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Abstract: This study presents an automated software crash-diagnosis technique using a state tran-
sition graph (STG) based on GUI-component detection. An STG is a graph representation of the
state changes in an application that are caused by actions that are executed in the GUI, which avoids
redundant test cases and generates bug-reproduction scenarios. The proposed technique configures
the software application STG using computer vision and artificial intelligence technologies and
performs automated GUI testing without human intervention. Four experiments were conducted
to evaluate the performance of the proposed technique: a detection-performance analysis of the
GUI-component detection model, code-coverage measurement, crash-detection-performance analysis,
and crash-detection-performance analysis in a self-configured multi-crash environment. The GUI-
component detection model obtained a macro F1-score of 0.843, even with a small training dataset for
the deep-learning model in the detection-performance analysis. Furthermore, the proposed technique
achieved better performance results than the baseline Monkey in terms of code coverage, crash
detection, and multi-crash detection.

Keywords: software crash; object detection; deep learning; Android application; GUI; automation

1. Introduction

Advanced software tools support devices and platforms to facilitate their efficient
use in various fields. Furthermore, software can improve work efficiency by replacing
human labor in tasks that are difficult or impossible for humans to accomplish. Driven
by recent progress in the industrial market and technology, new devices, platforms, and
user requirements continue to emerge [1], which are accompanied by related technologies
such as new programming languages, frameworks, development tools, and development
methodologies, thereby increasing the diversification of software-development methods [2,3].

Current software is usually equipped with a graphical user interface (GUI) that pro-
vides a visual environment, such as buttons, text boxes, and combo boxes, to enhance user
convenience by enabling users to use the available functions with ease. As GUI components
have similar shapes and can be used across devices or platforms, they are intuitive for users
to operate without the need to learn. Although software applications provide easy-to-use
GUIs, users experience bugs in many different forms [4,5]; for example, by operating the
program in an illogical manner owing to a lack of background knowledge of the program
or by causing bugs while using GUI-driven software. Bug resolution is one of the most
important tasks in maintaining software, and developers are interested in analyzing these
bugs to improve software quality [6]. That is, software bugs occur when the software is not
operated as intended by the developer. Software bugs are often hidden under unintended
circumstances and are particularly difficult to detect [7]. Developers usually work under
time pressure, which may lead to errors. Bugs are detrimental to software quality and
user satisfaction and may lead to astronomical financial losses or even human casualties.
Therefore, it is necessary to run tests to detect hidden bugs prior to software delivery and
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distribution, which is as cost-intensive as the software development itself [8]. However,
despite the importance of preventing bugs by testing software, companies often have
difficulty in hiring bug-testing professionals.

A range of automated test tools has been developed to detect hidden bugs
efficiently [9–16]. However, it is impossible to predict unexpected actions that are likely to
be taken by users who do not accurately understand the intention of the developer and
to detect all such unexpected actions with rule-based bug detectors. In particular, users
of video game software can break the balance of a game by operating certain functions
using manipulation techniques that developers cannot anticipate [17]. Therefore, running
tests with actual users of software products, which is known as beta testing [18], is an ideal
testing technique.

Beta testing [19] is associated with difficulties such as recruiting user groups for testing
and allocating resources prior to every software release [20]. Thus, alpha testing is per-
formed using in-house personnel who were not involved in the software development to
overcome the drawbacks of beta testing. However, some companies are not in a position to
conduct beta or alpha testing, and users of software products that are distributed without
undergoing beta or alpha testing may encounter bugs, thereby resulting in an increasing
number of bug reports. This leads to user inconvenience and software quality degrada-
tion and may even result in huge economic damage and human casualties in software
application fields such as healthcare, finances, and national defense, which highlights the
importance of ensuring software quality [21].

In general, GUI testing is conducted for bug detection using a development tool
following GUI-based software development. Numerous programming languages and
development tools have emerged in the software-development market in recent years.
Outdated software-development tools also exist, for which technical support has been
discontinued. The testing of the entire spectrum of software products is associated with
difficulty in learning how to use the tools for developing individual software products,
which makes software testing an increasingly difficult task. However, the GUI components
shown to users have similar characteristics. In GUI applications, GUI components show
similar shapes, although it is difficult to find the same shapes. We use the features of GUI
components and object detection, a vision-based AI technique, to detect GUI components. If
GUI components can be detected in any environment, it will be possible to perform general-
purpose crash diagnosis in applications that provide GUI. Our goal is to automatically
diagnose software crashes in GUI applications using GUI-component detection even though
the detailed GUI information (the detailed GUI-related documents) is not available.

Therefore, many researchers have conducted studies on the automation of bug de-
tection and the importance of bug-detection technology continues to increase [22–26]. In
particular, the automation of manipulating GUI widgets can significantly increase testing
efficiency [27–30].

This study presents a method of automated software crash diagnosis based on GUI-
component detection. This technique, based on advanced technologies such as computer
vision and artificial intelligence (AI), is used to analyze the visual GUI characteristics [31,32]
and reduce the testing costs by addressing the aforementioned difficulties.

The recent progress in computer vision and AI technologies has significantly improved
the performance of techniques for detecting objects in static images. The proposed method
recognizes GUI components, such as buttons, text boxes, and combo boxes, on the screen of
a running program using an object-detection technique and identifies their types, locations,
and sizes. The derived component data are used to configure a state transition graph (STG)
for testing purposes. Subsequently, the STG is used to avoid redundant or meaningless test
cases during software testing. Using the STG and test automation, a dataset is generated,
which is used to train the policies or rules to prioritize locations that are likely to be affected
by bugs [33].

The major contributions of this study are summarized as follows:
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• An automated crash diagnosis method that extracts GUI components using an object-
detection technique and is applicable to all GUI-based software is proposed.

• During crash diagnosis, an STG is generated to avoid meaningless test cases by
structuring the changes in the software state based on information regarding the class,
location, and size of the screen and GUI components.

• Cross-platform black-box testing can be provided.
• Quantitative and empirical crash diagnoses were conducted using open-source An-

droid application datasets.
• An application was developed and tested to establish an environment to detect multi-

ple crashes.
• The software STG that was generated during the crash diagnosis was used as a training

dataset to prepare the groundwork for research on reinforcement-learning-based GUI
software-crash-diagnosis techniques.

The remainder of this paper is organized as follows: Section 2 describes related work;
Section 3 outlines the proposed approach; Section 4 presents a performance evaluation of the
proposed technique; and Section 5 summarizes the conclusions and provides suggestions
for future research.

2. Related Work

GUI-based application screen-capture testing, object detection, and AI-based software-
testing techniques are described in this section.

As the number of mobile applications rapidly increases, the importance of testing
automation for GUI-based applications is also increasing. Before releasing the application,
verification is performed through as many types of testing as possible. This section describes
GUI-based application testing. Screen-capture testing performs tests such as input from
devices and screen touches through an automation tool that captures the execution screen
of an application and extracts data. Screen-capture testing is based on image-processing
technology and is a method of finding and identifying the components of applications.
Ranorex and Sikuli are currently available as screen-capture testing tools that can be
applied to both web and mobile environments and are constantly being updated [34,35].
Ranorex is a non-free GUI automation testing tool that provides tests such as black boxes,
cross-browsers, data, keywords, regression analysis, and functionality [34]. It has the
advantage of being able to quickly define a test case and being intuitive in its use. The
testing procedure for Ranorex is as follows: First, test cases are recorded from a capture
screen for distribution or executable files. Second, it performs all the tasks recorded through
simulation in the recorded test case. Finally, a report on the test results is generated and
presented to the user. Sikuli was launched in 2009 as an open-source research project by
MIT’s User Interface Design Group as an automation tool to define users’ tasks from the
GUI components of their applications [35]. Sikuli can automate tasks for anything that
appears on the screen on Windows and Mac. It performs OpenCV-based image processing
to identify and control GUI components. SikuliX can be useful for automating tasks in
common applications, web pages, and mobile applications that require repetitive tasks.

Generally, application-testing automation without human intervention is not easy
because each application has a different configuration of GUI components. However, unlike
the existing state-of-the-art techniques, the proposed method uses the state transition graph
(STG), which plays an important role in automating the generation of test scenarios for
diagnosing software crashes. Because STG can record state changes caused by interac-
tions between GUI components of applications as data, the proposed method prevents
duplicate-action scenarios and enables automation of test-scenario generation, which are
difficulties encountered in the existing techniques. Thus, the proposed method provides
an improvement in automation quality and has great advantages in both time and cost
of testing.

Object detection analyzes input image data to determine the class, position, and size of
the desired object. Convolutional neural network (CNN)-based AI technology has rapidly
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expanded with the recent developments in high-performance computing [36–41]. These
object-detection techniques have been validated in world-famous competitions such as
the VOC PASCAL Challenge, COCO, ImageNet Object Detection Challenge, and Google
Open Images Challenge [42–45]. Image data, which are easily recognizable by the human
eye, have characteristics that are difficult for computers to analyze [46]. Image data are
complex because they are sensitive to small changes (in color, brightness, and noise) and
are represented by red, green, and blue (RGB) values. The visual features of objects were
previously analyzed using traditional machine-learning algorithms such as support vector
machines [47].

Among the deep-learning algorithms, CNNs have been used extensively to con-
struct object-detection models and have achieved breakthroughs in object detection. Deep-
learning-based object detection techniques perform two processes [48]: segmentation of
the regions that contain objects from the image and classification of the objects that are
included in the segmented regions. You Only Look Once (YOLO) is a popular real-time one-
stage object-detection algorithm (current version: YOLO-v7) that performs object-region
detection and object classification simultaneously [49]. R-CNN, which adopts a two-stage
approach, is not sufficiently fast to be used as a real-time object detector because it performs
object-region segmentation and object classification separately. As R-CNN performs better
in object detection than one-stage models despite its slow performance, many researchers
have contributed to improving its detection speed to the level of real-time detection. Faster
R-CNN is currently the representative two-stage detector [50]. Whereas YOLO and Faster
R-CNN detect objects inside a rectangular boundary box, Mask R-CNN stores the shape of
an object as segmented masks that match its original shape to the maximum possible degree
to improve the image representation accuracy [51]. Failure to detect GUI components dur-
ing the testing process results in degraded testing quality and reliability. Therefore, Faster
R-CNN was selected and trained as the GUI-component detection model in this study.

These deep-learning techniques exhibit a high analysis performance in detecting
objects that are similar in terms of their overall external morphological characteristics but
differ extensively in terms of their detailed characteristics, which are revealed through
further analysis. For example, human bodies share similar characteristics in their overall
appearance but there may be an infinite number of different cases depending on the age,
gender, race, and clothing style, and the likelihood of people looking exactly alike is
extremely low. Nevertheless, these techniques exhibit high performance, even for the
detection of people. Users can easily use GUI functions without specific instructions by
inferring them from similar features. Thus, deep-learning-based object-detection techniques
are expected to achieve high performance in GUI component analysis owing to their image-
analysis performance.

Many researchers have attempted to perform software testing using various deep-
learning techniques. Sharif et al. [52] developed DeepOrder, which is a deep-learning-
based model that assigns priority orders to test cases by learning failed test cases. Qiao
et al. [53] proposed deep-learning neural-network-based defect prediction, which predicts
the number of defects that are contained in a given source code. Kim et al. [54] proposed a
model that generates test cases based on reinforcement learning. Liu et al. [55] presented
DeepSQLi, which is a deep-learning model based on natural-language processing that
automatically generates queries to test the techniques that are frequently used for SQL
injection attacks on web application security. Mirabella et al. [56] generated automated
test cases for testing RESTful web APIs and proposed a deep-learning-based approach to
predict the validity of an API request before responding to it. Oz et al. [57] proposed an
LSTM-based test-script generation technique that automates the generation of test scripts
for web applications and reduces the number of possible sequences.

Amalfitano et al. studied test-automation techniques using the state of GUI applica-
tions [58,59]. MobiGUITAR created the GUI state of the application, allowing for more
precise modeling of the state-sensitive behavior of the mobile application. They showed
that the combination of model learning and model-based testing is a promising approach to
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improving fault-detection performance in Android app testing. In addition, through follow-
up studies, they defined Gate GUI that only functions when specific conditions are satisfied
and proposed juGULAR to automatically detect Gate GUI by classifying the attribute
values of GUI components using a machine-learning approach. They presented improved
exploration capabilities in terms of Covered Activities and Covered Lines of Code.

In this study, a software user interface was developed using a deep-learning-based
object-detection technique. Whereas existing techniques depend on source code and devel-
opment tools, the proposed technique uses only the corresponding software version without
software development- and configuration-related information (source code), and performs
alpha testing in a state that is unrestricted by platforms and operating systems (OSs).

3. Overall Approach

This section presents a detailed explanation of GUI software crash diagnosis us-
ing the proposed technique. The schematics in Figure 1 provide an overview of the
proposed technique.
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Figure 1. Overall Approach.

First, all states in the application during the test are captured. This process is important
for extracting GUI component information from the screen and should be performed
whenever the screen is switched or actions through GUI components (e.g., panels, buttons,
and list boxes) are operated. The captured screen is used to analyze the current state of
the application and to detect information on the GUI component shown on the screen.
Subsequently, the captured application screen is transferred as an input value to the GUI-
component detection model that is pretrained with Faster R-CNN. The GUI-component
detection model provides information for extracting executable actions in each application
state (screen) by detecting the components that comprise the application screen. The state
information and information on all executable actions are converted into an application
STG using the test scenario graph-generation algorithm. Finally, the STG that is generated
from the software under testing is employed to run the test cases that are generated using a
depth-first search (DFS) and provides a report containing information on the detected bugs.



Electronics 2023, 12, 2382 6 of 22

3.1. Step 1: Construction of the STG

This subsection provides a detailed description of the process of generating an appli-
cation STG. An STG is a graph representation of the state changes according to the actions
that are executed during application testing. It is used to avoid redundant test cases during
testing and to record data. The extracted GUI components and action lists are combined to
construct an STG.

3.1.1. Extraction of GUI Components

Figure 2 depicts the process of GUI-component extraction from a screen, which is
performed in three steps: screen capture, screen analysis, and GUI-component analysis.
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First, all screens of the actions that are executed during testing are saved as image
data, which are subsequently used to analyze the application state and GUI component
information that are included in each screen.

Second, the state of the application is analyzed by visual (image) inspection to detect
out-of-application (OOA) and crash events prior to the GUI component analysis. OOA
and crash events may occur while certain actions are executed during testing, making it
impossible to continue testing. If an OOA or crash event occurs, testing is discontinued,
the application status is plotted on the graph, and the output is returned. Once all of these
steps have been taken, the application under testing is initialized for restarting and all
cache data are cleared.

Third, if the screen testing reveals no problems, the class, location, size, and reliability
of the GUI components are analyzed using a GUI-component detection model that is
pretrained with Faster R-CNN deep learning. The Faster R-CNN model extracts a feature
map from an input image and selects the region of interest (ROI). The ROIs indicate regions
that contain GUI components, from which the location and size information can be derived.
A feature map is used to classify the image class within an ROI and to derive its reliability.
Only the GUI-component detection model outputs with a reliability that is higher than the
threshold value are valid. Reliability refers to the accuracy of an output, and low reliability
is considered to be prone to false positives.

3.1.2. Generation of STG

An STG plots the state (screen) changes when a specific action is executed in a specific
state (screen) of an application. The nodes in an STG represent the application-screen (state)
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information, whereas the edges connect the changes between screens that are caused by
actions. The proposed technique performs testing using actions based on screen touch. It is
necessary to create an action list and plot a graph to generate an STG.

First, the information on the GUI components that are analyzed in the step outlined in
Section 3.1.1 and the actions that can be executed by each GUI component are combined
to generate an action list. The GUI is composed of different actions that can be executed
depending on the class. For example, a button can be clicked, and a scroll (list) view can
be dragged down. These contents are used to predetermine the sets of actions that are
executable by the GUI components of different classes. That is, an action list is generated
by combining all GUI components that are extracted from a screen with all sets of actions
that are executable by the components on that screen.

Second, the generated action list is used to configure the graph. An action in an action
list is a means of moving from the current to the next state. The listed actions comprise the
edges of the current state. The generated edges are not connected to the nodes because
the state change from the current state is not known. Therefore, the initial edge should be
identified from the generated edges, the action command should be executed, and the next
node should be generated and connected.

The graph search is terminated if any of the following events occur:

• No change on the screen;
• Crash;
• OOA;
• Maximum steps exceeded;
• No executable action.

Algorithm 1 presents the STG-generation algorithm that was used for testing. The
algorithm inputs are the device, GUI-component detection model, and application under
testing. The output is not specified.

Algorithm 1: Configure Initial STG

Input: device, model, application

1 device.install(application)
2 nodeList = new List()
3 lastNode = null
4 step = 0
5 while step < MAX_STEP // Iterate until the MAX step
6 image = device.getScreen()
7 screenStatus = screenAnalysis(image)
8 if screenStatus ! = null // Check for crash, OOA, and state change
9 lastNode.getAction(index=0).setStatus(screenStatus)

10 break
11 node = makeNode(image) // Generate nodes for the graph
12 nodeList.add(node)
13 if lastNode ! = null // Add no action to the initial node
14 lastNode.getAction(index=0).setNode(Node)
15 UI_List = GUI_Component_detect(model, image) // Detect GUI components
16 actionList = makeActions(UI_List)
17 Node.addActions(actionList)

18
// Create commands to execute actions matching device type

command = node.getAction(index=0)
.getCommand(device_type=device.getType())

19 device.execute(command)
20 lastNode = node
21 step = step + 1
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Lines 1–4 of Algorithm 1 indicate the initial state configuration of the algorithm: install
the application for testing on the device and initialize the node list, last node, and step of
the graph. The last state node connects the new state node to the edge following a state
change. A step is used to count the number of iterations of an action. MAX_STEP is set to
prevent an infinite loop.

Lines 6–10 of Algorithm 1 capture the screen of the device, load the image, and analyze
the state. The status of the application under testing is determined as normal, crash, OOA,
or no change. Any state that is not normal is marked on the graph and the testing is
terminated. No state change means that the executed action does not cause any change to
the screen. The GUI-component detection technique prevents the generation of an incorrect
STG by erroneously generating meaningless actions or executing undefined actions by
analyzing the action before responding to it.

Lines 11–17 of Algorithm 1 describe the STG node and edge generation. If no problem
is found in the application state, the node generation, GUI component analysis, action
list generation, and edge connection in the graph are executed sequentially based on the
current screen.

Lines 18–21 of Algorithm 1 describe the executed actions. The test is executed by
creating a command at the 0th edge of the current node, saving the current node to the last
state node variable, and increasing the step value by one.

3.2. Step 2: Testing with STG

This subsection describes the execution and reporting of the application testing using
the proposed technique. The constructed STG indicates a state in which all state transitions
of the application are not completely connected. Therefore, a detailed explanation is pro-
vided, with a focus on the process of expanding the STG by searching for and discovering
unconnected nodes. Moreover, a report that summarizes the test results is written based on
the complete STG, and the contents of the report are explained.

3.2.1. STG-Based Testing Process

As the initial state STG that is generated in Step 1 is not the result of searching all states
of the application, edges exist that are unconnected to the nodes, where the search (test)
state is null. The paths of the unsearched edges are generated using test scenarios based on
the STG and DFS techniques. To this end, the process of expanding the STG is iterated until
all edges are sequentially connected to their respective nodes during the application testing
according to a given test scenario. Figure 3 is an example of an initial STG. In Figure 3, solid
line nodes are already visited screens, dotted line nodes are not-visited screens, and edges
are GUI components. In this case, the list of test scenarios contains [[execute B], [execute A,
execute D], [execute A, execute E]]. Whenever nodes that are not visited are found during
the test, they are continuously added to the list of test scenarios.
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Algorithm 2 represents the algorithm for the STG-based testing process. The algorithm
input consists of a device, a GUI-component detection model, an STG node list, the applica-
tion under testing, and a list of test scenarios; the output is not specified. The algorithm
selects the 0th node of the graph, which represents the initial state of the application under
testing, and conducts a state check for the presence of executable actions during testing.

Algorithm 2: STG-based testing

Input: device, model, nodeList, application, testScenarioList

1 startNode = nodeList.get(index=0)

2
// Iterate until nothing remains to be done at the initial node
while startNode.isClosed() ! = True

3 device.restart(application)
4 step, nowNode, history = doTest(testScenarioList)

5
// Execute when the step is smaller than MAX_STEP

while step < MAX_STEP
6 image = device.getScreen()
7 screenStatue = screenAnalysis(image)
8 if screenStatus ! = null
9 nowNode.setStatus(screenStatus)
10 break

11
// Replace the existing node with a new one and connect it

nowNode = getAddConnectNode(nowNode, image)
12 actions = nowNode.getActions()// Non-close action
13 if action == null
14 nowNode.setClose()
15 break
16 action, others = select(actions)
17 add_scenario(history, others)
18 history.add(action)
19 device.execute(action.command())
20 step = step + 1

In lines 3 and 4 of Algorithm 2, the application is initialized and one of the actions
in the action list of the test scenario is executed. If the test scenario has been com-
pletely executed, the number of actions executed, current node, and action record are
returned. If no test scenario has been executed, a list with an empty history (step = 0,
nowNode = initial node) is returned. If the number of executed actions is lower than the
maximum number set in the test scenario, the testing is restarted.

In lines 6–10 of Algorithm 2, the screen of the device is captured and analyzed; if an
abnormality is identified in the state, the abnormal state is recorded in the node and the
corresponding test run is terminated.

If no abnormality is identified in the application state that is analyzed in lines 11 to
15 of Algorithm 2, the nodes and action list are generated. If the action list is empty, the
state of the related node is set to “closed” and the test run is terminated. No test scenarios
are generated during testing for closed nodes.

In lines 16–20 of Algorithm 2, one non-closed node is selected from the action list,
while the remaining nodes are fed into the history and added to the test scenario list. The
selected action is added to the history and the step value is increased by one once the action
has been executed.

3.2.2. Reporting

If a new test case is not created in the STG-based testing stage, it is converted into
the “testing complete” state and the proposed technique generates a report based on all
information that is collected during testing. The test report is a summary of the application-
testing results and provides useful information for users to understand the contents easily.
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The report includes metadata on the test environment (device status and application
information) and issues (crash and OOA events), as illustrated in Figure 4.
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Lines 2 to 17 of Figure 4 contain the metadata relating to the testing environment. The
metadata include the testing date and time, application information, and device-status
information. The application information includes the package name and version. The
device-status information includes the device name, OS, display size, orientation mode,
battery-charge state, and network mode.

Lines 18 to 31 of Figure 4 contain information regarding the issues that are detected
during testing; that is, crash and OOA events that are collected through the STG search,
which provide information such as the occurrence of issues, number of issues incurred,
and reproduction scenarios. If issues occur during the STG search, the number of events is
increased and reproduction scenarios are generated using the commands that are executed
along the search path from the initial to the current node in the graph. Lines 21 to 27 of
Figure 4 provide an example of reproduction scenarios in the form of a list. In the case of
no events, an empty list is returned, as indicated in line 30 of Figure 4.

4. Experiment
4.1. Configuration of Experimental Environment

Three experiments were conducted to evaluate the performance of the proposed
software-crash diagnosis method using an STG based on GUI-component detection. The
following aspects were investigated: (i) the performance of the GUI-component detection
model, (ii) code-coverage analysis and crash detection using open-source application
datasets, and (iii) the reliability of crash detection in the multi-crash environment of an
application. In this experimental evaluation, only actions related to screen touch (click,
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double click, drag, zoom-in, zoom-out, etc.) were considered, and experiments on other
actions (text input, hardware button input, etc.) were not considered in this experiment.
In addition, we defined two or more crashes present in the application as “multi-crash”
and conducted experiments to quantitatively evaluate the performance of the proposed
technique compared to the baseline. The applications provided by the open-source dataset
contain only one bug per application. However, we constructed a multi-crash environment
to test whether multiple crashes can be detected in one application using the proposed
technique. The multi-crash environment was established to enable a novel testing method
and an application for bug simulation was developed for this experiment.

4.1.1. Design for Performance Testing of the GUI-Component Detection Model

The first experiment was conducted to analyze the performance of the pretrained
GUI-component detection model in analyzing the GUI-component information from the
application screen. A total of 100 open-source Android projects were collected from
GitHub, and the Faster R-CNN model with modified parameters was used for pretraining
to implement and train the model. In general, many applications on the market are for profit
purposes, making it difficult to create datasets. Therefore, in order to perform objective
verification of the proposed technique using GUI applications with as many types of GUI
components as possible in this paper, we first collected many applications, including GUI,
from Android repositories opened on GitHub. We collected 295 XML files from 100 open
Android repositories. To convert XML files into images, we modified some source code for
the Layout build of Android Studios and used it in the preprocessing process. In addition,
we extracted and recorded the coordinates of GUI components corresponding to images in
the process of converting XML files into images. The coordinates consist of the X starting
point, Y starting point, height, and width of the GUI component. The data set for model
training consists of image files converted from XML files, class numbers, and coordinates of
GUI components, which are labels of data. The total number of extracted GUI components
(label) is 726 and was divided based on the label number into 8:1:1 for training, testing, and
verification. In addition, data augmentation was not performed. Next, we filtered out some
bad data that could degrade the quality of the collected dataset. Filtering criteria include
the absence of any GUI components in the layout, the configuration of GUI components
through an external library, and errors in the format of the file. The processed dataset is
described in Table 1.

Table 1. Dataset for evaluating GUI-component detection performance.

Item Description

Number of Android Repositories 100
Number of collected images from XML 295

Number of labeled datasets 726

Data processing

1. Extract XML files from Android
repositories

2. XML files to PNG files (images)
3. XML files to class type and coordinate

data (labels) of GUI components

Data filtering

- layout without GUI components
- GUI components using external libraries
- XML format error

Ratio of training dataset 80%
Ratio of test dataset 10%

Ratio of validation dataset 10%

The link to the dataset https://github.com/sd05031/Dataset_for_
GUI_components (accessed on 21 May 2023)

https://github.com/sd05031/Dataset_for_GUI_components
https://github.com/sd05031/Dataset_for_GUI_components
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The performance of the pretrained GUI-component detection model was assessed
in terms of precision, recall, F1-score, and accuracy. Among the data that were predicted
as true by the model, those whose actual class was true were true positives (TPs), and
those whose actual class was false were false positives (FPs). Among the data that were
predicted as false by the model, those whose actual class was true were false negatives
(FNs), and those whose actual class was false were true negatives (TNs). All misclassified
cases were defined as false in this study. The accuracy, which is obtained by dividing the
number of correctly classified data by the total number of data, was used as an indica-
tor of the performance reliability of the classification model. The accuracy is calculated
using Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

However, as accuracy is an unreliable indicator when the dataset is skewed, the
precision, recall, and F1-score were also used to evaluate the performance. Precision refers
to the ratio of data that are classified as true by the model to the data that are labeled as
true, as expressed by Equation (2). Recall refers to the ratio of data that are labeled as true
to the data that are classified as true by the model, as expressed by Equation (3).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Given that precision and recall have an inversely proportional relationship (tradeoff),
it is unlikely that both will achieve high performance if a classification model cannot
perform classification accurately. Therefore, the F1-score, which is the harmonic mean
of the precision and recall scores, was used to determine whether precision and recall
simultaneously achieved high performances, so as to measure the model-classification
performance regardless of data skewness. The F1-score can be obtained by dividing the
product of precision and recall by their sum. A high F1-score can only be obtained when
both precision and recall exhibit high performance. When both precision and recall are set
to 1.0, the maximum value that is yielded by the calculation formula is 0.5. Therefore, it is
multiplied by 2 for correction, as expressed by Equation (4).

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

Table 2 presents an overview of the experimental environment and setup for the
performance evaluation of the GUI-component detection model. We used the PyTorch
framework to use deep-learning techniques and the MMDetection framework to develop
and train object-detection models. In addition, it does not collect information on GUI
components provided by external libraries that are not provided by Android Studio. Per-
forming a test based on a GUI-component detection model takes time to detect GUI, but
becomes non-dependent on the framework for the test. Although all GUI states included
in the application were captured and analyzed, it takes only 0.28 s on average to analyze
components from images on the captured screen. People need a little time to recognize and
select GUI components.
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Table 2. Experimental environment for evaluating GUI-component detection performance.

Item Description

Implementation framework Deep learning: PyTorch
Object detection: MMDetection

GUI-component detection model Faster R-CNN

Component types to be detected

13 types
(Button, Image, TextView, ToggleButton,

RadioButton, EditText, ProgressBar, SeekBar,
RatingBar, ScrollView, Switch, Spinner,

CheckBox)
Average time for component detection 0.28 s

4.1.2. Design for Testing Open-Source Applications

Application testing was simulated using the Android Emulator as the experimental
device and AndroR2 [60] as the dataset, as outlined in Tables 3 and 4, respectively. The
Android Emulator simulates an Android device on a PC, thereby creating a virtual environ-
ment that is similar to a real device. This is convenient for testing because the environment
can be configured and controlled easily.

Table 3. Experimental environment configuration.

Item Description

Device name Android Emulator
Device type Virtual device

OS Android API 26
Android 8.0 OS (Oreo)

Resolution Width: 1080 px
Length: 2280 px

RAM capacity 1536 MB (1.5 GB)
GPU hardware Yes

Table 4. The dataset for crash detection testing.

Item Description

Name of the dataset AndroR2
Number of total bug reports being published 90 items

Bug types Crash, Output, GUI

Data feed Files containing bugs (APK), bug reports,
reproduction scripts (Java), metadata (JSON)

Used bug reports for crash detection testing Crash type 3 bug reports: #7, #11, and #50

Bug report ID Bug type Application name Android OS version
reported

GUI actions in
bug scenarios

7 Crash HAB Panel Viewer 8.1 5
11 Crash Noad Player 6.1 2
50 Crash Berkeley Mobile 9.0 1

AndroR2 is a dataset of Android applications that contains real bugs. It provides 90 bug
reports that are associated with bug reproduction scripts created using the GitHub Issues
tracker for applications that are available on the Google Play Store and GitHub. This dataset
provides files for installing applications and scripts containing how to reproduce bugs
corresponding to reports. The application can be installed through an APK extension file
and is provided in the same version as written in the bug report. The script for reproduction
is written in the source code of the Java language, and when executed, it performs GUI
actions that reproduce bugs in the report. In addition, JSON data are provided as metadata,
including the GitHub address of the open source, the OS version of Android, the type of
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bug, and the number of GUI actions for bug reproduction. Three types of bugs exist: Crash
(an application termination that is caused by a crash event), Output (errors in the output
results), and GUI (errors in GUI properties). The experiments were conducted using four
applications that operate normally in the Android Emulator environment and bug reports.

The second experiment measured the code coverage to determine how many codes
could be executed by the proposed technique. Monkey [61], which has been used as a
comparison tool in many studies, was selected as the baseline, and the Android Code
Coverage Tool (ACVTool) [62] was used as the coverage measurement tool. ACVTool
measures the code coverage by analyzing bytecode without the project source code. Table 5
describes the experimental environment for the code coverage evaluation. The application
of bug report #62 (PDF Converter) was used as the data to avoid crashes during the code
coverage analysis, which would make normal measurement impossible.

Table 5. Experimental environment configuration for code coverage measurement.

Item Description

Measurement tool Android Code Coverage Tool (ACV Tool) [62]

Data applied AndroR2 [60]
Bug report #62 (Output type)

Baseline Monkey [61]
Length of the test scenario 5 and 10

Number of events set for Monkey test 100, 500, and 1000
Seed value of Monkey 1 and 777
Measurement object Total code coverage

This application is classified as the “output” bug type and operates normally in the
Android Emulator. The test scenario lengths were set to 5 and 10 to compare the difference
according to the number of test executions for each scenario of the proposed technique.
The length of the test scenario refers to the number of actions performed during the test
through the GUI component from the start of the application. The number of events was set
to 100, 500, and 1000 and the number of test executions was not specified for the Monkey
test. The seed value was set to 1 and 777 to ensure that the Monkey test, which is based
on the execution of random actions, can always be performed under the same conditions.
Seed is a value used to control random events that occur during Monkey tests. The same
values lead to the same results. We use them to obtain fixed test results.

In the second experiment, we also evaluated the bug detection performance of the
proposed technique. Among the available bugs in the dataset, those that are classified
as “Crash” in bug reports #7, #11, and #50, which can be detected using computer vision
(image analysis) without source code, were used for testing with the application running
normally on the Android Emulator. The maximum length of the test scenario was set to
10. Monkey was selected as the baseline to compare the testing performance from the
black-box perspective. The number of random events was set to 1000, with the seed values
ranging from 1 to 5, in the Monkey test.

4.1.3. Crash Detection Testing Design

For the third experiment, an application that directly generates crashes was developed
and a testing environment that could induce a crash event was constructed to evaluate
the performance of the proposed technique. Five user-defined exception-handling crashes
were specified (Crash 1 through Crash 5) in the application to verify the occurrence of
crash events and analyze the crash location from the device log data. The configuration
details are presented in Table 6. The application was developed using the Kotlin language
for programming on the Android platform, and it was configured for use on devices with
Android 8.0 (Oreo) or higher. There were no permission requests to use the application and
the Android Emulator was used in the experiments.
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Table 6. Configuration of experimental environment for code coverage measurement.

Item Content

Platform Android Native
Programming language Kotlin

Minimum OS requirements Android API 26
Android 8.0 OS (Oreo)

Permission requests None
Number of activities 28

Number of action events 32
Number of crash events 5
Crash 1 event activity A0
Crash 2 event activity F0
Crash 3 event activity G1
Crash 4 event activity H0
Crash 5 event activity J2

Figure 5 outlines the activities, moves between activities, and crash events in the
application under testing. The solid line bordered nodes indicate normal-state activities,
the dotted line bordered nodes indicate activities that triggered crashes within the nodes,
and the double line bordered nodes indicate the starting activity of the application. An
attempt was made to test whether the proposed technique could detect crashes and move
between activities without being constrained by specific circumstances (depth and width)
on the application STG by generating crash events on activities a0, f0, g1, h0, and j2.
An additional experiment was conducted to compare the performance of the proposed
technique with that of the baseline method. The performance of Monkey in detecting bugs
was tested in 100 iterations, with the number of events set to 100, 500, and 1000.
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4.2. Experimental Results
4.2.1. Results of Performance Evaluation of GUI-Component Detection Model

The images that were collected from the first experiment were used to evaluate the
performance of the GUI-component detection model in detecting 13 GUI components.
Table 7 presents the results of the performance evaluation experiments. The model exhibited
stable performance ranging from 0.83 to 0.86 on all evaluation items. However, scores
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of 0.97 or higher are required to achieve detection accuracy, which suggests that a larger
dataset should be used.

Table 7. Results of performance evaluation of GUI-component detection model.

TEST ITEM Value

Macro precision 0.8529
Macro recall 0.8349

Macro F1-score 0.8430
Accuracy 0.8659

4.2.2. Results of Open-Source Application Testing Performance

Table 8 displays the results of the second experiment; that is, the code-coverage
measurement of an open-source application. The code coverage was compared according
to the maximum depth, with the number of action executions set to 5 and 10 for each test
scenario of the proposed technique. The results demonstrate that the proposed technique
did not execute meaningless actions. In the Monkey test, the application activities were
randomly executed or changed, and the actions were randomly generated and executed.
Monkey offers the advantage of freely executing any activity compared with the proposed
technique. However, its excessively random search increased the rate of redundant test
cases and its overall code-coverage results were lower than those of the proposed technique.

Table 8. Code-coverage measurement results.

Technique Proposed Technique Baseline (Monkey)

MAX_STEP (depth) 5 10 - - - -
Number of events - - 100 500 1000 1000

Seed value - - 1 1 1 777
Statement coverage 6.543% 7.629% 5.331% 6.382% 6.438% 6.628%
Function coverage 8.354% 9.317% 7.360% 8.497% 8.579% 8.277%

Class coverage 12.056% 13.517% 11.346% 12.279% 12.279% 11.812%
Activity coverage 17.460% 68.254% 17.160% 17.460% 17.460% 17.460%

Code coverage 6.141% 7.089% 5.331% 6.382% 6.483% 6.216%

The numbers in bold indicate the highest.

Table 9 presents the results of the crash-detection performance experiment; that is, the
testing of the three open-source applications. Actions that matched the test scenarios or
triggered other crash events were detected using all three applications. OOA events were
also detected. Crash and OOA events could be reproduced with a high success rate by
executing the test actions that were presented via the proposed technique.

Table 9. Detected crash measurement results.

Technique Detection Performance 1 (# 7) 2 (# 11) 3 (# 50)

Proposed technique
Number of crash detections 1 1 9

Number of GUI action executions 5 2 1, 3
Number of OOA detections 0 2 0

Baseline (Monkey)

Number of crash detections (seed 1) 0 0 3
Number of crash detections (seed 2) 0 0 2
Number of crash detections (seed 3) 0 0 2
Number of crash detections (seed 4) 1 0 2
Number of crash detections (seed 5) 2 0 3

Detection exception type Illegal State
Exception None Null Pointer

Exception
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In the comparison test, the baseline (Monkey) could detect crashes in only two of the
three applications: 2/5, 0/5, and 5/5 in the first, second, and third applications, respectively,
with all detected crashes showing the same exception.

4.2.3. Crash-Detection Testing Results

Table 10 presents the results of the testing in the final experiment, for which a bug-
simulation application was developed in-house. The proposed technique performed a
search (test), detected all crashes in the application and generated bug reports. However,
the baseline technique failed to detect certain crashes, detecting 2/5, 4/5, and 5/5 crashes
when testing was performed with 100, 500, and 1000 events per loop, respectively. More
than 77,000 events had to be generated for Monkey to detect all five crashes at 1000 events
per loop.

Table 10. Analysis of application testing results of the proposed technique.

Test Execution Crash 1 Crash 2 Crash 3 Crash 4 Crash 5

Success in detection O O O O O
Number of GUI actions 2 4 4 4 7

Number of events per loop: 100
Number of events detected - - 57/100 76/100 -
Number of loops detected - - 63/100 35/100 -

Number of searches <10,000 <10,000 5763 3576 <10,000
Success in detection X X O O X

Number of events per loop: 500
Number of events detected 258/500 340/500 481/500 160/500 -
Number of loops detected 28/100 27/100 6/100 10/100 -

Number of searches 14,285 13,840 3481 5160 <50,000
Success in detection O O O O X

Number of events per loop: 1000
Number of events detected 716/1000 318/1000 133/1000 236/1000 823/1000
Number of loops detected 40/100 4/100 21/100 42/100 77/100

Number of searches 40,716 4318 21,133 42,236 77,823
Success in detection O O O O O

Figure 6 depicts the application-testing process of the proposed technique using a
preconfigured application and the test results of each process step. In Step 1, an action list
was generated by extracting the UI list from the input application activities. The initial
STG, which was composed of nodes and edges, was generated based on an action list and
activity information. Subsequently, three GUI components were extracted from the screen
of the preconfigured application, which was followed by the generation of an action list
with four items by combining the components with the predefined action set. However, no
action list items were generated for the text view owing to a lack of matching actions in the
action set. Finally, two items were generated for each button in the action set.

In Step 2, an initial-state STG was constructed using the node and edge information
that was generated in the previous step. Nodes with values that are marked with “none”
in the initial-state STG were unsearched and provided no information on their action-
related states.

In Step 3, a DFS-based STG search was performed to complete the initial-state STG,
and test cases were generated for the none-state nodes that were detected during the search.
The test runs continued until no none-state nodes were identified in the STG and the test
was terminated when the STG was completed.

Finally, in Step 4, the metadata on the test environment and information on crashes
and OOA events that were detected during testing were recorded in a report and returned.
The metadata included the testing date and time, application name and version, name
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of the tested device, OS, and screen size. The crash and OOA information included the
number of events and GUI actions that were used to reproduce the issue.
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5. Conclusions

An automated software crash diagnosis technique using an STG based on GUI-
component detection has been proposed. The executable actions on the application screen
and STG are generated by combining the GUI components and a predefined action set. The
STG is used to generate test scenarios, prevent redundant test cases, and report crash and
OOA events.

The proposed technique differs from existing test tools in that it can perform testing
without the source code of the application. Upon completion of the testing, it provides a bug
report that enables STG-based bug reproduction. This also allows for cross-platform testing
using computer vision. The strength of the proposed technique is that, by automating the
test of the GUI application in a human-like manner, it has higher coverage than Monkey
while maintaining the reliability and stability of the test. It can also be tested through
the visual recognition of GUI components in an environment where the source code of
the software is not provided. The proposed technique can perform valuable tests, unlike
Monkey, which performs tests indiscriminately without probability, by performing tests
through the recognition of GUI components. We conducted a comparative experiment with
Monkey on the proposed technique, and as a result, we were able to verify the excellence
of the proposed technique as follows.

Performance evaluations of the GUI-component detection model, code coverage
measurement, and crash detection tests were conducted. A total of 100 open-source Android
applications were collected and the GUI-component detection model was pretrained to
analyze its performance. Subsequently, the accuracy of the model was assessed, along with
its macro precision, macro recall, and macro F1-score. Although the deep learning model
was trained with a small dataset, it exhibited stable performance ranging between 0.83 and
0.86. Given that the GUI-component detection performance is directly associated with the
testing performance, the performance must be continuously improved.

Thereafter, code-coverage analysis and crash-detection performance evaluation exper-
iments were conducted using the Android Emulator and AndroR2 bug dataset, and the
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results were compared with those of the baseline technique (Monkey). A comparison of the
code coverage measurement results revealed that, despite the imperfect performance level
of the GUI-component detection model, the proposed technique outperformed Monkey,
which executed 1000 random actions. We also performed a crash-detection experiment that
could be analyzed using computer-vision technology to evaluate the testing performance
using the three applications. The proposed technique detected all crashes in the three
applications and generated result reports with the scenarios, including GUI actions that
could reproduce each crash and OOA. The baseline technique detected crashes in only two
of the three applications.

For the final experiment, we constructed a multi-crash testing environment by con-
figuring an application containing five exception-handling crashes to analyze the testing
performance of the proposed technique from various aspects. All five crashes were detected
using the proposed technique and each crash could be reproduced based on the test report.
In contrast, more than 77,000 events had to be generated for the baseline technique to detect
all five crashes.

In future research, we will perform a study to automatically test actions that are
not screen-touch-based. The dataset we collected did not take into account detection for
hierarchical views. We will also perform the detection of hierarchical views in the next study.
In addition, we plan to apply the MLOps [63] technique for the performance maintenance
and improvement of the GUI-component detection model through continuous GUI-design
changes. Furthermore, we will attempt to reduce the testing execution time by distributing
test tasks using virtual instruments and cloud-computing techniques. Finally, we will
investigate a reinforcement-learning-based GUI testing tool by training bug-prone tasks to
enhance testing efficiency.
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