modeling work more cumbersome, bringing new technical
challenges to the system frequency stability analysis [6]. Large-scale renewable energy grid
connections will result in strong random disturbances to the power grid [7–10], and system
frequency instability is likely to occur due to the inertial decline of conventional units and
the lack of auxiliary frequency support [11–13]. The contradiction between the penetration
rate and the safe and stable operation of the power grid has become increasingly prominent.

Power system frequency stability is usually verified by simulation, but frequency
stability under simulation verification events is mainly performed offline, and requires a
large amount of calculation. Monitoring, as the core function of the energy management
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system (EMS), is usually performed by conducting an online safety assessment every 5 to
15 min, which mainly takes into consideration static safety issues, such as the voltage and
current exceeding the limits. As frequency stability problems worsen, it becomes necessary
and valuable to supplement the frequency stability in the online evaluation process.

To improve the frequency stability of the power grid, it is necessary to encourage re-
newable energy units to participate in frequency support [14–17]. At the same time, to solve
the dynamic frequency security problem of the power grid caused by the gradual increase
in the penetration rate of renewable energy, virtual synchronous control technology has
become more widely used in the actual grid. For example, the virtual synchronous control
technology used in photovoltaic systems draws on the electromechanical characteristics
of the conventional power system, such that the inverter is equivalent to the synchronous
machine in terms of the internal and external characteristics, thereby providing inertial
support for the system. Wind power systems also achieve significant improvements in the
equivalent inertia of the system by using its moment of inertia and the virtual synchronous
control of the converter. Previous studies have found that the frequency change rate and the
maximum frequency deviation of the power system are affected by the equivalent inertial
time constant of the system after a power imbalance occurs, and the most concerning
feature of the frequency safety assessment is the lowest point of the frequency. Therefore,
accurate identification of the renewable energy equivalent virtual inertial time constant
(HNE) is beneficial for measuring the inertia support level of renewable energy to the power
grid, and to lay a solid foundation for the calculation of the maximum frequency deviation
of the new power system under large disturbances.

For the calculation of the maximum frequency deviation of the new power system
under large disturbances, simulation software such as PSCAD or PSASP can give a complete
frequency curve within a high precision range, but its efficiency with respect to time is
not sufficient to be able to perform online safety assessments in a large power grid. It is
worth noting that the online frequency safety assessment does not require a complete and
accurate frequency curve, but rather some specific points; therefore, an equivalent model
can be applied to achieve a high calculation speed.

Several equivalent models for calculating the maximum frequency deviation have
been proposed in the literature that are able to greatly reduce the volume of calculations and
increase the calculation speed. The average system frequency (ASF) model considers differ-
ent types of speed control systems and is widely used in primary frequency response (PFR).
However, when the ASF model is applied to a large power grid, there are problems such as
high-order, difficult calculations, and high cost. On the basis of the ASF model, the research
in [18,19] adopted a low-order polynomial speed control system model and performed
open-loop processing to realize the calculation of the lowest point of the frequency, but they
did not consider renewable energy stations. Ref. [20] proposed a low-order general model
of a generator speed control system that took the frequency response characteristics into full
consideration, combined with the general frequency response model of renewable energy
stations, and established a general average system frequency (G-ASF) model for renewable
energy access to the grid. However, the virtual inertia of the renewable energy station in
the new power system will have time-varying characteristics, meaning that the maximum
frequency deviation of the G-ASF model will be calculated inaccurately in scenarios with
time-varying virtual inertia. Therefore, it is necessary to identify the renewable energy
station HNE in this scenario in real time.

Regarding HNE identification, ref. [21] used the dynamic mode decomposition (DMD)
method to identify the inertia of synchronous generators based on the swing equation, but
it was not further applied to renewable energy stations. Ref. [22] proposed a damping
and moment of inertia test method based on the power angle transfer function by ana-
lyzing the power angle characteristics of the photovoltaic virtual synchronous generator.
However, this method was only suitable for small power disturbances. In the case of large
disturbances, the error of the model linearization was relatively large, and there were
certain limitations. Ref. [23] defined the concept of the system average frequency and
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evaluated the equivalent inertia of the wind farm by collecting the angular frequency of
the doubly fed wind turbine. Ref. [24] proposed a renewable energy station virtual inertia
estimation method based on dynamic mode decomposition. A renewable energy station
frequency characteristic estimation model was constructed on the basis of the dynamic
mode decomposition algorithm.

Considering that the renewable energy field station provides inertia support for the
system, and the virtual inertia has time-varying characteristics, this paper first establishes a
unified virtual synchronous generator model (U-VSG) and uses online monitoring data
and the genetic algorithm to realize the real-time identification of the virtual inertia time
constant of the renewable energy station; then, combined with the general average system
frequency (G-ASF) model, an online frequency safety assessment G-ASF-H model consid-
ering the time-varying characteristics of the virtual inertia of renewable energy stations
is proposed. Finally, a simulation example consisting of 10 machines and 39 nodes was
established in PSCAD/EMTDC, on the basis of which it was verified that the proposed
model has a high calculation speed and accuracy under different disturbances or daily load
level scenarios, and can be used for the online frequency safety assessment of new power
systems with time-varying virtual inertia characteristics.

This paper is organized as follows. In Section 2, we first briefly introduce the G-ASF
model [20]. Based on the G-ASF model, the G-ASF model for frequency nadir prediction
considering the time-varying characteristics of virtual inertia HNE is proposed. In Section 3,
we identify the virtual inertia of the renewable energy station and predict the lowest
frequency point after system disturbance. The application of the G-ASF model in online
frequency security assessment is described. The performance of the G-ASF model in online
frequency security assessment is validated using a single-generator system, a New England
39-bus system, and a regional power system in Section 4. Section 5 presents the conclusions.

2. G-ASF-H Model for Real-Time Identification of Renewable Energy Station Inertia
2.1. G-ASF Model Architecture

The virtual inertial response is used to introduce the response into the frequency
differential in the power control of the renewable energy station, so that renewable energy
stations will be able to simulate the inertial response of synchronous generator rotors. The
additional power reference value PHref generated by the virtual inertial response of the
renewable energy station is

∆PHref =
2HNE

fN

d f
dt

. (1)

In the formula, HNE is the virtual inertial time constant of the renewable energy station
rotor (HNE = 0 means that the renewable energy station does not provide a virtual inertial
response), and f N is the rated frequency.

The general frequency response model of the renewable energy station is shown in
Figure 1. Its input is the variation in grid frequency, and its output is the variation in
frequency response power.
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Figure 1. General frequency response model for renewable energy stations. Figure 1. General frequency response model for renewable energy stations.

In the figure, DNE is the droop coefficient (DNE = 0 means that the renewable energy
station does not provide a frequency damping response), that is, the frequency damping
provided by the renewable energy station; 1 − K is the conversion coefficient of renewable
energy per unit value.

It is difficult to obtain an accurate and simplified mathematical model of the speed
control system using the traditional ASF model. Ref. [20] proposed a low-order general
model of the generator speed control system that fully considered the frequency response
characteristics by establishing a general average system frequency (G-ASF) model. The
G-ASF model is shown in Figure 2.
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In these formulas, Si, Hi, Di, and Δfi are the rated capacity, inertia time constant, 
damping coefficient, and frequency of generator i, respectively; NG is the number of gen-
erators participating in the frequency response in the grid. 

The classical system frequency response (SFR) model is shown in Figure 3. Based on 
the ASF model, it is assumed that the frequency of the entire power system is uniform, 
and a reheating link speed control system is equivalent to the frequency control of all 
units; therefore, the system is transformed into a single-unit model. In the figure, FH is the 
working ratio of the equivalent high-pressure cylinder; TR is the equivalent reheat time 
constant; R is the adjustment coefficient. 
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Figure 2. The G-ASF model.

In the figure, αi is the per unit value conversion coefficient, Hsys is the equivalent
inertia time constant of the system, Dsys is the equivalent damping coefficient of the system,
∆f is the system frequency deviation, ∆PL is the unbalanced power that appears after the
system is disturbed, ∆PG is the output mechanical power change in the generator speed
control system after the frequency fluctuation, and Gi(s) is the transfer function of the i-th
speed control system. According to Figure 2,

Hsys = (
NG

∑
i=1

Hi · Si)/
NG

∑
i=1

Si, (2)

Dsys = (
NG

∑
i=1

Di · Si)/
NG

∑
i=1

Si, (3)

∆ f = (
NG

∑
i=1

Hi · ∆ fi)/Hsys. (4)

In these formulas, Si, Hi, Di, and ∆fi are the rated capacity, inertia time constant,
damping coefficient, and frequency of generator i, respectively; NG is the number of
generators participating in the frequency response in the grid.

The classical system frequency response (SFR) model is shown in Figure 3. Based on
the ASF model, it is assumed that the frequency of the entire power system is uniform,
and a reheating link speed control system is equivalent to the frequency control of all
units; therefore, the system is transformed into a single-unit model. In the figure, FH is the
working ratio of the equivalent high-pressure cylinder; TR is the equivalent reheat time
constant; R is the adjustment coefficient.
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The SFR model is a second-order model, and the analytical expression of the frequency
dynamic response after power system disturbance occurs can be directly calculated through
the model. The structure of the SFR model is simple, the volume of calculation is small,
and the minimum frequency can be quickly predicted. However, this model requires that
all generator sets must be of the reheat steam engine type, and all governor prime mover
models must be the same; if other types exist, then this model does not apply. Therefore,
the SFR model has poor generalization and accuracy.
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2.2. Unified VSG Model of Renewable Energy Stations

The G-ASF model proposed in [20] considers the supporting effect of the renewable
energy station on the system frequency, but the HNE of the general frequency response
model of the renewable energy station is a known quantity. Ignoring the fact that the HNE
is unknown under the special frequency control method of the renewable energy field
station means that it is impossible to quickly and accurately predict the system frequency
deviation after being disturbed.

Based on the idea that the equivalent value of renewable energy stations with inertia
characteristics is VSG [25], a unified VSG model is obtained, as shown in Figure 4. The
real-time prediction of renewable energy station HNE is realized through data measurement
and the genetic algorithm, which lays the foundation for predicting the minimum frequency
of renewable energy access to the grid.
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In the figure, PNE is the output power generated by the frequency response of the re-
newable energy station, ω0 is the rated angular frequency, ωg is the grid angular frequency,
Dd is the dynamic damping coefficient, and Ds is the steady-state damping coefficient.

2.3. G-ASF-H Model Considering the Inertia of Renewable Energy Stations

The unified VSG model including renewable energy stations was added to the G-ASF
model, and the G-ASF-H model for real-time prediction of renewable energy station HNE
was obtained, as shown in Figure 5.
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Based on the original G-ASF model, the G-ASF-H model considers the impact of the
changes in the control strategy of renewable energy stations on the HNE, realizes real-time
updates of the HNE of renewable energy stations, and avoids the excessive prediction
error of the minimum frequency point caused by the change in the HNE of the renewable
energy station. The G-ASF-H model provides a theoretical basis for the prediction of the
lowest point of the system frequency in the case of the unknown renewable energy station
HNE. It should be emphasized that this model still has the original advantages of the
G-ASF model. When the system structure changes greatly, such as when the generator is
replaced by a renewable energy station, the corresponding speed control system model
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only needs to be removed [20]. At the same time, through the real-time identification of the
renewable energy station HNE, it is enough to modify the unified VSG model parameters
of the renewable energy station. When it is necessary to analyze the lowest point of the
frequency under different unit combinations, it is only necessary to combine the previously
established speed control system models without remodeling the overall power grid, which
greatly improves the flexibility and practicability of the model.

3. Online Frequency Security Assessment Based on the G-ASF-H Model
3.1. HNE Identification Method for Renewable Energy Stations

To evaluate the inertia support of the renewable energy station to the power grid, it
is necessary to establish a unified model of VSG through the HNE identification method
when the control strategy or parameters adopted inside the renewable energy station are
unknown. According to the different simulation methods of the VSG, Equations (5) and (6)
can be used to characterize the governor and rotor motion equation:

∆P = Kω(ω0 −ω) + Kω

(
ω−ωg

)
, (5)

Pref + ∆P− P = 2HNEω0∆ωs + D1ω0
(
ω−ωg

)
+ D2ω0(ω−ω0). (6)

In the formula, ∆P is the amount of power change, Kω is the proportional coefficient
of the governor, Pref is the power reference value of VSG, P is the output active power of
VSG, D1 and D2 are the damping coefficients, and s is the complex frequency.

When the internal control strategy of the renewable energy station is unknown, the ex-
ternal characteristics of the VSG in different forms can be simulated by adjusting the values
of Kω , D1, and D2 in Formulas (5) and (6); therefore, the control strategy corresponding to
Equations (5) and (6) is selected as the control strategy of the unified external characteristic
model for the inertia identification of renewable energy stations.

Substituting Formula (5) into Formula (6), we obtain
Pref − P = Jω0∆ωs + Ddω0(ω−ωg) + Dsω0(ω0 −ω)

Dd = D1 − Kω
ω0

Ds = D2 +
Kω
ω0

. (7)

In the formula, J is the moment of inertia.
According to Formula (7), the unified VSG model can be obtained as shown in Figure 4.

To simplify the analysis, we let Pref = 0, and we apply the small signal perturbation to
Formula (7):

∆P = (−2HNEω0∆ωs− Ddω0 − Dsω0)∆ω + Ddω∆ωg. (8)

We define kg as the gain from the phase angle difference between the VSG output
voltage and the grid voltage to the VSG output active power P:

∆P = (∆ω− ∆ωg)
1
s

kg. (9)

Simultaneously, Formulas (8) and (9) become

G(s) = ∆P
−∆ωg

=
kg(2HNEω0s+(Dd+Ds)ω0−Ddω0)

2HNEω0s2+(Dd+Ds)ω0s+SE

= b1s+b0
a2s2+a1s+a0

(10)


b1 = kg
b0 = kg((Dd + Ds)ω0 − Ddω0)
a2 = 1
a1 = (Dd + Ds)/(2HNE)
a0 = kg/(2HNEω0)

. (11)
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In Formula (10), SE is the gain from the phase angle difference between the VSG output
voltage and the grid voltage to VSG output power P.

The genetic algorithm refers to a metaheuristic algorithm influenced by genetics and
natural selection principles. This works well for searching [26,27]. Based on the unified VSG
model shown in Figure 4, the genetic algorithm is used to identify the inertia parameters
of the renewable energy station. The value of the objective function is used as the search
information, and the search target is the parameter identification result. The resulting VSG
model is consistent with the output of the actual system. We define the objective function
f (i) as

f (i) =
N

∑
i=1

(P(i)− P′(i))2. (12)

In the formula, N is the length of the simulation, P(i) is the power response value of
the unified VSG model, P′(i) is the actual output power of the renewable energy station,
and n is the number of renewable energy units.

The steps for obtaining the HNE of the renewable energy station using the genetic
algorithm search are shown in Figure 6.
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3.2. Calculation of the Point at which the Lowest Frequency Occurred

To obtain the analytical expression for the calculation of the lowest point of the
frequency, a simplification was made to the G-ASF model: the time from the disturbance
to the lowest point of the frequency is very short; therefore, a linear frequency deviation
was introduced to simulate the frequency drop in the first few seconds, and a constant
slope was used to simulate the overall response of the speed control system to the system
power deficit:

∆Pm =
Pd

tnadir
t, t ∈ [0, tnadir]. (13)

In the formula, Pd is the power deficit, tnadir is the moment at which the maximum
frequency deviation occurs, and ∆Pm is the total increase in the mechanical power of the
speed control system.
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According to the swing equation of the rotor,

2Hsys
d∆ f (t)

dt
= ∆Pm(t)− ∆Pe(t). (14)

In the formula, ∆Pe is the variation in the electromagnetic power.
Substituting Formula (13) and ∆Pe = Pd into Formula (14), we obtain

d∆ f (t)
dt

=
Pd

2Hsys
(

t
tnadir

− 1). (15)

The time-domain expression of the approximate frequency offset can be obtained by
integrating Equation (15):

∆ f (t) =
Pd

2Hsys
(

1
2tnadir

t2 − t). (16)

In the formula, time t is an unknown variable, and tnadir is an unknown constant.
Based on the time-domain expression of the frequency offset by the parabola approxi-

mation, the total primary frequency response of the system is obtained as follows [19]:

PPFR,sys(s) = −Gsys(s)∆ f (s)

= − Pd
2Hsys

[ 1
tnadir
· Gsys(s)

s3 − Gsys(s)
s2 ]

, (17)

where Gsys(s) is the equivalent primary frequency response transfer function of the system,
namely,

Gsys(s) = GK(s) + G1−K(s). (18)

In the formula, GK(s) is the total equivalent transfer function of the generator speed
control system, and G1−K(s) is the total equivalent transfer function of the renewable energy
station; specifically,

Gsys(s) =
NG

∑
i=1

αiGi(s) +
N

∑
j=NG+1

αjGj(s). (19)

In the formula, Gi(s) is the transfer function of the low-order general speed control
system of generator i, and Gj(s) is the transfer function of the general frequency response
model of the renewable energy station j.

Substituting Equation (19) into Equation (17) and performing the inverse Laplace
transform, PPFR,sys can be obtained. In addition, because PPFR,sys is equal to Pd when the
frequency reaches the lowest point, we have

PPFR,sys(tnadir) =
NG

∑
i=1

αiPPFR,i(tnadir) = Pd. (20)

The time at which the lowest point occurs, tnadir, can be obtained by substituting the
actual power deficit Pd into Formula (20); then, this was substituted into Formula (16) to
obtain the frequency analysis formula ∆f (t). We calculate the extreme value of ∆f (t), and
the lowest point of the frequency f nadir can be obtained as

fnadir = (1− Pd
4Hsys

tnadir) f0. (21)

In the formula, f 0 is the base frequency 50 Hz.

3.3. Online Security Assessment

Figure 7 shows the flowchart for the application of the G-ASF-H model to the online
frequency security assessment. First, the frequency step test of the speed control system was
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performed offline to obtain the mechanical power response curve, thereby identifying the
parameters of the general speed control system and avoiding the repeated analysis of the
speed control system during operation. At the same time, events are also very important for
frequency safety assessment. Offline predefinition of frequency safety verification events
should include emergencies that have a large impact on the system frequency stability,
which can be a 3% to 10% load step, bulk infeed HVDC system, generator trip, or typical
N-1 or N-2 events, such as an active power deficit [28,29].
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Figure 7. Online frequency safety assessment.

When running online, we measured the real-time power grid data, including the power
output PNE of the renewable energy stations and the grid frequency ω, and identified the
virtual inertial time constant HNE in real time. Based on the real-time data and the offline
pre-stored speed control system parameters, we used the G-ASF-H model to obtain the
lowest frequency point under predetermined emergency events.

To further improve the accuracy of the frequency safety assessment, a critical accident
event at a certain moment was defined, under which we have

fmin − ε < fnadir < fmax + ε. (22)

Here, f nadir is the point at which the lowest frequency occurs, obtained using the
G-ASF-H model; f min and f max are the frequency deviations in the power grid under large
disturbances (a category of abnormal condition) not exceeding ±1.0 Hz, respectively; ε is
the frequency boundary error.

If the frequency deviation exceeds the preset value, indicating an emergency, a warning
is issued. The results of the online frequency security assessment are provided to operators
for reference. If there are any critical or dangerous events, they can be simulated, and the
results can be used for preventive control.

4. Case Analysis

To verify the effectiveness and accuracy of the renewable energy unit inertia identifi-
cation method and the minimum frequency point calculation method proposed above, a
simulation model of an IEEE system with 10 machines and 39 nodes was built using the
PSCAD/EMTDC platform. The system topology is shown in Figure 8.
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Figure 8. IEEE system simulation model with 10 machines and 39 nodes.

The system included seven conventional generators (G1~G7) and three wind farms
(WF1~WF3), of which the rated capacities of the wind farms were 300 MVA, 600 MW,
and 600 MW, respectively; the hydraulic turbine G1 was equipped with an IEEE G3 speed
control system with a rated capacity of 1000 MVA, the steam turbines G2~G7 were equipped
with an IEEE G1 speed control system, the rated capacity was 500 MVA, the total initial
load of the system was 6192.8 MW, and the generator parameters are shown in Table 1.

Table 1. Generator parameters for the 10-machine 39-node IEEE system.

Generator Type Number Output Power/MW Inertial Time
Constant/s

water turbine G1 1000 10

steam turbine

G2 572.8 6.06
G3 650 7.16
G4 632 5.72
G5 508 5.2
G6 650 6.96
G7 830 6.9

wind farm
WF1 250 4~10
WF2 540 4~10
WF3 560 4~10

4.1. HNE Identification of Renewable Energy Stations and Calculation and Verification of the Point
at which the Lowest Frequency Occurred

In this scenario, the initial power of the system was fixed at 0.8 p.u, and the virtual
inertia time constant HNE of the wind farm was set to 10 s. At this time, the number of
variables contained in the individual in the genetic algorithm population was 1. Corre-
sponding to the parameter HNE to be identified, the proposed genetic algorithm was used
to identify the HNE of each wind farm. The relative error between the identification result
and the actual value is shown in Table 2.

Table 2. Comparison between the identification value of HNE and the simulated value.

HWF1 HWF2 HWF3

identification result 10.156 10.074 10.058
actual value 10 10 10
relative error 1.56% 0.74% 0.58%
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From the identification value, the actual value, and the relative error of the virtual
inertia time constant of each wind farm in Table 2, it can be seen that the error was within
2%, which verified the accuracy of the U-VSG model identification method.

On the basis of the identification of the HNE of the wind farm, the accuracy of the
G-ASF-H model under different disturbances was further studied. Figure 9 is a comparison
chart between the actual frequency response (curve) of the system and the calculated value
(red circle) of the proposed minimum point frequency prediction method after applying
different disturbances. The maximum disturbance in the figure is 0.05 p.u, the minimum
disturbance is 0.02 p.u, and the disturbance difference between the curves is 0.005 p.u.
Figure 10 is a comparison chart between the actual frequency response (curve) of the system
and the calculated value (red circle) of the proposed minimum point frequency prediction
method under different load increments.
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Figure 10. Comparison of the calculated and simulated values at the point at which the lowest
frequency occurred under different load increments.

Under the condition that the initial load of the system remained unchanged and the
disturbance load of the system increased, Table 3 shows the comparison results and relative
errors between the actual value and the predicted value at the lowest point of each curve
in Figure 9. Under different load increments, the error between the calculated value and
the simulated value did not exceed 4%, as shown in Figure 10. It can be seen that under
different disturbances, the prediction error of the proposed method was within 4%, and it
can accurately predict the lowest point of the frequency under large disturbances.

4.2. Online Frequency Security Assessment Verification

To further verify the accuracy of the proposed calculation method in actual operation
scenarios, we took the typical daily load curve of the actual power grid in a certain area as
a reference. We selected 96 points in the daily load data of a certain day and calculated the
lowest frequency point of each point in the case of the system load step; the load increase
range was 120 MW, and the maximum load was set to 95% of the total power generation.
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Figure 11 shows the daily load curve and the virtual inertial time constants corresponding
to the renewable energy stations at different times. Figure 12 shows the frequency response
of the system when considering the time-varying characteristics of the virtual inertia of the
new energy station and not considering the time-varying characteristics. It can be seen that
considering the time-varying characteristics of the virtual inertia of new energy stations
makes it possible to better reflect the frequency response process of the actual system after
a disturbance.

Table 3. The comparison results of the calculated value and the simulated value of the lowest point.

Disturbance Load Actual Value Calculated Value Error/%

120 MW 49.736 49.726 3.79%
150 MW 49.670 49.660 3.03%
180 MW 49.603 49.591 3.02%
210 MW 49.536 49.523 2.80%
240 MW 49.468 49.455 2.45%
270 MW 49.401 49.387 2.35%
300 MW 49.333 49.319 1.40%
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Figure 11. Daily load level curve in an area and the virtual inertia of renewable energy stations at
different times.
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quency response of the system when considering the time-varying characteristics of the 
virtual inertia of the new energy station and not considering the time-varying character-
istics. It can be seen that considering the time-varying characteristics of the virtual inertia 
of new energy stations makes it possible to better reflect the frequency response process 
of the actual system after a disturbance. 
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different times. 

0 20 40 60 80 100 120 140 16049.7
49.75

49.8
49.85

49.9
49.95

50
50.05

50.1
50.15

fr
eq

ue
nc

y/
H

z

time/s

considering time-varying characteristics

without considering time-varying characteristics
1st disturbance 

triggered

2st disturbance triggered

 
Figure 12. The frequency response of the system when the time-varying characteristics of the virtual
inertia of the new energy station are considered and the frequency response of the system when the
time-varying characteristics are not considered.

Table 4 shows the identification results of the virtual inertial time constants of each
renewable energy station every three hours over a day. The analysis shows that the
maximum error in the different periods was not more than 2%, and the proposed HNE
identification method based on the genetic algorithm had high accuracy.
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Table 4. Renewable energy inertia HNE identification results at different times.

Time Actual Value HWF1 HWF2 HWF3
Maximum

Relative Error %

0:00 4 4.027 4.021 4.036 0.9
3:00 4 4.049 4.019 4.058 1.45
6:00 4 4.067 4.024 4.039 1.68
9:00 10 10.151 10.07 10.058 1.51
12:00 6 6.023 6.034 6.087 1.45
15:00 10 10.079 10.116 10.108 1.16
18:00 10 10.098 10.164 10.086 1.64
21:00 6 6.086 6.079 6.052 1.43

Figure 13 shows the calculation error distribution of the minimum frequency point
at different times under the daily load curve for the G-ASF-H model considering the
time-varying characteristics of the virtual inertia. It can be seen from the figure that
the calculation error of less than 3% accounted for about 22.9%, the calculation error of
3–6% accounted for about 70.8%, and the calculation error of 6–9% accounted for about
6.3%. The results show that the proposed calculation method could accurately give the
lowest frequency point of each point, and the maximum error did not exceed 9%. It
can be seen from this example that the proposed method is suitable for online frequency
security assessment.
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5. Conclusions

Considering the time-varying characteristics of the virtual inertia of renewable energy
stations under actual engineering conditions, in this paper, a G-ASF-H model was proposed
for the prediction of the point at which the lowest frequency occurred and the realization of
online safety assessments of the frequency following system disturbances. The main work
was as follows:

(1) Based on the unified VSG model, the genetic algorithm was used to identify the
parameters of the virtual inertia HNE of the renewable energy station. The identification
results of the parameters ensure that the output of the VSG model is consistent with the
actual system, and that the accuracy is high.

(2) The G-ASF-H model, which takes into consideration the time-varying characteris-
tics of the virtual inertia of renewable energy stations, was proposed. Through the real-time
identification of the virtual inertia HNE of the renewable energy station, the problem of
large error in the prediction results of the point at which the lowest system frequency occurs
resulting from the change in HNE being neglected by the existing model is avoided.
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(3) Based on the proposed G-ASF-H model, which takes into consideration the time-
varying characteristics of the virtual inertia of renewable energy stations, the accurate
prediction of the point at which the lowest frequency occurs under different load distur-
bances and different daily load levels was realized, and can be further applied to the online
security evaluation of system frequency.

In this paper, mainly the impact of deviations in transient frequency on the safe
operation of the system was analyzed, and the indicators related to frequency safety
included three aspects: steady-state frequency deviation, transient frequency deviation, and
the frequency change rate. Combining multiple frequency security indicators to adjust the
renewable energy output curve and frequency security assessment has certain significance
for the actual power grid, and is one of the research directions of our future plans.
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