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Abstract: Active noise cancellation (ANC) is the most important function in an audio device because
it removes unwanted ambient noise. As many audio devices are increasingly equipped with digital
signal processing (DSP) circuits, the need for low-power and high-performance processors has
arisen because of hardware resource restrictions. Low-power design is essential because wireless
audio devices have limited batteries. Noise cancellers process the noise in real time, but they
have a short secondary path delay in conventional least mean square (LMS) algorithms, which
makes implementing high-quality ANC difficult. To solve these problems, we propose a fixed-
filter noise cancelling system with a convolutional neural network (CNN) classification algorithm
to accommodate short secondary path delay and reduce the noise ratio. The signal-to-noise ratio
(SNR) improved by 2.3 dB with CNN noise cancellation compared to the adaptive LMS algorithm.
A frequency-domain noise classification and coefficient selection algorithm is introduced to cancel the
noise for time-varying systems. Additionally, our proposed ANC architecture includes an even–odd
buffer that efficiently computes the fast Fourier transform (FFT) and overlap-save (OLS) convolution.
The simulation results demonstrate that the proposed even–odd buffer reduces processing time by
20.3% and dynamic power consumption by 53% compared to the single buffer.

Keywords: active noise cancellation; convolutional neural networks; even–odd buffer; low-power
system design; digital signal processing

1. Introduction

Over the last decade, interest in ANC has substantially increased owing to the swift
advancements in microelectronics that have made it feasible to implement fast, low-power,
multichannel controllers at an affordable cost. Recently, ANC has been applied in various
industrial domains, such as noise control in headsets, air-conditioning ducts, airplanes, and
automobiles [1]. The Bluetooth function in headsets allows for the utilization of DSP, which
enables the integration of more DSP circuits in a single audio device. The digital ANC
module has gained significant importance as a key component of audio DSP circuits due
to its robustness, low-cost implementation, and adaptability to dynamic environments [2].
Recently, as real-time convolution methodology develops and virtual reality becomes more
popular, many audio system applications have been made, including 3D binaural repro-
duction, which is a method to obtain a desired stereo sound effect by directly controlling
the sound in the listener’s ears [3]. It is possible to create a 3D acoustic environment that
does not exist in the real world. To obtain a binaural signal, the signal of the sound source
is passed through the head-related transfer function. Through this process, the coefficients
of the finite impulse response (FIR) filter are obtained. Binaural reproduction and other
real-time applications use partitioned convolution with the OLS method for hardware
efficiency. At that point, we can integrate many audio applications into one convolution
unit, including the ANC. Two FIR filter coefficients—the noise cancellation coefficient and
binaural reproduction—can be combined using the cross-correlation method, leading to a
low-power technique [4].

Electronics 2023, 12, 2511. https://doi.org/10.3390/electronics12112511 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112511
https://doi.org/10.3390/electronics12112511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2416-2472
https://orcid.org/0000-0002-5560-873X
https://doi.org/10.3390/electronics12112511
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112511?type=check_update&version=1


Electronics 2023, 12, 2511 2 of 16

ANC operates by utilizing destructive interference between sound fields generated by
the primary sound source and other secondary sources that can be controlled to remove
noise [5]. Figure 1 shows two methods for generating anti-noise: feedback control and
feedforward control [6]. Conventional adaptive algorithms use feedback to generate the
anti-noise. The basic feedback control algorithm is the LMS algorithm. It calculates the error
between noisy audio and clean audio within a few frames to update FIR filter coefficients.
The filter cancels the noise by multiplying the impulse response and noisy signal in the
frequency domain [7]. The LMS algorithm has been widely used in audio devices due
to its low hardware complexity. It infers the error well in time-varying systems, but it
suffers unstable and slow convergence due to its short secondary-path delay [8]. Con-
versely, feedforward ANC generates the anti-noise with a predetermined control system.
The feedforward control system does not have error calculation. A feedforward control
system without a feedback loop should have external control signals and a well-established
mathematical model of the exact effect on the load. A feedforward control system has
the advantages of a proportional increase in quality of inference due to its mathematical
analysis improvement and low-power implementation because of its hardware simplic-
ity. Other advantages include its reduced processing time and small area [9]. However,
theoretically, a feedforward system cannot accurately measure unpredictable disturbances
because it is controlled by fixed system variables. However, with the advancement of
microprocessor speeds, control systems can learn and adapt mathematical models and have
become increasingly viable [10]. To overcome the disadvantages of feedforward control,
we introduce the coefficient library selection algorithm in our proposed method to adjust
to time-varying systems, which we will discuss in Section 3.3 [11].
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Figure 1. Two types of ANC signal processing flow.

As feedforward noise control performance increases, data transfer logics become more
crucial. There are various techniques to accelerate the processing speed and reduce power
consumption. One of them is reducing data buffering overhead using dedicated buffering
algorithms [12]. In this paper, an even–odd buffer structure is proposed to distribute data
to the processor appropriately. It is slightly more complex than the single buffer, but it
is more efficient in terms of processing time and power consumption. To manage the
complex control signals, scheduling is required to divide the buffers’ roles and tasks to
execute commands with low latency [13]. We optimize the data processing scheduling by
analysing the ANC computation method and dataflow. The even–odd buffer works as
follows: A write-side buffer and a read-side buffer change their roles when data processing
and input signal reading are done. The even–odd buffer has many advantages for CNN
noise cancellation. The first is it makes synchronizing the buffer’s activation easy. In the
existing double-buffer or ping-pong-buffer structure, it is difficult to reconstruct the control
signal path when the filter’s weight has changed. Our proposed buffer structure makes
it possible to construct the signal path more easily and quickly. The second advantage is
that the even–odd buffer optimizes wire insertion, thereby minimizing the secondary-path
delay and power consumption. We optimize the write-side buffer by removing reused
memory access, thereby reducing the propagation delay at the gate level. Additionally,
optimized placement of the buffer can lead to dynamic power reduction. This optimization
is achieved in hardware description language (HDL) using verilog HDL. This topic is
discussed in Section 3.2.
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Figure 2 shows the proposed ANC architecture. There are three key processes:
(1) the sampling process using the proposed even–odd buffer, (2) the noise cancelling
process, (3) and the pre-training process with the coefficient selection algorithm. In the
sampling process, sampled data are stored in the write-side buffer from the ADC and
exchange the overlapped data in the register. We assigned the dedicated register inside
the even–odd buffer to compute the OLS convolution efficiently. In the noise cancelling
process, the sampled data are transformed to the frequency domain from the time domain
using FFT. FFT-based convolution is faster than direct convolution when a single core is
used. The different point of direct convolution uses massively parallel processing elements
that perform an O(N2) algorithm more quickly. However, the audio device has no space to
build the PE arrays, leading to a power shortage because most recent binaural products
have limited battery power. Therefore, noise cancellers cannot afford many processing
cores. In addition, the FFT-based convolution is faster than parallel convolution only for
longer FIR filter lengths (over 1024 taps). The computational expanse of the FFT convolu-
tion is O(N log2 N), which is much faster than the O(N2) direct algorithm, so we adopted
frequency-domain convolution for efficient noise cancelling calculation. In the pre-training
process, we trained the human voice to the simple 2D CNN. The coefficient library and its
selection algorithm were designed based on the type of noise.
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Figure 2. Proposed CNN noise canceller architecture.

2. Related Work

Shi et al. (2022) [14] proposed a novel approach to ANC using a fixed-filter and a
CNN for selective noise cancellation. Traditional ANC systems suffer from limited noise
reduction performance in non-stationary noise environments. To address this challenge,
the proposed system uses a fixed filter to attenuate the overall noise level and a CNN
to cancel specific noise components selectively. The CNN is trained using a dataset of
clean and noisy audio samples, and it learns to identify the specific noise components that
need to be cancelled. The proposed system is evaluated using simulated and real-world
data, and the results demonstrate that it achieves significant noise reduction performance
compared to traditional ANC systems. The selective cancellation approach also reduces
the distortion and colouration of the residual noise, resulting in a more pleasant listening
experience. Overall, the paper presents a promising approach to ANC using CNNs and
selective cancellation, which has the potential to improve noise reduction performance in
non-stationary noise environments.

The small secondary path delay limitation is the main issue in the recent noise can-
cellation system focused on designing a CNN accelerator for noise cancellation and its
hardware implementation using a field-programmable gate array (FPGA). The authors
argued that the LMS algorithm needs a high sampling frequency to avoid violating the
causality constraint in ANC, but to maintain the feedback’s stability, the frequency range of
the ANC operation is limited to 600 Hz. For these reasons, they used a CNN feedforward
fixed-filter ANC to overcome the issues. By using a dilated buffer, ANC can predict the fu-
ture signal well by observing extensive previous data. Jang et al. (2022) [8] achieved better
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noise-power reduction than the LMS algorithm. In their study, the total power decreased
by 14.8 dB and the maximum noise by 24 dB. Spatial noise cancellation measurements are
presented in the article. Our research goal is to improve ANC performance, specifically by
increasing demands of 3D object-based audio systems and identifying an efficient spatial
noise cancelling system. The difference in the research focus between Jang’s and our paper
is that our research focused on speeding up the convolution calculation, not the CNN
accelerator implementation.

Our previous work (2023) [15] focused on designing a simple even–odd buffer proto-
type and researching how to manage the audio signal stream while using the LMS algorithm
as a noise control. The windowing effect, FFT calculation, and other buffering-related issues
were thoroughly investigated to build a basic model for high-performance and low-power
ANC systems. The previous even–odd buffer produced an effective dataflow and operating
system. This study proves that our even–odd buffer technique can increase ANC perfor-
mance. Based on previous research, the modified even–odd buffer can be introduced in this
paper. The principle is the same because it maximizes utilization of the hardware resources
using parallelism. We added some registers inside the proposed modified even–odd buffer
to increase the data’s reusability within the secondary-path delay limit.

3. Proposed Method
3.1. CNN Noise Cancellation

CNNs are commonly used in audio signal processing tasks, such as speech recognition,
music analysis, and sound event detection, due to their ability to extract relevant features
from raw audio data [16,17]. CNNs are especially effective in analysing audio signals
because they can detect local patterns and features in the input data by applying a set of
learnable filters, or kernels, to small segments of the audio signal at a time. These kernels
can capture patterns, such as specific frequency ranges or spectrotemporal modulations
that are relevant to the task at hand. Furthermore, CNNs can learn to represent increasingly
complex features hierarchically by stacking multiple layers of convolutional and pooling
operations. This allows the network to capture higher-level representations of the audio
signal, such as phoneme or chord sequences in speech or music [18]. CNNs effectively
process audio signals because they can extract relevant features from the raw data and
learn hierarchical representations of these features, which are essential for many audio
signal processing tasks.

The CNN model can compute most accurate filter parameters for ANC. In addition,
CNN is suitable for the feedforward control because its performance greatly increases as
mathematical properties of noise in the CNN are explained well. The noise components are
inferred through the learning of noisy audio, which is the combination of the clean audio
and the noisy audio to be extracted. Figure 3 shows the training process and inference
process of the CNN noise canceller. In the learning stage, recorded noisy common voices are
used as a dataset and noise audio as a target parameter. The CNN is trained to predict the
noise signal in the noisy audio so that it generates the anti-noise to be removed. It accepts
the magnitude of the signals transformed to the frequency domain by FFT to calculate the
FIR filter impulse response rather than generating the clean audio directly. To cancel out
the noise adaptively using feedforward control, noise components should be determined
using a fixed filter. Thus, frequency domain data are used in our work. In the inference
stage, the noisy audio recorded from the microphone is inserted into the CNN model in
the form of the magnitude. Inserted noisy audio works as a predictor. As the input audio
changes, a filter coefficient library that extracts specified noise can be configured by user
choice based on the learned model. The calculated magnitude and angle components are
combined into the complex number. Through this process, we constructed a CNN that
extracts the filter coefficient of noise components for the human voice.
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Figure 3. CNN noise cancelling system: (a) Training process. (b) Inference process.

3.2. Even–Odd Buffer

Buffering refers to the practice of temporarily storing audio data in a buffer, or tempo-
rary memory space, before processing it. Buffering is commonly used in audio applications
to prevent audio dropouts or interruptions caused by network latency, slow processing
speed, and other performance issues [19]. However, buffering can also create its own set
of issues if the buffer size is too small or large. If the buffer size is too small, there may
not be enough audio data available to prevent audio dropouts, resulting in stuttering or
skipping in the audio. On the other hand, if the buffer size is too large, it can cause a delay
or latency between the audio source and the playback device, resulting in audio lag or
synchronization issues. Buffering issues can be especially noticeable in real-time audio
applications, such as live streaming and online gaming, in which any delay or lag in the
audio can disrupt the user experience [20]. To address buffering issues, it is important to
optimize the buffer based on the specific audio application and ensure that the buffer is
constantly being filled with enough audio data to prevent interruptions.

Buffer size has increased due to high-resolution (over 96 kHz and 24 bits) audio
sampling and signal processing circuits that demand a high computational load. Buffer
management in audio DSP design is increasingly important, and the buffer structure
should have an optimized data processing scheme for faster processing speed. One of the
most popular buffer optimization schemes is double buffering. It efficiently handles the
input/output dataflow using multiple buffers. Double buffering reduces elapsed time if
the processing time of processing units is smaller than the read time during the merge
process [21]. Additionally, as long as scheduling is associated with the input side buffer,
the maximum increase in speed by the double buffer is ideally twice that of the single
buffer. However, it has latency issues because data processing overhead affects the output
buffer to be delayed, and the input/output buffer should be synchronized by the input
data acquisition and should manage all control signals [22]. Sync operation can be done
by a simple task-level pipelined ping-pong buffer, in which the producer and consumer
are simultaneously scheduled. In our study, based on the ping-pong buffer, the even–odd
buffer scheme is introduced to overcome the buffer under-fill issue and decrease processing
time in real-time applications with robustness.

Figure 4 illustrates the structure of the proposed even–odd buffer. It operates as
a ping-pong buffer that continuously feeds the data to the consumer. In the ANC, the
producer is the ADC and the consumer is the FFT module. Stream scheduling is managed
by the characteristic of parallelism [13]. Even–odd buffer data input/output port bit depth
is 16 bits because common audio is sampled in 16 bits. The microphone picks up the
sound and sends an ambient noise signal to the ADC at a specified sample rate, buffer
size, and bit depth. The ADC writes audio samples into the buffer. Simultaneous access
of the processing unit could result in a hazard called underrun, which refers to output
signal silence when data are written in the buffer from the ADC. To solve this problem, we
propose an even–odd buffer that efficiently processes the data sent to the FFT module with
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little latency. It is intended to write and read the data continuously. Control logic receives a
temporary “done” signal when both of the FIFOs’ write operations are done within one
operation cycle. The sampled frame’s ends are clearly defined because their operation is
symmetrical. The key to achieving a low noise ratio in ANC is to optimize computation
dataflow. The faster coefficient change can increase the quality of the output signals while
the FIR filters process many parameters per window. However, there is a bottleneck in
the data transfer process because the buffer cannot hold long windows. Our previous
study [15] confirmed that an even–odd buffer sampling method is more efficient when the
sampled frame is large. Experiments comparing other models’ performance are possible
because they are synthesizable to the register transfer level (RTL) schematics and feasible
on the FPGA. The adopted even–odd buffer pipeline architecture determines which buffer
is a writer or reader. When the synchronization operation ends with one frame’s buffering,
the control logic enables the data processing units.

Reader

Writer
ConsumerProducer

FIFO

FIFO

(a) Even-odd buffer operation

(b) Dataflow diagram

Overlap 
Register

save

overlap

data_in
16bit

data_out
16bit

128 128

128 128

Figure 4. Proposed even–odd buffer structure.

y[n] =
L−1

∑
k=0

x[k]h[n− k] (1)

Equation (1) above refers to direct convolution: y[n] is an output sequence, x[n] is an
input sequence, h[n] is an impulse response sequence, and L is convolution length, which
is the sum of the lengths of x and h. Direct convolution has a large computational cost
(O(L2)). This time-domain multiply–add method is infeasible when impulse responses
are large. Impulse responses are computed following the overlap-add or overlap-save
convolution method to reduce computational cost.

Y[n] = R[1] · H[1] + R[2] · H[2] + · · ·+ R[M− 1] · H[M− 1]+

X[1] · H[M] + X[2] · H[M + 1] + · · ·+ X[L] · H[M + L− 1]

=
M−1

∑
i=1

R[i] · H[i] +
L

∑
j=1

X[j] · H[j + M− 1]
(2)

We use OLS computation (2) in our experiment. This method requires less computa-
tional cost (O(Llog2(L))). Y[n] is an output sequence. X[n] is an input sequence. R[n] is
an overlapped register. H[n] is an impulse response sequence. All of the parameters
are magnitudes in the frequency domain. M is a filter length. L is an integer such that
L + M− 1 becomes a power of 2. In other words, L + M− 1 should be equal to the length
of the FFT. Our proposed even–odd buffer has a special register to store overlapped sam-
ples. The proposed even–odd buffer has the advantage of computing the OLS method



Electronics 2023, 12, 2511 7 of 16

well with partitioned convolution. The single-buffer method has an overwriting risk that
could disturb previous sample processing. Additionally, partitioned convolution uses
previous frames and overlaps M− 1 samples. For M sample cycles, the last M samples
are transferred to another buffer. The parallel structure and its sampling controllability of
the buffer make implementing the OLS convolution easy. However, the CNN noise can-
cellation system requires a sliding window, which is converted to a frequency domain by
FFT and is used for OLS convolution. Figure 5 shows the FFT-based OLS convolution with
cross-fading. Acoustic fields are generally time-varying. At a point, T, in the time domain,
a noise-type change makes the pre-trained filter type controlled. Each writer/reader buffer
sends status signals to the control logic. Assigning a count register in the buffer prevents
overflow. The buffered bandwidth minimization technique includes partitioned convolu-
tion, which is a real-time application that efficiently performs time-domain convolution
with low inherent latency [23].
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Delay(N)
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Figure 5. Overlap-save method with partitioned convolution.

Algorithm 1 is the proposed even–odd buffer operation algorithm, which is an algo-
rithm used for performing the OLS convolution method. The OLS method is a convolution
technique that avoids the costly multiplication operation in the time domain by using the
frequency domain instead. The algorithm buffers the input signal into two separate buffers,
called buffer 0 and buffer 1, of size N. The algorithm processes the data in a frame-by-frame
manner, in which each frame consists of N samples of the input signal. The algorithm also
uses a filter of size M as well as an overlap-save register R of size M− 1, which is used
to save the overlapping samples from one frame to the next. The control signals, out and
done, are configured at the beginning of each frame: out indicates which buffer to use to
buffer the input data, and done is a signal that is set to 1 when a frame is completed. If both
buffers are full (i.e., b0i is N and b1i is N), done is set to 1 and out is toggled. The algorithm
then buffers the input data into the selected buffer based on the value of out. If out is 1,
the input data are buffered into buffer 0. If out is 0, the input data are buffered into buffer
1. For each buffer, the algorithm first overlaps the samples from the previous frame with
the current frame by copying the samples from the overlap-save register, R, into the buffer.
The algorithm then saves the new data samples from the current frame into the buffer. If
the end of the input data is reached (i.e., b0i or b1i is greater than L, the sample size), the
algorithm saves the overlapping samples from the current frame into the overlap-save
register, R, for use in the next frame. The even–odd buffering algorithm is efficient in terms
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of memory usage because it only requires two buffers of size N and avoids unnecessary
computations by using the overlap-save technique.

Algorithm 1 Even–odd buffering algorithm for the OLS convolution

1 N : Buffer size
2 M : Filter size
3 L : Sample size
4 dataIn : Input data
5 B0 = {b0i|0 ≤ i ≤ N} : Buffer 0 data array
6 B1 = {b1i|0 ≤ i ≤ N} : Buffer 1 data array
7 R = {ri|0 ≤ i ≤ M− 1} : Overlap-save register
8 out : Output buffer indicator (0: Buffer 0; 1: Buffer 1)
9 done : One frame-sampling-done signal

10 % Configuring the control signal
11 Out = 0
12 Done = 0
13 if b0i is N | b1i is N then
14 done = 1
15 out =∼ out

16 else
17 done = 0
18 out = out

19 % Data buffering 0
20 if out is 1 then
21 % Overlap data
22 for b0i ≤ M− 1 do
23 foreach ri in R do
24 b0i = ri

25 % Save data
26 for b0i > M− 1 do
27 b0i = dataIn if b0i > L then
28 foreach ri in R do
29 ri = b0i

30 % Data buffering 1
31 else
32 % Overlap data
33 for b1i ≤ M− 1 do
34 foreach ri in R do
35 b1i = ri

36 % Save data
37 for b1i > M− 1 do
38 b1i = dataIn if b1i > L then
39 foreach ri in R do
40 ri = b1i

3.3. Coefficient Selection Algorithm

In many signal processing applications, including audio processing, it is common to
use filters to remove unwanted noise or to extract certain features from the signal of interest.
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However, to achieve optimal performance of these filters, it is often necessary to select the
filter coefficients carefully. CNNs can be used to automatically learn filter coefficients that
are optimized for a given task, such as noise reduction and feature extraction. This process
involves training the CNN on a large dataset of input–output pairs, in which the input
corresponds to the noisy or feature-rich signal and the output corresponds to the desired
cleaned or feature-extracted signal. During training, the CNN learns to extract relevant
features automatically from the input signal and use them to predict the output signal.
The weights or coefficients of the convolutional layers in the network are learned through
backpropagation, which updates them to minimize the difference between the predicted
output and the true output. The use of CNNs for coefficient selection can be particularly
effective in situations in which the signal of interest is complex and has many frequencies
or spectral components. In such cases, manually selecting the filter coefficients can be
challenging and may not lead to optimal performance. Additionally, in our study, a fixed
filter is used, but the coefficients still need to be selected based on the input signal’s specific
characteristics. In such cases, a CNN can be trained to learn the optimal coefficients for
the fixed filter based on the specific input signals that it is intended to process. CNN
coefficient selection algorithms can help automate the process of selecting optimal filter
coefficients for a time-varying situation, resulting in improved performance and reduced
reliance on manual tuning. However, a CNN is a data-consuming process because it
requires extensive data bandwidth and has many parameters [12,24]. Consequently, direct
adoption of the CNN model in real-time ANC is infeasible. Therefore, we build a coefficient
library to reduce memory usage and minimize the hardware size [8,25]. Algorithm 2 is the
proposed coefficient selection algorithm. The algorithm starts by initializing coefficient
libraries for each type of noise to be cancelled. It then loops through each coefficient library
and evaluates the performance of the CNN-based noise canceller using the current set of
coefficients on a validation set. The criterion for determining whether the coefficients meet
the performance conditions is the root mean square error (RMSE). We set the RMSE margin
to 30% of the maximum RMSE value. When the coefficient’s RMSE is under the margin,
the condition is satisfied. The RMSE value depends on noise type. If the performance
is unsatisfactory, the algorithm repeats the evaluation process with a new set of random
coefficients until the performance is satisfactory. Once the algorithm has evaluated all
the coefficient libraries, it selects the coefficient with the best performance for the specific
noise type to be cancelled. Finally, the selected coefficient is used in the CNN-based noise
canceller to cancel the corresponding noise type in real-time signals. Overall, the algorithm
provides a simple and effective way to select the appropriate set of filter coefficients for a
CNN-based noise canceller, which can be used in a wide range of applications in which
noise reduction is needed.

Algorithm 2 Coefficient selection algorithm for the noise classification

1 Initialize coefficient libraries for each noise type to be cancelled.
2 foreach coefficient in coefficient library do
3 while performance is unsatisfactory do
4 Evaluate the performance of the CNN-based noise canceller on a validation

set.
5 Select the current coefficient if performance is satisfactory.

6 Select the coefficient library with the best performance for the specific noise type
to be cancelled.

7 Use the selected coefficient in the noise canceller to cancel the corresponding noise
type in real-time signals.

4. Experimental Setup

Figure 6 presents the experimental setup for the proposed CNN noise cancellation
and even–odd buffering. The objective of the experiment is to cancel out the noise and
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stream clean audio to the output buffer to evaluate its performance and power reduction.
The audio signal enters through the serial port. The original 44.1 kHz 16-bit audio signal was
downsampled to 8 kHz to reduce computational cost. CNN modelling and training were
conducted with MATLAB. The coefficient library of the trained model’s timing and power
evaluation was conducted using the Quartus II timing analyser and power analyser tools.
The proposed system was implemented in verilog HDL, and its RTL was implemented on
the Intel DE1-SoC board. ModelSim was used to visualize the denoised dump file.

FPGA

Simulation

Configuration System
Quartus II

Matlab

Timing analyzer

Timing analyzer

CNN training

Modelsim

FPGA

Simulation

RTL

Figure 6. Experimental settings with FPGA, configuration system, and simulation.

5. Evaluation
5.1. CNN Noise Cancellation

Table 1 shows the noise training platform specifications. In this work, one 12-core CPU
was used for CNN processing, and it had 16 GB of memory. The noise cancelling CNN
model was built and trained using the MATLAB deep-learning toolbox. The MATLAB
deep-learning toolbox was adopted as a training tool because of its portability of audio
signals, availability of implemented models, and ability to visualize its structure and
training process. Due to the dataset’s considerable size, epochs were set to 3. Batch size,
iterations, and learning rate were set to 128, 15888, and 8.1 × 10−6, respectively. For the
CNN input signal, FFT size and window length were set to 256.

Table 1. Training platform specifications.

Processor 12th-Gen Intel(R) Core(TM) i7-12700 KF, 3610 MHz, 12 Cores, 20 Logic Processors
Memory 16 GB

Training Tool MATLAB deep-learning toolbox
Epoch 3

Batch Size 128
Iteration 15,888

Learning Rate 8 × 10−6

FFT Size 256
Window
Length 256

The CNN is trained to extract the noise in the input audio signal. Figure 7 shows the
training result. The upper graph (a) shows the RMSE, and the lower graph (b) shows the
loss by epoch. All the datasets were trained three times (i.e., epoch is 3), and their RMSE
and loss converged at epoch 3. The number of weights in CNN was 31812. Because the
noise canceller only includes the noise component library, the size of the noise canceller is
not related to the size of the CNN. The CNN model’s structure is only concerned with the
accuracy of noise prediction. This is another advantage of the fixed filter.

Figure 8 shows the spectrogram of the noise filtering. Spectrograms are useful for
identifying patterns and trends in a signal. The spectrogram of the LMS algorithm shows
that it does not converge for 0.4 s. The spectrogram also shows that the SNR of the
CNN-based noise cancellation is 5.9 dB and the SNR of the LMS algorithm is 3.6 dB.



Electronics 2023, 12, 2511 11 of 16

The experiment shows that CNN-based noise cancellation overcomes the slow convergence
and noise ratio issue of the LMS algorithm. The effectiveness of the LMS algorithm has
been demonstrated in the field of ANC. Therefore, the fact that CNN ANC achieves a
better SNR already indicates the usability of the audio. However, in order to provide
more precise information about the quality of the audio, we conducted RMSE comparison
experiments on the denoised signals. RMSE is suitable for comparing denoised signals
with the original signals as it can be interpreted as the standard deviation when analysing
signals. The experimental results showed that the average RMSE between the denoised
and original signals in the speech dataset was measured at 0.049. In contrast, the average
RMSE of the LMS algorithm was measured at 0.93. Therefore, the denoised signals are
highly similar to the original signals, indicating minimal loss of information during the
denoising process. Some denoised examples are available on the GitHub repository [26].
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Figure 7. Noise component training plot using CNN. The upper graph (a) shows RMSE values and
the lower graph (b) shows loss for the CNN model training.
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Figure 9 shows the RTL schematics for two types of noise cancelling filters. The syn-
thesized results show the maximum clock frequency of the fixed filter is 717.36 MHz and
the maximum clock frequency of the LMS is 310.08 MHz. Therefore, the clock frequency
of the fixed filter is 56.8% faster. Table 2 lists the synthesized filter specifications. Logic
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utilization and total register decreased by 65.6% and 55.9%, respectively. Dynamic power
decreased by 22% with the fixed filter.

(a) LMS algorithm RTL schematic
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Figure 9. RTL schematics for the (a) LMS algorithm filter and (b) fixed filter.

Table 2. Synthesis result of LMS algorithm filter and fixed filter specification.

LMS Algorithm Fixed Filter

Family Cyclone V Cyclone V
Device 5CSEMA5F31C6N 5CSEMA5F31C6N

Maximum clock frequency 310.08 MHz 717.36 MHz
Total pins 71/457 60/457

Logic utilization in ARM 96/32,070 33/32,070
Total registers 145 64

Dynamic power dissipation 11.2 mW 8.74 mW
Static power dissipation 411.25 mW 411.25 mW

5.2. Even–Odd Buffer

The even–odd buffer structure was implemented using verilog HDL. Intel DE1-SoC
FPGA was set as the target board. Table 3 shows the synthesis results and power dissipation
comparison between the single buffer and even–odd buffer. The number of pins in the single
buffer was 71, and in the even–odd buffer, it was 77. The logic utilization of the single buffer
was 96, and that of the even–odd buffer was 134. The logic utilization indicates how many
computational resources are used in the ARM processor. The number of registers in the single
buffer was 145, and in the even–odd buffer, it was 187. The number of registers indicates how
many physical resources are used in FPGA. The power dissipation was calculated using a
Quartus II power analyser. The single-buffer dynamic power dissipation was 20.59 mW, and
that for the even–odd buffer was 9.67 mW. In many cases, dynamic power is consumed through
memory access. However, power consumption was decreased by reducing unnecessary
memory access through registers inside the even–odd buffer and disabling unnecessary control
logic. The even–odd buffer can operate in low-power mode using the clock-gating method.
Compared to a single buffer of the same size as the even–odd buffer, power consumption is
reduced with the even–odd buffer because it operates as a buffer of half its size. The target
board’s static power was 411.25 mW. In the idle state, the system runs on static power.
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Table 3. Synthesis results of single buffer and even–odd buffer and their power dissipation.

Single Buffer Even–Odd Buffer

Family Cyclone V Cyclone V
Device 5CSEMA5F31C6N 5CSEMA5F31C6N

Total pins 71/457 77/457
Logic utilization in ARM 96/32,070 134/32,070

Total registers 145 187
Dynamic power dissipation 20.59 mW 9.67 mW

Static power dissipation 411.25 mW 411.25 mW

Figure 10 shows the waveform of the single/even–odd buffer operation. The signal
was dumped into a waveform file and visualized in the ModelSim simulator. In the single
buffer, data were entered sequentially, and their corresponding output signals were output
after one frame. On the other hand, because the even–odd buffer stores the data in the
previous buffer, the switching speed was fast. The interval in the figure is clock cycles per
two frames. Because the even–odd buffer performs the synchronization operation based
on two frames, the measurement unit was set to two frames. The number of clock cycles
of the single buffer operation per two frames was 51, and for the even–odd buffer, it was
64. The even–odd buffer can decrease buffering operation time by 20.3% compared to
the single buffer. The measured shortened operation time was enough to read the last
overlapped M− 1 size data.

single buffer

even-odd-buffer
20.3%

data_in

data_out

data_in

data_out

Figure 10. Comparison of the timing evaluation results between the proposed even–odd buffer and
the single buffer.

To define the relationship between the resources and power, two parameters were
proposed: Plogic and Pregister. The power used by the resources indicates the buffer specifi-
cation. Lower values indicate better power performance in terms of computational cost
(number of logic cycles) and hardware resources (number of registers).

Plogic = Pdynamic × number of logics, Pregister = Pdynamic × number of registers (3)

Figure 11a shows the time-to-power analysis results. With the power consumption
measured by a power analyser, all of the power distribution was determined. This power
analysis scheme contributes to low-power chip design because the processor can sleep
after the operation time by clock gating, and the energy use is determined by time and
average power [27,28]. Reduced dynamic power and processing time double the even–odd
buffer’s energy savings. Figure 11b shows the comparison of the proposed power measures.
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Compared to the single buffer, Plogic and Pregister decreased by 34.3 and 39.4%, respectively,
in the even–odd buffer. The total energy consumption is calculated by multiplying total
processing time by dynamic power. We only considered dynamic power in order to
effectively represent the power dissipated only in the buffer.

𝑃𝑙𝑜𝑔𝑖𝑐

34.4%↓

39.4%↓
62.6%↓

Static power
411.25 mW

20.59 mW
9.67 mW

Single buffer

Even-odd buffer

Power

time

20.3%

53%

(a) Time to power configuration (b) Power by resources
𝑃𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝐸𝑡𝑜𝑡𝑎𝑙

Figure 11. Power evaluation result for the buffering. (a) Time-to-power illustration. (b) Power by
logic, power by register, and total energy consumption

6. Conclusions

This paper proposes a high-quality noise canceller using CNN noise inference. We con-
structed a coefficient library computed by CNN to utilize the advantages of a feedforward
control fixed filter. Our research shows that CNN noise cancellation removes noise better
than the LMS algorithm by 2.3 dB. The RMSE value also improved by 0.044. Furthermore,
the proposed even–odd buffer stores data symmetrically and efficiently performs OLS
convolution with little propagation delay and power. Compared to the single buffer, the
process delay decreased by 20.3%. We optimized power consumption in the even–odd
buffer. Dynamic power consumption decreased by 53% and total energy by 62.6%. We
also evaluated the power regarding the buffer resources. Power consumed by computation
logic decreased by 34.4%, and power consumed by hardware resources decreased by 39.4%.
In summary, we propose the CNN noise cancellation system in full stack to overcome the
traditional ANC’s latency and power issues. In this study, we conducted experiments
by processing the stored data through an FPGA. In future research, we will conduct an
experiment on real-time processing of microphone-captured noise for three-dimensional
audio, which is a current topic of interest.
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Abbreviations
The following abbreviations are used in this manuscript:

ANC Active noise cancellation
DSP Digital signal processing
LMS Least mean square
CNN Convolutional neural network
SNR Signal-to-noise ratio
FFT Fast Fourier transform
OLS Overlap-save
FIR Finite impulse response
HDL Hardware description language
FPGA Field-programmable gate array
RTL Register transfer level
RMSE Root mean square error
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