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Abstract: Object tracking has gained much interest in the last few years, especially in the context
of multiple object tracking. Many datasets used for tracking provide video sequences of people
and objects in very different contexts. Although it has been attracting much attention, no dataset or
tracking algorithm has been applied to coastal surveillance and ship tracking. Besides image/video-
based tracking technologies, other technologies, such as radar and automatic identification systems
(AISs), are also used for this task, especially in maritime applications. In the AIS case, commonly
known issues, such as information omission, remain to be dealt with. As for radars, the most
important issue is the impossibility of identifying the ship type/class and correlating it with AIS
information. However, image/video-based solutions can be combined with these technologies to
mitigate or even solve these issues. This work aims to review the most recent datasets and state-of-
the-art tracking algorithms (also known as trackers) for single or multiple objects tracking for objects
in general and its possibilities for maritime scenarios. The goal is to gain insights for developing
novel datasets; benchmarking metrics; and mainly, novel ship tracking algorithms.

Keywords: single object tracking; multiple object tracking; maritime surveillance; ship tracking;
computer vision; machine learning

1. Introduction

Intelligent systems (ISs) are advanced machines that sense and react to the environment
around them. They can assume many different forms, including autonomous vacuum
machines, object tracking and identification, and facial recognition. This subject has gained
a lot of attention in recent years, with certain tasks receiving greater focus in this research
field, such as natural language [1], image, and video processing [2]. However, for the
purpose of this review, we will specifically focus on image and video processing, which,
as discussed throughout this article, has been used in various scenarios for detecting or
recognizing pedestrians, cars, license plates, symbols, and objects in general. Despite the
increased interest in IS for image and video processing, there is still a lack of research on
datasets and algorithms specifically tailored for maritime surveillance tasks.

Several concepts and techniques from artificial intelligence (AI) are used to accomplish
various IS tasks. Two main algorithms from AI that are widely used in IS are classification
and regression. The first one aims to categorize (i.e., classify) objects into a discrete number
of labels (known as classes), for example, cars, boats, motorcycles, and so on. On the other
hand, regression algorithms aim to predict output values for specific input points of interest
that have unknown outcomes.

In the classification field, we can distinguish two sub-fields: detection and recognition.
Although they may seem similar, the two sub-fields have distinct characteristics. When
detection is used, the system is generally not concerned with differentiating between
different types of the same object. For example, in maritime scenarios, boat detection
simply determines whether there is a boat in the scene. On the other hand, recognition
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involves identifying the detected object and further classifying it into sub-classes. In the
same maritime scenario, the system determines whether there is a boat and, if so, what
type of boat it is. This concept is also frequently applied to face recognition.

The concepts described above collectively form what is known as computer vision (CV).
The CV pipeline consists of image/video capture and processing, followed by detection,
classification, and recognition tasks (see Figure 1). While earlier computer vision systems
often required various image manipulation processes such as resizing, cropping, color
space transformation, and filtering, nowadays, most computer vision benchmarks treat
images with minimal pre-processing. The convolutional layers in deep neural networks
extract features from the collected images. In many cases, resizing the image is the only
necessary step. Thus, the journey described thus far supports the idea that tracking tasks
are part of the CV field, and our review focuses on these tasks.

Figure 1. Pipeline for CV. (a) Collected image. (b) Processed image. (c) Detection. (d) Classification.
(e) Recognition.

Object tracking has recently garnered significant attention due to the increasing com-
puting power and the expanding number of applications, with new tasks emerging daily.
In [2], the authors presented various application scenarios including traffic monitoring,
robotics, autonomous vehicle tracking, and more. Additionally, in [3], the authors discussed
applications for person-following robots, self-driving cars, and surveillance cameras.

The objective of the object tracking task is to establish the trajectory of an object
between frames in a sequence [4]. This task can be divided into two primary sub-tasks:
single object tracking (SOT) and multiple object tracking (MOT). In SOT tasks, the tracker
aims to locate and track a single object in a sequence of frames to generate its trajectory.
On the other hand, MOT tasks involve locating and tracking multiple objects of interest
in frame sequences. Several benchmark datasets used for SOT, such as LaSOT [5], OTB-
2015 [6], and VOT [7]. For MOT, datasets like the MOT series, including MOT15, MOT16,
MOT17, and MOT20 [8–10], are commonly used.

Although there has been a recent surge in object tracking tasks and applications,
there is still a significant research gap in the field of maritime surveillance. Specifically,
there is a lack of benchmark datasets and algorithms used for visual ship tracking using
modern approaches. Additionally, there is a shortage of standardized metrics that can be
utilized to measure and compare the different algorithms. While several datasets used for
neural network approaches in object detection, location, and classification tasks include
ships, as reviewed in [11], the development of trackers or datasets specifically designed for
maritime scenarios is yet to be seen.

Two important factors regarding the challenges in visual maritime object tracking can
be highlighted:

1. There is a lack of established benchmark datasets for ship detection and trajectory
prediction. Many published studies rely on databases created by the authors solely
for for their studies, with no publicly shared data available.

2. There is a wide range of metrics defined and utilized in the literature, often leading to
conflicting results and making fair comparisons between different tracking algorithms
difficult. While [12] standardized some metrics for MOT tasks in their work, these
metrics are not consistently employed. It is common to encounter variations of these
metrics and the introduction of new ones for SOT or MOT. Essentially, many metrics
assess the same information from different perspectives. Consequently, the definition
of metrics specifically designed for maritime environments can be crucial.
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In maritime surveillance tasks, two systems are widely utilized for data collection
from ships: automatic identification systems (AISs) and radar systems operating at X-band
frequencies. Ships equipped with AISs utilize a very-high-frequency (VHF) channel for
communication, enabling the transmission of various tracking-related information, includ-
ing maritime mobile service identities (MMSIs); static details such as International Maritime
Organization (IMO) number, length, and ship type; dynamic data like GPS position, speed,
acceleration, and tracking; and voyage-related information such as estimated time of ar-
rival (ETA), cargo type, and passenger count. AIS receivers are capable of capturing and
processing this ship and tracking information. Alternatively, maritime radar equipment
operating in the X-band frequency range from 8 to 12 GHz can also be used to collect
data. These systems employ a rotating antenna to emit microwave beams and receive the
reflected waves using the same antenna.

Although there are established methods for obtaining tracking information, there
are important limitations to their usage, as highlighted in [13]. The use of an AIS is not
mandatory for all types of ships and voyages, and even when it is mandatory, there are no
guarantees regarding the accuracy and completeness of the AIS information transmitted.
Additionally, slow information updates can result in inaccurate tracking, especially for fast-
moving ships. These issues can be addressed by employing a maritime radar system, which
can quickly detect ships without relying on AIS data. However, despite the advantages
of radar systems, they encounter challenges in detecting small targets and accurately
identifying detected ships. To mitigate these problems, a combination of AIS and radar
systems can be utilized.

With advancements in image processing techniques and computing power, as well
as the growing need to address the challenges associated with AIS and maritime radar,
visual ship tracking has emerged as a field of development. To provide an introduction
and contextualize the content, we briefly list some work related to ships and maritime
surveillance in visual tracking tasks, which can be found in the next section. The objective of
this review is to shed light on how maritime object tracking has been utilized in recent years,
specifically through the use of visual information. Furthermore, this review aims to provide
a comprehensive description of benchmark tracking methods that are currently recognized,
even if they were not initially developed for maritime tasks. Ultimately, this work will guide
readers towards suitable resources for adapting or creating novel algorithms specifically
tailored for maritime surveillance using tracking techniques.

The detection task plays a crucial role in tracking tasks. In this context, a tracker needs
to detect an object and decide whether to track it frame by frame. In the maritime scenario,
target objects can vary in size, which poses challenges for CV techniques to accurately
process and detect them. Unfortunately, these techniques may struggle to distinguish
or detect smaller ships. The literature has explored various approaches to address the
specific challenge of small ship detection, including the use of convolutional networks [14],
YOLO [15,16], and deep learning [17]. Research on small ship detection is of utmost
importance in the context of maritime security, as imprecise detection of small targets can
present significant challenges for ship systems. However, it is important to note that this
review does not explicitly cover small ship detection. In terms of visual ship tracking, the
presence of small ships can potentially impact tracking performance. However, this aspect
will be considered for future analysis and exploration. It is worth mentioning that a similar
exclusion applies to AIS and radar-based tracking methodologies.

This review aims to explore the treatment of ship tracking over time and to understand
the functioning of systems, frame by frame, from simple tracking to the creation of tracking
trajectories. It is evident that metrics and datasets are not standardized in maritime surveil-
lance. Even in non-maritime scenarios with benchmark datasets for tracking, different
metrics are defined, often specific to individual datasets, and sometimes, these metrics
convey the same information. This makes it challenging to compare different studies effec-
tively. By the end of this review, the reader should have a clear understanding of metrics
used in tracking and the importance of datasets specific for tracker development. This re-
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view also examines trackers used in other contexts, such as pedestrians, cars, motorcycles,
and so on, with the aim of showcasing the most recent approaches to object tracking for
single or multiple objects. Furthermore, throughout the review, we highlight the potential
application of ideas from these works in the maritime scenario.

The work is organized as follows: in Section 2, we describe related work about visual
maritime vessel tracking and the used tools and methods; in Section 3, we present the
metrics commonly employed in most recent tracking systems for single or multiple objects;
and in Section 4 we provide a detailed overview of various trackers grouped according
to benchmark datasets. Section 6 offers a brief discussion on the metrics and datasets
presented in this work, along with some recommendations for maritime tracking tasks.
Finally, Section 7 presents the conclusion.

2. Related Work

This section describes some studies related to visual-based maritime tracking using
different approaches. Some studies demonstrate the interactions between AIS and radar
information, highlighting how visual tracking can enhance surveillance in maritime scenar-
ios. Due to the scope of this review, only visual-based trackers are presented. It is worth
noting, as aforementioned, that there are other tracking methods based on AIS and radar.
References to studies involving AIS and radar (X-band and others) can be found in [18–24].

In [25], an automated intelligent video surveillance system for ships called AIVS3 was
proposed. It aimed to capture, process, and generate tracks with detection, classification,
and motion information in maritime scenes. The original work describes the algorithm flow
with the following steps: (1) maritime target segmentation/detection; (2) classification of
each target; (3) tracking of each target on each frame; (4) extraction of the location/position
relative to the ship if necessary; and (5) and (6) implementation of an event/activity
analysis engine to utilize the output of previous steps, such as tracks with set attributes,
and mapping it to rules for maritime threat detection. These last steps are considered the
core of the entire algorithm.

The results presented in the original demonstrate show a reasonable algorithm for
target detection and trajectory construction, even in multi-target scenarios. However,
the entire system was not compared with other algorithms. The authors only compared
the classification step. In this work, several decision tree algorithms known as CART
were utilized to form an ensemble arrangement called decision forest. Their proposed
classification step was compared with Support Vector Machine (SVM) and the multi-class
Naive Bayes classifier, showing the highest performance. No benchmark dataset or metrics
were described to measure the tracking performance.

There are metrics used for potential target region detection and for constructing
tracking trajectories during the execution of the tracker. The results demonstrate an
excellent ability in terms of boat classification compared with SVM and Naive Bayes,
achieving the same or higher scores in each categorical class. The figures in the original
paper depict the results of the algorithm for target detection and trajectory construction. It
is important to emphasize the proposed algorithm’s robustness to occlusion.

The authors in [26] designed a technique for automatic detection and tracking tasks
in open sea scenarios. An image sequence is collected and processed, involving edge and
horizon detections, which are then used to predict and create tracks for the maritime ships.
Horizon detection is widely employed in many studies for tracking maritime vehicles,
and the authors describe this step as “the most important” in the algorithm. By determining
the horizon parameter, the algorithm can discard edges that may not belong to a floating
object. Two additional steps are performed: one for post-processing, which aims to create
a preliminary segmentation of objects, and labeling regions, which output only regions
adjacent or close to the horizon. In the end, the algorithm outputs the coordinates of the
centroid, width, and height of the bounding box. The described steps are for a single frame.

The tracking task is performed after detection in the current frame, and a linear
Kalman filter is used to predict the location and to estimate the bounding box. A track is
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only created if the detected object appears in two consecutive frames and its bounding
boxes intersect. As described by the authors, “new tracks are initiated for the objects that
enter the frame or at the beginning of the video. The tracks are terminated when objects
leave the frame”.

Regarding the used dataset, the authors collected their own video sequences, and no
benchmark dataset was used to evaluate the algorithm. Here, we have another work where
no benchmark dataset is employed for performance evaluation in maritime scenarios.

The authors used three metrics that are based on Frame Detection Accuracy (FDA).
They calculate the ratio between the overlap of bounding boxes and the mean value of
the number of ground truths and detected objects in a specific frame. This metric can be
applied to frame sequences, resulting in a metric called Sequence Frame Detection Accuracy
(SFDA). Two variations were used: SFDA with a non-binary threshold and SFDA with a
binary threshold.

It is important to note that in the next section, we will several metrics used in the
most recent tracking algorithms. The bounding box overlap is included, but with differ-
ent approaches and names. This highlights the importance of standardized metrics in
tracking scenarios.

In another work by the same authors [27], an algorithm is proposed to operate in
the open sea, away from any visible coastlines. As described in the paper, “this involves
detection, localization, and tracking of ships”, and the output consists of images showing
the detected targets.

The first step is horizon detection. This process is crucial as the frame needs to have
a clear distinction between sea and sky. Since the horizon line is a prominent feature in
images of open seas images, only images with a high confidence in horizon line detection
are considered. This aids in the subsequent step of image registration, which corrects and
aligns the frames, simplifying the tracking process by using the horizon line as a reference.

The third step is segmentation, which localizes regions with ships. In this step,
distractions in the image are discarded, and the focus is solely on potential targets. It is
important to note that all targets are expected to be above the horizon line. The attentive
reader should recognize the use of the horizon line in this step as a common approach seen
in other studies presented in this section for the initial stages of ship tracking.

The final step is tracking, which is performed using the targets detected in the current
frame and predictions made using the tracking parameters from the previous frame. The
predictions are generated using a linear Kalman filter. The centroids and dimensions of the
bounding boxes are used as filters to refine the track. If a new object is detected outside a
valid region, a new track is initiated. Finally, a track consisting of more than ten frames is
considered as a maritime ship.

In the original work, each step is illustrated with images to provide visual examples.
The work incorporates several metrics at different stages, including metrics for horizon line
detection. However, for the purpose of this work’s scope, the specific metrics related to
horizon line detection are not presented. On the other hand, metrics such as the number of
detected objects, missed objects, false positives, and localization errors of detected objects
are utilized for ship detection in individual frames.

The metrics utilized in this work adhere to the concepts outlined in [26]. The area of the
bounding box intersection between the ground truth and detected objects determines the
overlap. These two metrics are referred to as precision (PrecisionLoc) and recall (RecallLoc)
of object localization. Precision is calculated as the ratio between the intersection and
ground truth, while recall is calculated as the ratio between the intersection and the detected
object. To address the asymmetry between recall and precision, the authors introduce the
Dice metric, derived from these two metrics. By employing a predefined threshold in the
Dice metric, the detected location is classified as an object, missed, or false alarm.

The precision, recall, and Dice metrics are extended to the sequence level to measure
the overlap in the frame sequence. The final performance metrics used are Precision, Recall,
PrecisionSequence, and RecallSequence, all defined under a pre-defined threshold. The
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authors collected the dataset using the platform designed in [28]. This dataset consists of a
large number of video sequences, unlike previous studies that only used a few sequences.
For performance evaluation, 550 videos were utilized, each containing 100 frames, resulting
in a total of 55,000 images. Other datasets were also employed to establish thresholds, to
assess horizon presence, and to determine object localization. However, the authors do not
compare the performance of the proposed algorithm with other approaches or systems.

In [29], the authors proposed an algorithm to stabilize ship images and to perform
real-time tracking processing. It extracts parameters from the image and uses them to
compensate for image non-stabilization. The compensation stabilization procedure is
highlighted as one of the most important parts of this algorithm, as emphasized by the
authors. “Even in better sea conditions, the ship’s rolling, pitching, and yawing exist
inevitably”. In the introduction section of their work, the authors presented various factors
that make video stabilization necessary, such as background, waves, reflection, and so on.

The algorithm’s first step is the extraction of the horizontal line. It utilizes a multi-
dimensional wavelet filter and a Hough transformation to obtain the parameters of the
straight-line equation. The subsequent step is the video stabilization process, which in-
volves applying a rotation matrix and a shift factor in different directions. However, it
is worth noting that the shift factor, when combined with the rotation matrix, may result
in blind areas where pixels have a value of 0 near the boundary. The authors provide an
image to illustrate how compensation stabilization is performed.

After several computations, such as truncation center determination, horizontal line
cut-off by the target, and estimation using a Kalman filter, the tracking of the target is
performed. It is worth mentioning that this work also utilizes horizontal line detection,
which is commonly employed in maritime tasks. Another significant aspect is that this work
does not provide information about the dataset used, metrics employed, or performance
data. In the conclusion, the authors mention that the algorithm was implemented on a
patrol ship with “a strong capacity in real-time processing”. However, without performance
data and specific dataset specifications, it is challenging to grasp the true meaning of the
term “strong capacity” as stated by the authors.

Another work [30] presented ARGOS, an algorithm for a surveillance system in the
Venice waterway. It differs significantly from other algorithms described earlier in that
the target detections are performed against a water background, which is a result of the
camera’s position.

As described previously, the other algorithms perform target tracking using the hori-
zon line as a reference. In contrast, ARGOS performs optical detection and tracking of
moving targets within each of the 14 cells defined inside the Grand Canal waterway.
Information about the position and speed of each tracked boat is sent to the control cen-
ter. A survey cell is a collection of cameras that together provide a field of view along
the waterway.

The main steps include the local segmentation in the control center and the Multi-
Object Tracking (MOT) module. The segmentation relies on an important feature called
Optical Flow, which helps distinguish boats moving in different directions and removes
noise caused by waves. However, it is not as effective when boats are very close to each
other and moving in the same direction. The output of the segmentation serves as input
to the tracking module, which is responsible for generating trajectory data. The tracking
module employs a multi-hypothesis tracker based on a set of Kalman filters.

That study evaluated the algorithm using three metrics in various weather conditions
and dates: false negatives (boats not tracked), false positives due to reflections, and false pos-
itives due to waves. The weather conditions considered were cloudy/foggy, sunny/cloudy,
cloudy, cloudy/rainy, and sunny. The algorithm’s performance was found to be the poorest
in the most adverse weather conditions. Additionally, the authors conducted tests to count
the passing boats, measuring false negatives and false positives. It is worth noting that
ARGOS does not rely on a specific dataset since it was designed to operate continuously in
real-time, 7 days a week, 24 h a day.
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The authors in [31] presented an approach for detecting and tracking ship targets in a
cluttered forward-looking infrared image sequence. The work describes clutter scenarios
affected by atmospheric radiation, the sun’s refraction, bright clouds, sea clutter, and
imaging distance. The term FLIR is used for infrared images, which stands for forward-
looking infrared (FLIR).

That paper presented a system for real-time detection and tracking using important
steps that is described next. First, the Target and Background Modeling step occurs, which
aims to separate the background, the dark sea surface, from the target, the brighter part
on infrared images. This part aims to model the attributes of noise, target, background
gray value, and size. The second part corresponds to ship target detection, which involves
image preprocessing with a Gaussian low filter to remove noise and to enhance the image
quality. In the sequence, a multilevel filter is designed to extract the target from the image.

The authors explain that the target size ranges from 1× 1 to 7× 7, and the image scaling
operation is performed if it is exceeds this range. To perform this step, many parameters are
defined to facilitate the scaling operation. In the next step, the image is passed through a
multilevel filter, where different filters are used to suppress the background and to enhance
the target. As described in the original work, “the target is brighter than the background”,
in general. Once the target is identified in the image, several segmentation processes are
carried out, using OTSU’s method to determine the threshold for binarization and the
localization of the sea–sky region.

The last important step is the ship target tracking. The authors utilize the characteristic
of infrared images with a distant target to implement an algorithm for detecting objects in
complex scenarios. This step employs an algorithm for vision processing called histogram
back-projection, in which, given a region of interest (ROI), the algorithm searches for
regions in the original image with a similar histogram shape. The mean-shift tracking
algorithm is used to track the target, and at the end, one step is performed for target
verification and localization to ensure accurate identification of the target candidate.

This work utilized a system to collect videos, each comprising 500 frames. The image
sequence was captured using an infrared system. The images were manually labeled and
stored as a ground truth database, classified into low- and high-clutter scenes. The dataset
is not publicly available, and the authors do not provide any information on how to access
the image sequence for reproduction. The target size used for performance evaluations was
a 5× 5 pixel rectangle corresponding to each pair of ground truth target coordinates.

The system outputs a rectangular block with a size of 5× 5, which is compared with
the ground truth target. The algorithm utilizes a simple intersection to determine the
correct classification. If multiple blocks intersect with the target ground truth, they are all
classified as a single target. Additionally, the false alarm count is calculated by subtracting
the number of objects classified as targets from the total number of detected objects.

For comparison, the authors utilized the corrected detection rate, which represents the
rate of system output that is classified as a true target and is indeed a true target. Another
metric used is the false alarm rate, which indicates the rate of system output that is classified
as a true target but is, in fact, a cluttered scene. A receiver operating characteristic (ROC)
curve is plotted using these two metrics. In this work, the proposed method is compared
with two different algorithms, namely Zhang’s method [32] and Braga-Neto’s method [33].

These methods have certain deficiencies compared with the one proposed in that
work, particularly in background analysis and target size. The proposed method achieved
a success rate of 90%, while Zhang’s method scored 76% and Braga-Neto’s method scored
68%. Additionally, the proposed method exhibited a shorter time consumption for target
detection, taking only 0.8 s compared with 1.1 seconds for Zhang’s method and 1.3 s for
Braga-Neto’s method. These results were obtained in highly cluttered images.

In [34], the authors proposed a tracking algorithm for infrared images with the sea-
surface target. They developed a tracking algorithm using two computer vision algorithms:
Scale-Invariant Feature Transform (SIFT) and Bag of Features (BOG) for detection and
tracking tasks. Both algorithms were presented in detail in the original work.
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The proposed target detection and tracking algorithm includes a training phase in
which features are learned for BOF. As described in that work, “this phase can be sum-
marized as the clustering of SIFT descriptors extracted from the target and background
regions”. Several tasks are performed: horizon detection based on the intensity level of the
sky and sea; target/background determination, where the operator specifies the target with
a bounding box; and the SIFT descriptors, used to describe the target within the bounding
box. Finally, the algorithm utilizes K-means clustering to cluster the target and background
SIFT descriptors. The centroids produced by the K-means algorithm are referred to as
“visterms”, according to the authors.

After the training phase, the test phase is conducted, primarily focusing on target
detection and tracking. There are three main steps in this phase: descriptor classification,
where the proposed algorithm is responsible for classifying the SIFT descriptors as either
the target or background; descriptor matching, where a suitable algorithm is used to match
the SIFT descriptors in two consecutive frames, establishing a “link” for tracking task; and
finally, region-of-interest (ROI) selection. This step determines the minimum rectangle that
encompasses all the matched SIFT descriptors. For detailed information about each step in
the training and test phases, please refer to Section 4 in [34].

To evaluate the algorithm, several metrics are employed to compare the proposed
tracker with the Kanade–Lucas–Tomasi (KLT) feature tracker method [35]. The metrics
used are as follows: (1) Euclidean distance between the centers of the ground truth target
region and the detected target region.; (2) city block distance between target centers, as
described in the previous metrics; (3) the ratio between the “under-detected target area
and the total target area”, referred to as the false-negative rate. This metric indicates the
proportion of the target area that is not covered by the detected target area; and (4) the
true-positive rate, which calculates the ratio between the “correctly detected target area
and the total detected target area”. This metric represents the proportion of the target area
that is covered by the detected target area. It is important to note that all metrics involve
distance measurements between the ground truth and the detected target.

This work utilized three datasets to evaluate the performance of the tracker: real
infrared videos, synthetic infrared videos, and visual band videos. All videos were either
recorded or generated; however, there is no information available on how to obtain the
samples used in this work. For the real infrared videos, a total of 11 videos were employed,
with three videos designated for training and eight videos designated for testing. The
infrared videos used in the evaluation were specifically acquired for this purpose, following
the setup described by the authors. The videos were captured in different locations, in
different orientations, and at various times of the day. As for the synthetic videos and
visual (VIS) band videos, only the frame sizes were provided; no additional details were
given. The authors presented the complete results in the original work, including tables
displaying the metrics’ outcomes for each dataset. In general, the KLT method faces
challenges with illumination changes, and in most cases, the proposed method exhibits
superior performance.

It is important to note that eleven video sequences were utilized, encompassing various
scenarios, orientations, and times of day, among other factors. Despite these differences,
the proposed method demonstrated robustness in performing detection and tracking tasks.

The authors proposed a ship tracking framework for tracking and ensuring ship
position accuracy in their work [36]. The framework utilizes the kernelized correlation
filter (KCF model) via curve-fitting, referred to as KCFC, which incorporates the KC model
for ship tracking and a curve fitting algorithm for outlier removal.

The first step involves implementing the KCF model as a KCF ship tracker by correlat-
ing the ground truth ship sample with the candidate sample. The ground truth ship sample
is manually labeled, and the trained KCF tracker distinguishes the target ship by evaluating
the maximum stimulus response between the ground truth sample in the previous frame
and the ship’s current position in the current frame. This process determines the potential
ship position in each image. For achieving the maximum response, ship candidates, impor-
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tant training data, and operators are transformed into the frequency domain using discrete
Fourier transform. The second step focuses on addressing a limitation of the KCF model,
which is its susceptibility to obstacles moving in neighboring water channels. To overcome
this issue, the trained KCF model is enhanced to extract ship features from neighboring
ships instead of mistakenly identifying them as the target ship. In order to mitigate this
problem, an outlier denoising procedure is implemented. Initially, outliers are detected,
and subsequently, a curve fitting model is employed to reconstruct the ship trajectory in
the occlusion image. The authors emphasize that the curve fitting model assumes that ship
motions during occlusion remain consistent, meaning that the motions do not undergo
significant changes.

To quantify the performance of the ship tracker, four statistical metrics are employed:
root mean square error (RMSE), root mean square percentage error (RMSPE), mean absolute
deviation (MAD), and mean absolute percentage error (MAPE). The authors assess the
tracker performance by measuring the Euclidean distance between the ground truth and
tracked center points.

The dataset used consists of four videos collected by the authors, with the duration
ranging from 21 to 37 s. These videos include various occlusion scenarios, such as a small-
size ship occluded by a large-size ship or a large-size ship occluded by a large-size ship
(either completely or partially). It is important to note that the dataset is not publicly
available and is not considered a benchmark.

The KCFC tracker was compared with other models, such as KCF (pure), mean-shift,
and the Scale Adaptive with Multiple Features tracker (SAMF). The results demonstrate
that KCFC can accurately track the position of the ship even in occluded scenarios, whereas
other models fail to do so. The original work provides detailed information about the
tracking results for the four videos.

The work proposed in [37] introduces a simple yet efficient method for tracking
and analyzing the movement direction of the ships. The proposed tracker utilizes video
processing techniques, starting with frame difference to distinguish the foreground from
the background. It incorporates various image processing operations, including denoising,
erosion, dilation, and connected component labeling, to isolate the moving object within
the image. The moving object, referred to as the ship in this context, is defined using a
bounding box.

Going deeper into the video processing technique used in [37], the algorithm employs
a reference image from the background, which is then subtracted from the current frame
image. The resulting difference is transformed into a binary image with black and white
pixels. To reduce white noise pixels, a median filter is applied to the binary image. Addi-
tionally, erosion and dilation operations are performed to address any holes that may have
been generated during the ship segmentation process. Finally, the Connected Components
Labeling method is utilized to extract all the ships and to assign them labels.

To track the ships once they have been segmented, this work computes the foreground
center point and uses this point to compare with other frames. The tracker defines a center
point’s coordinates as Xi and Yi, and the center point of the last image as Xi−1 and Yi−1.
The standard deviation is computed between these two center points.

This tracker was evaluated without the use of a dedicated dataset. The authors
employed a camera positioned at the seaport and tested the tracker on the captured video.
The experiments encompassed three distinct ship flow environments, ranging from a
single flow to interlace ship flows. The sole metric employed for evaluation was accuracy,
measured as the percentage of frames successfully tracked.

In another straightforward tracking algorithm proposed by the authors of of [38], they
adopted the same fundamental idea as in [37]. The algorithm follows the following steps:
collecting images from a stationary camera to create a reliable background, performing
image subtraction on each subsequent frame to generate a foreground by calculating their
difference. The resulting image is then converted into a binary representation, and morpho-
logical operations are applied to diminish noise and to fill gaps in the foreground image.
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The target location method employed in this approach involves the utilization of
a predefined filter value. This filter value serves to clean up the image both inside and
outside, thereby forming a silhouette. If the size of the object is smaller than the filter value,
it is discarded. A bounding box is then defined around the object, and a centroid, referred
to as a central point, is computed. In contrast to the method proposed in [37], the authors
in this study introduced the concept of inter-frame correlation to determine a correlation
coefficient when the target moves in or out of the image. However, the details of this step
are not explicitly described in that paper. It mentions the use of “tracking techniques” to
consolidate the results obtained from tracking the moving target.

No benchmark dataset was utilized; instead, a video consisting of 770 frames was
collected. The initial 30 frames, which did not contain the ship, were employed to estimate
the background, while the subsequent frames were used to detect and track the moving
object, namely the ship. However, the paper does not provide any defined or described
metrics to measure the efficiency of the tracking process.

Another important aspect of ship tracking is the support it provides to traditional
maritime tracking methods, such as X-band radar and automatic identification systems
(AISs). AIS is utilized in maritime surveillance to supply tracking information. However,
the information provided by AIS messages is only mandatory for certain types of boats,
and even when it is mandatory, the information can be inaccurate or the AIS can be
deactivated. On the other hand, the X-band radar is another widely used instrument in
maritime surveillance scenarios. It can address the limitations of AIS as it does not rely
on any information transmitted by a ship; instead, the radar system itself performs the
tracking. However, despite the advantage of self-tracking, radar can be imprecise for
small targets, and in some cases, it may not detect the ship at all. In a study conducted
by Zardoua et al. [13], the concepts and limitations of AIS and radar are explored and
compared with visual tracking. The authors emphasize the significance of employing
camera surveillance systems in combination with AIS and X-band radar, as this approach
overcomes the aforementioned issues.

In order to address these challenges, the authors of [39] employed visual active cameras
to complement radar information and to aid in ship detecting and tracking in harbors. The
proposed system utilizes a pan–tilt–zoom camera to track a specific ship. To initiate the
process and to establish the feature point tracker, object detection is employed. The system
utilizes a Histogram of Oriented Gradients (HOG) detector, which is specifically trained to
detect the cabin of the ships. This detector is combined with the KLT feature point tracker,
which utilizes small features within the object to continuously track it until the tracking
is lost.

The utilization of active cameras may lead to feature points becoming disconnected
from the object. To address this issue, a validation step is proposed in order to remove
“problematic feature points” by considering the median position and displacement of each
feature point. Additionally, to counter the decrease in the number of feature points, a
re-initialization step is implemented using the HOG detector. Since the system employs an
active camera, the subsequent steps involve calculating the control parameters for pan, tilt,
and zoom adjustments of the camera.

This work was implemented in the port of Rotterdam, where the local vessel traffic
system (VTS) was utilized. The VTS system was originally intended for radar data. To
estimate the position of the ship, the pan, tilt, and zoom values are employed to calculate
the distance.

No information regarding the dataset was provided in this work. The authors men-
tioned that the system tracked ships for a duration of 18 min and over a distance of 1.5 km.
However, no specific metrics were presented in the original text, and there is no information
about reproducibility.

Another work proposed a framework that combines AIS and visual tracking. In [40],
the authors utilized AIS to enhance visual tracking by leveraging the vessel’s positions
obtained from AIS to dynamically adjust the camera’s position, ensuring a focused view of
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the target. The paper introduces two steps: adjusting the camera’s pose and focal length
and utilizing a Kalman filter to achieve smooth and gradual adjustments.

The AIS positioning information includes various fields, such as the ship’s name,
MMSI, position, time, etc., which are collected and stored in a database. These fields serve
as input to correct the vessel’s position. The AIS track position, specified by latitude and
longitude, is adjusted to obtain the ship’s center position. Similarly, the AIS fields are
utilized to calculate the distance and the horizontal azimuth from the camera to the target.
The coordinate values in the spherical coordinate system are determined using the Mercator
Sailing Method, although the complete procedure is beyond the scope of this discussion.
For further details, please refer to [40].

The second step involves applying a Kalman filter to achieve smooth vessel tracking.
The Kalman filter is utilized to estimate the trajectory and to mitigate noise and water influ-
ence on the camera’s adjustment. The complete kinematic model is detailed in Section 3.1
of the original work. To create a continuous AIS position track, the authors employed cubic
spline interpolation. This interpolation technique is necessary because AIS messages are
typically updated within a range of 2 to 5 s.

The proposed method was implemented in a simulated experimental system using
Matlab. However, the authors did not provide any information about the specific AIS data
used or the metrics employed to evaluate their work. The estimated camera parameters are
presented, but no actual visual tracking was performed in real-world scenario.

In [41], the authors presented a method for detecting gaps in AIS information, which
is not directly related to ship tracking like the previously described studies. However,
we include it here to highlight the importance of addressing AIS anomalies in maritime
surveillance. The authors emphasized the issue of transmission gaps in AIS data, which can
arise due to factors such as poor transmission quality, disabled transmitters, high-density
boat locations, and incorrect information. Unlike previous work, this method does not
involve the use of cameras to support AIS information. Instead, a probabilistic model was
developed to assess the likelihood of boats based on their AIS patterns. The model was
tested using AIS data from the Arafura Sea, which was provided by the Australian Maritime
Safety Authority and is not publicly available for download. The results demonstrated that
the proposed model could effectively identify abnormal gaps in AIS transmission for two
case studies with high-risk gaps. It is important to note that this work did not compare its
performance with other existing methods or algorithms. The metrics used in this system
differ from those employed in ship tracking and, as such, is not considered in this review.
Consequently, this proposed method is not included in Table 1.

Table 1. Comparison about dataset, metrics, and performance evaluation.

Work Dataset Metrics Comparison

[25] No description No description
Classification step compared with

SVM and multi-class Naive
Bayes classifier

[26] Collected by the authors FDA, SFDA NBT, and SFDA BT No comparison was described

[27] Collected by the authors Precision, Recall, Dice, PrecisionSequence,
and RecallSequence No comparison was described

[29] No description No description No comparison was described

[30] Real-Time Data False negative, false positive due to
reflections, and false positive due to waves No comparison was described

[31] Collected by the authors Correct detection rate and false alarm rate Compared with [32,33].

[34] No benchmark Euclidean and city block distance,
false-negative rate, and true-positive rate Compared with KLT [35]

[36] Collected by the authors RMSE, RMSPE, MAD, and MAPE No comparison was described
[37] Real-Time video Frames tracked accuracy No comparison was described
[38] Collected by the authors No metrics were described No comparison was described



Electronics 2023, 12, 2789 12 of 41

In [42], a survey was presented on the use of deep learning algorithms for autonomous
surface vehicles (ASVs). However, this topic differs from the main purpose of the present
work, which focuses on visual approaches for ship tracking. ASVs have the capability
to support coastline surveillance and to enable vehicle cooperation, but they require a
maritime vehicle to perform these tasks. Therefore, while ASVs are relevant in the broader
context of maritime surveillance, this review specifically concentrates on visual methods
for ship tracking.

To summarize this section, Table 1 compares all trackers described based on the most
important factors discussed: datasets, metrics, and performance evaluation.

This section is crucial as it provides an overview of the primary methodologies em-
ployed in visual maritime surveillance. However, it is worth noting that the current
literature seems to overlook newer types of trackers that capitalize on the advancements
in AI and CV algorithms. While Section 4 presents a range of trackers that employ the
methods discussed here for diverse scenarios such as pedestrians, cars, and objects, the area
of maritime surveillance using ship trackers remains an unexplored field. For visual ship
detection, we can find recent techniques in [11,43] that utilize state-of-the-art approaches.

3. Review of Performance Metrics

This section describes the most known and used metrics for measuring and comparing
the performance of different trackers in different datasets available in the literature. These
metrics are used in the next section to compare the performance of algorithms using
benchmark datasets. Additionally, it is important to note that there are no standardized,
i.e., benchmarking, metrics used for judging different trackers and datasets.

3.1. Precision (P)

Precision is computed by comparing the distance, in pixels, from the center to the
center, between the tracking result and the ground truth bounding box [44]. This metric
can be used to sort different trackers using a threshold, for instance, 20 pixels. This metric
is defined as

P = ‖Cgt − Ctr‖2, (1)

where Cgt represents the ground truth bounding box center and Ctr represents the tracker
bounding box center.

3.2. Normalized Precision (Pnorm)

The authors in [44] proposed the normalized precision metric to address the sensitivity
of precision to image resolution and bounding box size. This metric is defined as

P = ‖W(Cgt − Ctr)‖2, W = diag(BBgt
x , BBgt

y ) (2)

where BBgt
x represents the number of pixels along the x axis in the ground truth bound-

ing box, and BBgt
y represents the number of pixels along the y axis in the ground truth

bounding box.

3.3. Area Under Curve (AUC) or Success

The AUC is commonly used for comparing classification models. In the context of
tracking, the AUC is computed by plotting the normalized precision on the y-axis and the
normalized distance error threshold on the x-axis. A 2D plot curve is defined with the axis
being the false-positive rate (FPR) and the true-positive rate (TPR). The resulting curve
represents the performance of the trackers, and the AUC is calculated as the area under
this curve, ranging from 0 to 1. In the tracking context, the AUC is computed under the
curve of normalized precision on the y-axis and the normalized distance error threshold on
the x-axis. Another metric that can be used is the success score plot. Trackers are ranked
based on the AUC values. In a study by Vcehovin et al. [45], it is shown that the AUC is
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equivalent to the average overlap metric, which will be further discussed as the expected
average overlap metric, referred to as S-AUC.

3.4. Accuracy (A ↑)
Accuracy is a measure of the overlap between the ground truth bounding box and

the predicted bounding box. It indicates how well the predicted bounding box aligns with
the ground truth. High accuracy is achieved when two bounding boxes perfectly overlap,
meaning they have the same position.

3.5. Robustness (R ↓)
Robustness measures the frequency of tracker failures in detecting the target during

tracking. A failure is recorded when the overlap between bounding boxes, as described
earlier, equals zero.

The aforementioned metrics are summarized in Figure 2. As mentioned in the In-
troduction, multiple metrics have been developed to convey the same information. For
example, Accuracy and Precision provide identical information, which is the distance
between the ground truth bounding box and tracking bounding box. As we see in the
following sections, various other metrics are derived from these and employed to assess
the performance of trackers.

Figure 2. Precision, accuracy, and robustness concepts. The red bounding box is the ground truth.
The letters a, b, and c are bounding box references in the image.

3.6. Expected Average Overlap (EAO ↑)
The authors in [46] mentioned that accuracy and robustness were utilized in VOT2013

and VOT2014 to rank tracking methods, but the results did not have a concrete application
on tracking interpretation. To address this issue, VOT2015 introduced the expected average
overlap (EAO). EAO calculates the average overlap between the predicted bounding box
and the ground truth bounding box over time. It combines accuracy and failures in long
sequence frames, denoted as Ns. The overlap at frame i is represented as φi. For a sequence
with Ns frames, the average overlap, including failures (zero overlaps), is defined as ΦNs:

ΦNs =
1

Ns

Ns

∑
n=1

φi. (3)

The expected average overlap is computed as the average among all sequences in the
dataset. Each sequence has its own ΦNs, and the resulting EAO is the average of the average
overlaps, denoted as Φ̂Ns. The next step involves plotting the curve of this measure for
each value of Ns, ranging from Ns = 1 : Nmax. This curve, known as the expected average
overlap curve, is used to rank the trackers. Equation (4) shows how the final EAO value
is computed over the interval [Nlo, Nhi]. The initial and final frame values are determined
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using Kernel Density Estimation (KDE) calculated over the dataset sequence. When the
PDF within the range is equal to 0.5, the range is fixed. Therefore, for each dataset, the
values of Nlo and Nhi are fixed and can be used to compute the final expected average
overlap measure, Φ̂.

Φ̂ =
1

Nhi − Nlo

Nhi

∑
Ns=Nlo

Φ̂Ns (4)

A higher EAO value indicates a more accurate tracking algorithm. EAO is often
employed in the context of single-object tracking, aiming to accurately track a single object
over time.

3.7. Multiple Object Tracking Accuracy (MOTA ↑)
MOTA is a metric used to evaluate the performance of multiple object tracking al-

gorithms. It quantifies the percentage of errors made by the tracker, encompassing false-
positive and false-negative detections, missed targets, and identity switches. A higher
MOTA value signifies a superior tracking performance of the algorithm. MOTA is ex-
tensively employed in object tracking research, especially for assessing the accuracy of
tracking in intricate scenarios involving multiple objects, occlusions, and other challenging
conditions. It is defined as follows:

MOTA = 1− ∑t mt + f pt + mmet

∑t mt
(5)

where mt represents the number of tracking misses or false negatives, f pt denotes the false
positives, and mmet corresponds to the number of mismatching or identity switches at
time t.

3.8. IDF1 Metric

The Identifier F1 score (IDF1) is a performance metric used to assess the accuracy
of multiple object tracking algorithms. It quantifies the F1 score of the matching process
between the ground truth and the predicted trajectories. The matching process involves
correctly identifying the track IDs for the objects across video frames. The IDF1 metric
considers both the precision and recall of the matching and is defined as the harmonic mean
of these two measures. A higher IDF1 score indicates a more accurate tracking algorithm.
IDF1 is commonly employed in the multi-object tracking scenarios, where the objective is
to accurately track multiple objects over time. It differs from MOTA, which focuses solely
on the detection level.

3.9. Higher-Order Tracking Accuracy (HOTA)

This metric was developed to provide a comprehensive evaluation metric for trackers
that incorporates various evaluation aspects in a fair manner. HOTA extends traditional
tracking metrics, such as MOTA and IDF1, by incorporating the spatial and temporal
relationships between the ground truth and predicted bounding boxes. Additionally,
HOTA introduces the concept of higher-order associations, which assess the relationship
between sets of predicted and ground truth objects beyond pairwise associations. The
HOTA score ranges between 0 (indicating poor performance) and 1 (representing perfect
performance). HOTA has demonstrated increased robustness to tracking challenges, such
as occlusion and clutter when compared with traditional tracking metrics. As a result, it is
increasingly being adopted as a standard evaluation metric for object tracking algorithms.
The formal definition of HOTA, along with other related metrics like DetA and AssA, can
be found in [47].
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3.10. Identity Switching (IDS or IDSW)

Identity switching, also referred to as ID switches or ID swaps, is a prevalent error that
can occur in multiple object tracking systems. It occurs when the identity of a tracked object
is mistakenly swapped with another object’s identity, often due to their similar appearance
or behavior. For instance, if two objects are in close proximity and moving together, a
tracking algorithm may erroneously interchange their identities, resulting in incorrect
tracking outcomes. Identity switching can have a significantly impact on the accuracy of a
tracking system, particularly in cluttered or complex scenes where distinguishing between
objects becomes more challenging.

3.11. Tracker Velocity (FPS)

Tracker velocity refers to the speed and direction at which a tracked object is moving,
as estimated by a tracking algorithm. The estimation of velocity is typically based on
analyzing the positional changes in an object over time. However, velocity estimation can
be affected by factors, including measurement noise, occlusions, and interactions with
other objects. Different tracking algorithms employ different techniques for estimating
object velocities, such as Kalman filters, particle filters, or optical flow analysis. In some
studies, velocity is measured in Hertz. It is worth noting that while this metric is presented
here, comparing the values obtained using this metric with those from other trackers can
be challenging. This is because velocity estimation can depend on various hardware and
software factors that may differ between different tracking systems.

It is important to acknowledge that using different metrics for different datasets can
hinder the comparison of different trackers. While the metrics may be consistent within
a specific dataset, this work highlights the possibility of unifying metrics even across
different datasets. By establishing a common set of metrics, it becomes easier to compare
the performance of different trackers and to draw meaningful conclusions.

4. Tracking Review

This section provides a description of four datasets that are widely used in various
visual tracking scenarios, encompassing different types of objects. Additionally, it offers a
review of several state-of-art trackers that can be utilized for visual ship tracking. While
these trackers have been primarily employed in diverse contexts, they can also be applied
to ship tracking tasks. Lastly, a performance comparison of the trackers is presented for
each dataset.

4.1. Datasets
4.1.1. LaSOT

Large-scale Single Object Tracking (LaSOT) is a dedicated benchmark dataset specifi-
cally designed for training and evaluating single-object tracking (SOT) algorithms in video
sequences [5]. This dataset follows several key principles, including large-scale coverage,
high-quality bounding box annotations, long-term tracking scenarios, balanced class distri-
butions, and comprehensive labels. With a total of 3.5 million frames, LaSOT is one of the
largest tracking datasets available, featuring 70 different object classes across 1400 video
sequences. On average, each video sequence in LaSOT consists of 2515 frames. In order
to provide a comprehensive description, each frame sequence in the dataset has been
labeled with 14 attributes, including Illumination Change, Full occlusion, Partial Occlusion,
Target Deformation, Target Region Blurred, Fast Movement, Scale Changing, Rotation,
Background Cluttered, Low resolution, Point of View Change, Out of View, and Bounding
Box Ratio out of Range. For more detailed information on the sequence distributions for
each attribute, refer to [5].

4.1.2. OTB-2015

OTB-2015 (Object Tracking Benchmark 2015) is another benchmark dataset widely
used for visual object tracking evaluations. It comprises 100 video sequences of varying
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lengths and difficulty levels, amounting to over 11,000 frames in total. The dataset encom-
passes a diverse set of challenging scenarios, including occlusion, motion blur, illumination
changes, deformation, fast motion, in-plane rotation, out-of-view, background clutter, low
resolution, and scale variations. The tracking performance on this dataset is assessed using
various metrics, such as precision, success rate, and AUC. For a comprehensive description
of the video sequences, including labeling distribution, refer to [6].

It is worth mentioning that many labels used in OTB-2015 are also employed in LaSOT.
A comparative analysis of label distribution between the datasets is presented in [5]. Each
sequence in both dataset includes a target object indicated by a bounding box. In general,
LaSOT is regarded as a more comprehensive and challenging benchmark dataset compared
with OTB-2015.

4.1.3. VOT-2016

The VOT-2016 dataset is a component of the Visual Object Tracking (VOT) challenge [7],
an annual competition that strives to advance the state-of-the-art in visual tracking algo-
rithms. It comprises 60 video sequences that encompass a diverse set of challenges in visual
tracking, including scale variation, occlusion, motion blur, motion change, camera motion,
illumination changes, background clutter, and unlabeled sequences.

Each video sequence in the VOT-2016 dataset contains annotations in the form of
bounding boxes around the target object, which is the object of interest for tracking. Ad-
ditionally, the dataset provides annotations for various challenges, including occlusion,
out-of-view, deformation, and motion blur. These annotations serve as valuable resources
for researchers to evaluate the performance of their tracking algorithms in diverse scenarios
and to facilitate meaningful comparisons with other state-of-the-art trackers.

In the 2016 challenge, an automated technique was utilized to assign target bounding
boxes. This technique involved a segmentation step aimed to separate the target object in
each frame, followed by the definition of the bounding box through the optimization of a
cost function.

4.1.4. MOT17

The MOT17 dataset is a widely used benchmark dataset for evaluating multiple object
tracking algorithms, introduced as part of the Multiple Object Tracking Challenge in 2017
(MOT17) [9]. It is an extended and improved version of the MOT16 dataset and has gained
popularity as a reliable dataset for benchmarking multi-object tracking algorithms.

The MOT17 dataset comprises 14 video sequences captured in highly dense envi-
ronments, encompassing a wide range of scenarios. These scenarios include indoor and
outdoor scenes; various camera viewpoints; and different levels of occlusion, crowd density,
and object appearance. The dataset contains video sequences with a significant number of
people, as well as other important object classes such as Pedestrian, Person on Vehicle, Car,
Bicycle, Motorbike, Non-Motorized Vehicle, Static Person, Distractor, Occluder, Occluder
on the ground, Occluder full, and reflection. The sequences focus on tracking moving
objects as the primary targets.

The object classes in the MOT17 dataset are categorized into three groups: Pedestrians,
which encompass both moving and stationary individuals; People, which include non-
standing individuals and artificial representations of humans; and Vehicles and Occluders.
The videos in the dataset were captured using multiple cameras, each with different
resolutions and frame rates.

Each video sequence in the dataset is annotated with ground truth trajectories for
all objects that appear in the video. The ground truth annotations include bounding
boxes, unique IDs for each object, and additional information about occlusions and false
detections. These annotations allow researchers to evaluate the performance of their
tracking algorithms in diverse scenarios and to make comparisons with other state-of-the-
art trackers.
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The sequences in MOT17 exhibit significant variation due to the use of static and
moving cameras, diverse weather conditions, and different points of view. In addition,
MOT17 incorporates two additional detectors, namely DPM (deformable part model), Fast
R-CNN, and SDP (scale-dependent pooling), for object detection in each sequence. Overall,
the MOT17 dataset consists of three versions of the same 14 sequences, resulting in a total
of 42 sequences.

4.2. Trackers

The studies discussed in this section represent the state-of-the-art in visual object
tracking and make significant contributions to the field. However, it is important to note
that each method has its own strengths and weaknesses, and determining the optimal
approach depends on the specific application and tracking requirements. The research in
visual object tracking is a rapidly evolving and dynamic field, with new work continually
emerging, each offering its distinct approach, strengths, and limitations.

4.2.1. OSTrack-Joint Feature Learning and Relation Modeling for Tracking: A
One-Stream Framework

In [48], a unified one-stage, one-stream tracking approach is introduced, with a focus
on joint feature extraction and relation modeling. This approach differs from the commonly
used two-stage, two-stream methods, which involve feature extraction in both the template
and search regions. The joint approach proves to be particularly effective in tracking targets
that undergo continuous changes.

The approach described in the work takes two input images: a template and a search
region. It utilizes self-attention layers to establish a strong correlation between the target
(represented by the template image) and each candidate (derived from the search region).
The self-attention mechanism serves as a measure of similarity between the template and
candidates in the search region. The integration of a template and search region feature
extraction, along with the identification and elimination of background candidates, is
accomplished through a single flow. Figure 3 illustrates the candidate elimination process.
The self-attention mechanism in multiple vision transformer layers produces a feature
map that is subsequently fed into a convolution neural network (CNN) in deeper layers.
This enables the selection of the target position based on the highest classification score,
facilitating the bounding box regression task.

Figure 3. Example of background candidate elimination in OSTrack. The first image is the search
region, the upper left corner image inside the first one is the template, and the green rectangles are
the target objects.

The algorithm presented in that study was evaluated on various benchmark datasets,
and it achieved state-of-the-art performance on the majority of them. One of the key
advantages of the proposed method is its utilization of a single-stream network, which is
computationally efficient and seamlessly integrated into real-time tracking systems.

One potential drawback is that the proposed algorithm relies on a substantial amount
of training data to achieve accurate performance. Moreover, it may encounter challenges
when tracking objects that exhibit rapid or irregular motion, such as those encountered
in turbulent waters or high-speed vessel scenarios. Lastly, the computational demands
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of the algorithm could pose limitations for real-time tracking applications, particularly in
environments with limited resources.

This approach has the potential to be applied to maritime surveillance as it is designed
for general object tracking tasks and does not have any specific limitations that would
hinder its application in this domain. In maritime surveillance, the SOT approach could be
a promising choice since the target object is typically a single vessel. The architecture of
this work is described by the authors as “simple, pure, and effective” as it achieves state-of-
the-art (SOTA) performance in all benchmark datasets analyzed, surpassing the current
leading algorithms. Two significant advantages of this approach are the utilization of a
transformer for visual processing and the incorporation of target background elimination.
In the study by Ye et al. [48], it is demonstrated that the “Early Candidate Elimination”
process, depicted in Figure 3, reduces computation, improves inference speed, and enhances
overall performance in most scenarios.

4.2.2. SwinTrack: A Simple and Strong Baseline for Transformer Tracking

In their paper, Lin et al. [49] proposed a one-stage tracking algorithm called SwinTrack,
which is based on transformers. The authors applied the Swin Transformer architecture,
originally designed for computer vision tasks such as image classification, to the specific
task of visual object tracking.

SwinTrack consists of three main steps: feature extraction using template and search
region images, feature fusion, and prediction head. The authors of the proposed work
employed different candidate network structures for various tracking components. The
final stage focuses on predicting the bounding box target and performing intersection over
union classification.

The initial step in SwinTrack involves utilizing a transformer backbone to facilitate
weight sharing during the feature extraction process for both the template and search region.
Each part generates its own feature tokens, which are subsequently concatenated to estab-
lish a connection for the subsequent step. This approach aims to minimize computation
requirements by reducing the parameter count and by consolidating operations.

The second step of SwinTracks consists of two crucial components: the encoder and
a decoder. The encoder calculates self-attention over concatenated tokens and feeds the
result into a feed forward network to enhance the refinement of feature tokens. The decoder
utilizes the output from the encoder as its input. By employing cross attention in the
search region image, a feature map is generated. As suggested by the authors in [49],
the combination of the encoder and decoder yields improved tracking performance and
faster convergence.

The third and final step of SwinTrack involves a three-layer multi-layer perceptron.
This MLP is responsible for performing classification and regression tasks, ultimately
generating a bounding box in the target object in the tracking process.

The computational requirements and memory usage associated with training large-
scale transformer models, like the one utilized in SwinTrack, could pose limitations for
real-time tracking applications that have restricted computational resources. Furthermore,
similar to other deep-learning-based approaches, the performance of SwinTrack might be
influenced by the quality of input data, including occlusions, cluttered backgrounds, and
variations in lighting conditions, which can potentially hinder its accuracy in object tracking.

SwinTrack has demonstrated its state-of-the-art performance on multiple benchmark
datasets for visual object tracking, including OTB-2015 and LaSOT. The authors have
further showcased the versatility of SwinTrack by fine-tuning the pre-trained model for
other computer vision tasks such as object detection and segmentation. This adaptability
positions SwinTrack as a robust foundation for future research on transformer-based object
tracking, serving as a starting point for the development of more advanced tracking
algorithms. Given its general-purpose nature, SwinTrack holds potential for application in
various scenarios, including maritime surveillance.
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4.2.3. MixFormer: End-to-End Tracking with Iterative Mixed Attention

In the work presented in [50], a novel approach called MixFormer was introduced,
which offers advancements beyond the methodologies discussed in the previous two
studies. Unlike traditional trackers that consist of multiple stages for feature extraction,
integrating feature maps and target localization, MixFormer is an end-to-end visual object
tracking algorithm that streamlines these process into a unified framework. Those three
steps are well defined and present in almost all trackers.

MixFormer introduces a novel approach where feature extraction and feature map-
ping integration are combined into a single step. This integrated step effectively captures
target information in a streamlined manner, allowing for the extraction of highly spe-
cific and discriminative features. By condensing the process into two steps, MixFormer
achieves a lean architecture with a reduced number of parameters, resulting in improved
computational efficiency.

The architecture of MixFormer incorporates a Mixed Attention Module (MAM), which
combines feature extraction and information integration for the target template and search
region. This module takes both images as input and utilizes self-attention mechanisms to
facilitate target searches and to gather specific information. Following three stages of target
searching, as described earlier, the resulting tokens are fed into a convolutional network
responsible for determining the corners of the target bounding box.

It is worth noting that MixFormer performs exceptionally well on the LaSOT dataset,
ranking third across all metrics. Furthermore, as a lean architecture, it offers significant
parameter savings compared with related models. The authors conducted a comprehensive
comparison, demonstrating that MixFormer achieves superior performance on the LaSOT
dataset while requiring fewer parameters and less computational resources. The proposed
approach was extensively evaluated on various challenging tracking benchmarks, including
OTB-100, LaSOT, and TrackingNet, where it consistently outperformed state-of-the-art
tracking algorithms in terms of accuracy and robustness.

MixFormer offers the advantage of being an end-to-end model, allowing direct training
on tracking data without the need for pre-processing or post-processing steps. However,
a potential drawback of the model is its computational complexity, primarily stemming
from the iterative attention mechanism. This characteristic could impede real-time tracking
performance on low-power devices that have limited computational resources.

This tracker is particularly valuable for maritime applications as it excels in general
scenes. Being and end-to-end tracking algorithm, it has the potential to effectively track ves-
sels and other maritime objects in real-time, while also being capable of handling common
challenges encountered in maritime surveillance, such as motion blur and occlusion.

4.2.4. AiATrack: Attention in Attention for Transformer Visual Tracking

In their work [51], the authors introduce a novel architecture for object tracking that
utilizes a transformer-based model. This architecture, referred to as AiATrack, extends
the standard multi-head attention mechanism of the transformer by incorporating an
additional “attention in attention” (AiA) module. Similar to many contemporary trackers,
the feature extraction step of AiATrack incorporates transformer attention. The attention
process involves computing the weighted sum of key–value pairs to generate output. The
query, key, and value vectors are derived from input vectors and used as input to the
attention module. The goal is to map the query and the pairs to produce an output. The
resulting output is weight-dependent, with the weights determined by the correlations
between queries and keys using a compatibility function. Further details on the attention
mechanism commonly employed in this context can be found in [52].

The design of AiATrack was motivated by an analysis of the correlations between
query–key pairs. This analysis revealed that the correlations, when considered in isolation,
may lead to erroneous associations due to various factors in the image field, such as
background distractions. To address this limitation, the AiA module is introduced in
the architecture.
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The AiA module aims to enhance correlation consistency among query–key pairs,
thereby improving the correlations for new query–key pairs and suppressing irrelevant
ones. Another notable improvement in the AiA tracker is the transformer decoder. Unlike
many trackers that rely on a fixed reference image for the search region, the AiA tracker
updates the reference image during tracking to account for potential target location drift.
This is achieved by performing cross-attention not only between the reference (initial) frame
and the current frame but also between the reference frame and a neighboring frame in
the sequence.

The final step of this tracker involves predicting the corners of the bounding box.
A convolutional network is employed to generate probability maps for each corners,
including the left, right, up, and down corners. The accuracy of the corner prediction is
evaluated using the intersection over union metric with the ground truth bounding box. To
incorporate all the features within the bounding box, a polling layer is utilized, and the
resulting output is then fed to a fully connected network for further processing.

The proposed architecture demonstrates superior performance compared with other
state-of-the-art trackers across various tracking benchmarks, including LaSOT [53]. It
achieves an AUC score of 0.607, surpassing the results obtained by other leading trackers
in the field.

AiATrack has a few noteworthy limitations. Firstly, its computational requirements
are relatively high compared with certain tracking architectures, potentially restricting
its real-time applicability in certain scenarios. Secondly, the algorithm’s performance
heavily relies on the availability of a substantial amount of training data, which may pose
challenges in domains where acquiring such data is difficult. Additionally, similar to other
transformer-based tracking approaches, AiATrack may encounter difficulties in handling
occlusions and abrupt changes in object appearance or motion. Lastly, while the attention-
in-attention mechanism employed in AiATrack facilitates capturing spatial and temporal
dependencies, it can be sensitive to noisy input data and may necessitate careful fine-tuning
for optimal performance.

The authors suggested that AiATrack has the potential to be applied not only in object
detection in videos but also in MOT tasks. Furthermore, AiATrack shows promise in the
field of maritime surveillance. Given its visual tracking capabilities, the algorithm could be
utilized to track ships or other objects of interest in video sequences captured by cameras
mounted on maritime vessels or stationed on land-based observation points.

4.2.5. Unicorn—Towards Grand Unification of Object Tracking

In [4], the authors presented a network architecture designed to address the four
primary tasks in tracking: SOT, MOT, Video Object Segmentation (VOS), and Multi-Object
Tracking and Segmentation (MOTS). They proposed a unified framework that can accom-
modate various tracking methods, including deep-learning-based approaches, correlation
filters, and graphical models. The framework consists of three main components: a visual
model, a motion model, and a data association model. The visual model captures the target
object, while the motion model predicts its trajectory over time. The data association model
is responsible for assigning detections to existing tracks or initiating new tracks when a
target is detected.

The authors named the framework Unicorn, and it was designed to learn various data
sources in tracking and to address all four tasks using the same model parameters. Unlike
previous approaches, Unicorn considers both the reference frames and the current frames
as complete images, rather than focusing solely on the region of interest. This choice allows
for target re-detection in the case of disappearance. The network backbone is fed with the
entire images, providing target information and generating a feature map. The approach
varies for different tasks: for SOT and VOS, pixel-level correspondence is established across
the entire input image, while for MOT and MOTS, the tracker involves M trajectories in the
reference frame and N instances in the current frame. In this case, the correspondence is
made at the instance level rather than the pixel level.
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It is worth noting that this work introduces a novel approach utilizing the deformable
attention module instead of the traditional transformer attention mechanism. This de-
formable attention module offers improved efficiency in terms of memory consumption,
particularly when dealing with long sequence lengths. For the MOT task, the objective is to
detect objects of various classes and to match them to their respective category. In contrast,
the SOT task aims to detect any target within the reference frame. The final process employs
two different approaches: Target Priors, which are utilized for SOT and VOS, and Feature
Fusion, which is employed in all scenarios. It is worth mentioning that SOT and VOS with
non-zero prior differences can lead to more focused tracking of the targets.

The authors validated the efficacy of their framework through extensive experiments
on various tracking benchmarks, showcasing its superiority over state-of-the-art trackers.
Furthermore, they offered an open source implementation of their framework, which serves
as a valuable foundation for future research in the field of object tracking.

One notable drawback is the substantial requirement for a large volume of training
data, which may not always be accessible or viable to gather. Another limitation is the
high computational cost associated with the framework, rendering it less practical for
real-time applications. Moreover, the performance of the framework may be susceptible to
variations in the object’s appearance or behavior, potentially resulting in tracking failures
or inaccuracies. Finally, the proposed framework does not address the issue of effectively
handling occlusions, which poses a significant challenge in the realm of object tracking.

The framework holds potential for application in maritime surveillance, particularly
in scenarios involving simultaneous tracking or detection of multiple ships within the field
of vision. By unifying diverse tracking methods and datasets, the framework establishes a
cohesive tracking paradigm that can prove advantageous for monitoring objects in maritime
surveillance settings. The inclusion of techniques like online learning, model adaptation,
and long-term tracking, the framework enhances its ability to track ships and other objects
effectively in maritime environments.

4.2.6. STMTrack: Template-Free Visual Tracking with Space-Time Memory Networks

STMTrack, introduced in [54], draws inspiration from human visual memory to sustain
the identity of tracked objects in a continuous manner over time. This deep-learning-based
algorithm for visual object tracking incorporates a space–time memory (STM) module to
capture the extended temporal dependency of object appearances. By employing the STM
module, the tracker can retain a memory bank of target object representations throughout
the tracking process, enabling more precise tracking. Moreover, this tracker demonstrates
effectiveness even in the presence of consistent environmental variations.

The algorithm operates in a template-free manner, implying that it does not rely
on a pre-defined target template for tracking purposes. Instead, it utilizes the object’s
bounding box in the initial frame as a starting point and learns the target’s appearance and
motion patterns in an online fashion. STMTrack comprises a backbone network for feature
extraction, a space–time memory network for storing and retrieving feature extraction, and
a target model for updating the object’s appearance and motion patterns. Additionally,
it incorporates a dynamic feature aggregation mechanism to fuse features from various
layers of the backbone network, enhancing the tracking performance.

The first step of feature extraction involves considering T frames as memory and
T-label maps in the first plane. The inclusion of the first plane map is crucial to mitigate
background distraction during target feature learning. Since we have T frames in “mem-
ory”, we consequently have T features maps in “memory” as well. The second step entails
computing similarities between each pixel in both feature maps, resulting in a similarity
matrix. This step enables the recovery of the target information by leveraging multiple
frames from memory. In STMTrack, the feature extraction stage does not separate the ex-
tracted features into keys and values but directly utilizes them for target localization. This
approach enhances the suitability of space–time net for SOT tasks. The final step involves
classification and regression to discern the target from the background and to estimate the
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target’s bounding box. In the feature extraction and head network, which encompasses the
first and third components of the proposed method, the authors employed convolutional
layers to reduce the dimensionality of features and the output from the classification and
regression task. In convolutional layers, kernels are defined, and the output is obtained
through the convolution operation between the kernel and input array. It should be noted
that the input array can be an image or any other component within the architecture.

The proposed method includes a significant component known as the space–time
memory net, which enables the storage of multiple frames of target information within
a memory structure. Each frame contributes to the overall memory, granting the tracker
robust adaptability to variations in the target. This adaptive capability is highly desirable in
practical scenarios where controlled environments for frame capture are often unattainable.
The algorithm is thoroughly evaluated on various challenging tracking benchmarks, such
as OTB-2015 and LaSOT, and consistently exhibits superior performance compared with
other state-of-the-art trackers.

One notable drawback of STMTrack is its high memory requirement for storing feature
maps of previous frames, potentially hindering its performance on low-memory devices.
Moreover, being a template-free tracker, it may face challenges with objects or scenes
lacking distinctive visual information to differentiate the target from the background.
Lastly, its accuracy on fast-moving targets may be comparatively lower than that of some
other state-of-the-art trackers, as it heavily relies on spatial and temporal memory.

STMTrack holds potential for application in maritime surveillance due to its versatility
as a general-purpose visual tracking algorithm, capable of tracking any detectable and
localized object in video frames. Given that ships are typically detected or tracked once,
the space–time nature of STMTrack makes it a particularly intriguing choice for such tasks
in maritime surveillance.

4.2.7. KeepTrack and KeepTrackFast-Learning Target Candidate Association to Keep Track
of What Not to Track

In [55], the authors introduced the KeepTrack algorithm to tackle two common chal-
lenges in object tracking: the presence of distractors that closely resemble the target object
and significant variations in the target object’s appearance over time. KeepTrack addresses
these challenges through the use of a candidate proposal mechanism, which generates a
set of potential object candidates, and a candidate association module, which assigns each
candidate to either the most likely target object or a distractor. By sequentially learning
the association between the candidates and the target object, KeepTrack can effectively
distinguish distractors and adapts to changes in target appearance. The primary objective
is to maintain a considerable distance between the tracker and distractors. Additionally,
the authors introduced a faster variant of KeepTrack, known as KeepTrackFast, which
incorporates subtle changes to improve runtime performance. For instance, the number of
bounding box refinement steps was reduced from 10 to 3. Moreover, the target candidate
extraction step employs a different threshold that disregards candidates with low target
classifier scores, resulting in the processing of fewer frames with multiple candidates. The
subsequent paragraphs exclusively discuss the details of KeepTrack, while Table 3 presents
the relevant information separately.

The architecture of the KeepTrack algorithm involves several steps. Firstly, a target
score map is predicted for the current frame, and the target candidate with the highest
score is extracted. It is worth noting that the association is established between the current
frame and the preceding one. The next step involves the extraction of target candidates
along with their respective coordinates. For each constructed candidate, a feature set is
generated based on similarities in location and distance to different objects, while also
considering slight variations in appearance among objects. The authors clarify that these
extracted features play a crucial role in establishing mappings related to appearance, target
similarity, and position.
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The scoring mechanism plays a pivotal role in this approach. In case of occlusion, the
object may become erroneously associated with a distractor. However, if the object’s score
consistently increases over time, it is more likely to be selected as the target in the future
frames. The primary objective is to track both the target object and potential distractors.
KeepTrack incorporates a mechanism to effectively handle distractor objects by training a
separate classifier that can differentiate between target candidate between target candidate
and distractor candidates.

The algorithm undergoes evaluation on various demanding benchmarks for object
tracking, such as OTB-2015 and LaSOT. The results showcase its superior performance
compared with other state-of-the-art trackers.

The KeepTrack algorithm offers several advantages, including its capability to effec-
tively manage visually similar objects as distractors and to handle significant changes in the
target object’s appearance over time. Furthermore, it has the ability to track multiple objects
simultaneously, which is crucial for various real-world scenarios. Leveraging deep learning
techniques enhances its accuracy and robustness, surpassing traditional tracking methods.

However, the KeepTrack algorithm does have certain limitations. Firstly, it assumes
that the object of interest remains visible throughout the entire sequence, which may not
always hold true in real-world scenarios. Secondly, the algorithm heavily relies on the
quality of object proposals and their association with the target object, which can be a
challenging task in cluttered and complex scenes. Thirdly, the algorithm’s performance is
highly dependent on the availability of a large amount of training data, which may pose a
limitation in certain applications. Lastly, the algorithm does not explicitly model long-term
temporal dependencies, which can result in tracking drift over extended sequences.

This work was included in this review due to its strong performance across all analyzed
datasets. Additionally, the algorithm’s capability to handle visually similar objects and cope
with significant appearance changes over time could be advantageous for tracking ships or
other vessels, which often exhibit similar appearances or undergo variations in appearance
due to factors such as weather conditions. However, the effectiveness of the algorithm
would ultimately rely on the quality of the input data and the specific characteristics of the
maritime surveillance application at hand.

4.2.8. AAA: Adaptive Aggregation of Arbitrary Online Trackers with Theoretical
Performance Guarantee

In the paper by Song et al. [56], a method is introduced to enhance the accuracy of
visual object tracking by combining multiple online trackers in real time. The proposed
approach, known as adaptive expert aggregation (AEA), focuses on aggregating predictions
from these trackers to generate a consolidated solution. In AEA, each expert corresponds
to an online tracker that provides its own estimation of the target location as an individual
solution. Consequently, for every frame t, N diverse online trackers produces N location
predictions, which are then merged into a single solution for that specific frame.

The authors employ the EAE performance theory warranty to establish the strength
of AAA. However, ensuring accurate weight updates for the experts in online tracking
scenarios poses a challenge. To tackle this issue, the proposed method introduces the use of
an anchor frame and subsequent feedback to update the expert weights. If an anchor frame
is unavailable, the weights remain unchanged. An anchor frame is defined as a frame
wherein the target location exhibits a high confidence value.

The proposed method functions by assigning weights to each tracker, which are
determined by their historical performance, and then combines the tracker outputs using
a weighted average. The weights of the trackers are dynamically updated based on their
current performance and their significance in contributing to the overall tracking accuracy.
The method aggregates N different trackers, and the weights are updated using the anchor
frame and the subsequent feedback. The performance guarantee of AAA is defined utilizing
the EAE theory.
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The proposed method enhances tracking accuracy and robustness by effectively com-
bining multiple online trackers, accommodating any arbitrary number of trackers. The
method offers a theoretical performance guarantee based on the EAE theory and operates in
real-time, making it well-suited for tracking applications that demand prompt and accurate
outcomes. Moreover, the algorithm demonstrates flexibility and reliability by utilizing an
anchor frame and subsequent feedback to update the weights of expert trackers when there
is a satisfactory level of confidence in the target’s location.

The model experiments presented in the paper showcase that the proposed method
attains state-of-the-art performances in terms of accuracy and robustness, even in scenarios
where some of the expert trackers encounter failures. However, it is worth noting that the
model utilizes a combination of 12 expert trackers, which can incur significant computa-
tional costs. Additionally, the training and evaluation process for multiple expert trackers
can be time-consuming and resource-intensive.

In certain application scenarios, the cost associated with employing multiple expert
trackers may not be justifiable. Nevertheless, the proposed method can still prove valuable
in such cases by leveraging crucial information from the application domain to establish
the anchor frame and to ensure a high level of reliability.

On the other hand, the method could find application in maritime surveillance. Despite
the potentially high computational cost associated with combining multiple online trackers,
the utilization of anchor frames and later feedback can contribute to the reliability of the
tracking output. Moreover, in the context of maritime surveillance, the cost of combining
multiple trackers may be justified, and the theoretical performance guarantee provided by
the EAE theory could serve as a means to evaluate the quality of the tracking results.

4.2.9. ASRCF Model-Visual Tracking via Adaptive Spatially Regularized Correlation Filters

The authors of [57] proposed an efficient and robust method for object tracking that uti-
lizes correlation filters to estimate the location of the target. Additionally, they incorporate
adaptive spatial regularization to enhance the discriminative power of the filter.

The proposed method operates in two stages. In the first stage, the target’s location
is initialized in the first frame, and an Adaptive Spatially Regularized Correlation Filter
(ASRCF) is trained to estimate the target’s location in subsequent frames. The ASRCF
is trained using an L2-regularized regression framework, which learns linear mapping
between the filter and the target’s appearance. This trained filter is then applied to the
subsequent frames to predict the target’s location.

In the second stage, the method incorporates adaptive spatial regularization to en-
hance the discriminative capability of their filter. This is motivated by the idea that the
filter’s response should exhibit spatial smoothness across the entire image. To enforce this
constraint, the method introduces an adaptive spatial regularizer that adapts based on
the local characteristics of the image. For each pixel in the image, a regularization term is
computed based on its proximity to the predicted location of the target. This regularization
term is subsequently employed to modify the response of the filter, thereby yielding a more
refined and resilient response.

The proposed method offers several advantages. Firstly, it utilizes the ASRCF, which
enables the filters to learn adaptable shapes and to enhance their capability to handle target
object variations, including deformation, rotation, and scaling changes. This adaptability
proves particularly valuable in maritime scenarios. Secondly, the model incorporates a
filter penalty mechanism that improves reliability when dealing with occlusions. Addition-
ally, the method leverages the Fourier transform and employs multiple levels of feature
combination, which contribute to precise estimation of the object’s location.

However, there are also certain drawbacks to this approach. One limitation is its strong
dependence on the accuracy of the initial bounding box, which can lead to poor performance
when the initial bounding box is imprecise. Furthermore, the model’s effectiveness may be
compromised by variations in the target’s appearance caused by factor such as changes
in illumination or occlusions. Lastly, the computation complexity of the approach can be
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significant, particularly in the context of large-scale maritime scenarios, thereby restricting
its practical applicability.

The proposed method underwent evaluation on various challenging datasets, show-
casing its achievement of state-of-the-art tracking performance in accuracy and robustness.
Notably, the method is computationally efficient, rendering it suitable for real-time appli-
cations. Moreover, the adoption of adaptive spatial regularization enables the approach
to effectively handle deformations, occlusions, and other challenging scenarios, thereby
solidifying its potential as a promising approach for visual tracking.

4.2.10. SiamMask-Fast Visual Object Tracking with Rotated Bounding Boxes

The paper [3] introduces a visual tracking algorithm that focuses on tracking rotated
bounding boxes. The authors present a novel approach to address the challenge of real-time
tracking of rotated objects. The algorithm utilizes correlation filtering and is specifically
tailored to track objects with arbitrary rotations.

The algorithm consists of several stages. Firstly, it initializes the tracker by using the
first frame of the video sequence. It extracts the features of the object and generates a
rotated bounding box around it. The features are represented using color histograms and
local binary patterns. Subsequently, the algorithm constructs a filter model based on these
features, which is utilized to track the object in the following frames.

The tracking process operates by convolving the filter model with the features of the
current frame, resulting in a response map that indicates the probable location of the object
in the current frame. Subsequently, the algorithm utilizes the response map to update the
state of the tracker by computing a new rotated bounding box around the object.

The proposed method offers several advantages compared with previous tracking
algorithms. The utilization of rotated bounding boxes enables accurate tracking of ob-
jects with arbitrary orientations in real time, rendering it applicable to various scenarios.
Moreover, the incorporation of correlation filters enhances the algorithm’s resilience to
variations in lighting and appearance. Furthermore, the algorithm exhibits computational
speed, efficiency, and effectiveness, making it well suited for real-time applications.

However, the proposed method does have certain limitations. Firstly, it is heavily
reliant on the accuracy of the object’s initial bounding box, and therefore, its performance
may suffer if the initialization is imprecise. Secondly, the method may struggle in scenarios
where the object undergoes significant appearance changes or experiences occlusion by
other objects in the scene. Lastly, the evolution of the method’s performance primarily
focuses on object tracking datasets, while its effectiveness in other tasks such as object
detection or instance segmentation remains unexplored.

The algorithm was evaluated on multiple benchmark datasets and was compared
with state-of-the-art tracking algorithms. The results indicate that the proposed method
surpasses previous approaches in terms of both tracking accuracy and speed. Furthermore,
the authors showcased the algorithm’s efficacy in tracking objects with intricate rotations
in real-world scenarios, including the tracking of cars in traffic.

In maritime scenarios, ships often exhibits various orientations, making the utiliza-
tion of rotated bounding boxes more suitable for accurately representing their shape and
movement compared with axis-aligned bounding boxes. Moreover, the proposed method
specifically caters to real-time tracking requirements, which proves beneficial for mon-
itoring moving ships in real-world settings. However, it is important to note that the
algorithm’s performance could be influenced by environmental factors including lighting
conditions, weather variations, and sea conditions.

4.2.11. SiamVGG: Visual Tracking Using Deeper Siamese Networks

The authors of [58] propose a SOT method based on a deep neural network called
the Siamese network. This method utilizes two networks, namely the feature extractor
network and the similarity network, to track an objective in a video sequence. The feature
extractor network is implemented using a VGG-16 architecture, which is pre-trained on the



Electronics 2023, 12, 2789 26 of 41

ImageNet dataset. The similarity network takes the feature maps from the two branches of
the feature extractor network and generates a scalar similarity score, indicating the level of
similarity between the target object and the search region in the current frame.

During the training process, a pair of images is randomly selected from the dataset,
and the network is trained to minimize the disparity between the similarity score and a
binary label that denotes whether the two images depict the same object. This training
process is conducted offline, eliminating the need for online updates contributing to the
computational efficiency of the method.

In the testing phase, the target object is initially localized in the first frame, and its
appearance is utilized to create a template. In each successive frame, the search region
encompassing the anticipated position of the target object is inputted into the Siamese
network, and the similarity score is computed. The estimated location of the target object
in the current frame is subsequently determined based on the highest similarity score.

The authors additionally introduce a spatially weighted average pooling method to
enhance the accuracy of their approach. This method calculates the weighted average of
the feature maps using the similarity scores as weights. The weights are determined by a
Gaussian kernel, which assigns greater weights to the feature maps in closer proximity to
the predicted location of the target object.

The algorithm presents some advantages. First, the use of a deeper architecture can
provide higher accuracy compared with previous methods. Second, the use of a Siamese
network allows the model to learn from the limited data available, improving generalization
and robustness to variations in target appearance. Lastly, the model is efficient and can run
in real time on standard hardware, which is useful for practical applications.

However, there are several limitations to this method. Firstly, it may struggle to
handle significant changes in appearance or pose, as it does not incorporate 3D structure or
temporal consistency information. Secondly, obtaining a substantial amount of training
data to effectively learn the features can be challenging, particularly for certain target
objects or environments. Additionally, the use of fully convolutional Siamese networks
can render the model sensitive to minor shifts in the target object, potentially resulting in
drift during tracking. Lastly, the method may not handle occlusions or background clutter
adequately, leading to tracking failures in such scenarios.

The experiments presented in the paper provide evidence that the proposed method
outperforms several state-of-the-art tracking methods in terms of both accuracy and speed,
as demonstrated on four standard tracking benchmarks. Furthermore, the method ex-
hibits resilience to occlusions and deformations, thereby rendering it appropriate for
real-world applications.

Being a visual tracking algorithm, it can be employed for real-time ship tracking using
video sequences captured by cameras installed on ships or coastal areas. Furthermore,
owing to its foundation on a deep convolutional neural network, the algorithm possesses
the capability to learn and adjust to the target object’s appearance, even amidst variations
such as changes in illumination, occlusion, or other factors.

Similar to other visual tracking algorithms, the performance of SiamVGG may be
influenced by environmental factors like heavy sea conditions or fog, resulting in blurry or
noisy images. Additionally, the size of the target object, its speed, and trajectory can impact
the algorithm’s accuracy, thus affecting the tracking quality.

4.2.12. SE-SiamFC-Scale Equivariance Improves Siamese Tracking

The study by Sosnovik et al. [59] presented a novel approach to enhance the perfor-
mance of Siamese-based visual object tracking. The proposed method extends existing
Siamese tracking algorithms by introducing a scale-equivariant Siamese network, which
enables the network to automatically adapt to changes in the target’s scale. In this context,
the SE-SiamFC was introduced as a variant of SiamFC that incorporates scale equivariance.
The Siamese architecture is a widely used technique for visual object tracking, relying on a
comparison of the target object features with features extracted from candidate patches in
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subsequent frames. However, a key challenge faced by Siamese-based tracking method is
their limited ability to track objects at varying scales, which can hinder their performance in
real-world scenarios. To address this limitation, the proposed network consists of two iden-
tical subnetworks that share weights and is trained using a multi-scale sampling strategy,
enhancing the network’s scale robustness.

To tackle this challenge, the authors presented a novel approach that incorporates
scale-equivariant features into the Siamese network. These features were specifically
designed to ensure consistent responses across various scales, enabling the network to
effectively track objects at different scales with enhanced accuracy. This is accomplished
through architectural modifications to the Siamese network, including the integration of
a scale-equivariant module that adapts the network’s feature to match the scale of the
tracker object.

This work offers several notable advantages. Firstly, it achieves scale invariance
without requiring explicit scale estimation or additional modules, resulting in a streamlined
and efficient tracking system. Secondly, the proposed method demonstrates robustness
in challenging scenarios, such as variations in illumination, occlusion, and motion blur.
Furthermore, the proposed method exhibits computational efficiency, rendering it well
suited for real-time applications.

However, the proposed method may face limitations in scenarios where the target
experiences substantial scale changes that fall outside the training range of the network.
Additionally, training the network necessitates acquiring extensive annotated datasets,
which can be challenging in certain scenarios. Lastly, the method’s performance may be
less optimal for object classes exhibiting complex deformations, thus reducing its suitability
for certain applications.

The proposed method undergoes evaluation on various benchmark datasets, where
it exhibits superior performance compared with existing state-of-the-art Siamese-based
tracking methods in terms of accuracy and speed, particularly when dealing with objects
that undergo significant scale changes during tracking. Furthermore, the authors pro-
vide evidence of the method’s effectiveness in real-world scenarios, including tracking
pedestrians in crowded urban environment and tracking ships in satellite imagery.

The capability to track objects despite scale variations is of great importance in mar-
itime surveillance scenarios, where objects in the sea can exhibit varying distances and sizes.
The proposed method addresses this challenge by enhancing Siamese trackers through
the incorporation of scale-equivariant convolutions and the integration of scale adaptation
into the feature extraction process. These improvements render the tracker more robust
to scale changes and enhance its capacity to track objects at diverse scales. As a result,
the method holds promise for maritime surveillance applications, where scale variations
frequently occur.

4.2.13. BoT-SORT: Robust Association Multi-Pedestrian Tracking

In [60], the authors introduced a multi-object tracking algorithm called BoT-SORT,
which is specifically designed for multi-pedestrian tracking. BoT-SORT builds upon the
well-known object tracking framework known as Simple Online and Realtime Tracking
(SORT). It incorporates two key enhancements: a batch update strategy and an orthogonal
transformation to handle complex scenarios. The algorithm employs a bipartite graph
optimization technique for data association and incorporates a Kalman filter for trajectory
prediction and smoothing.

The algorithm begins by employing a deep neural network to detect and track pedes-
trians in each frame. Subsequently, a batch processing strategy optimizes the associations
between the detected pedestrians across multiple frames, thereby enabling BoT-SORT to
effectively handle occlusions and to enhance tracking accuracy.

To achieve this, the algorithm initially performs a batch update by associating the
detected pedestrians across multiple frames using a similarity matrix. This matrix is cal-
culated based on various features, such as the location and appearance of the bonding
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boxes. BoT-SORT then applies an orthogonal transformation to refine the associations,
thereby mitigating the impact of occlusions and other tracking challenges. In addition,
BoT-SORT incorporates several other features to enhance tracking accuracy and robustness.
For instance, it incorporates a track management system that handles tasks such as track
initialization, termination, and fragmentation. Moreover, the algorithm includes a mech-
anism to address missed detections and to re-identify pedestrians who temporarily exit
the scene.

BoT-SORT offers several advantages. Firstly, it demonstrates the ability to handle
complex real-world scenarios characterized by high pedestrian density, occlusion, and
re-identification challenges. Secondly, it surpasses the state-of-the-art performance on
multiple datasets, achieving high scores in terms of MOTA and IDF1. Lastly, it exhibits
computational efficiency, enabling real-time tracking even on a single CPU.

However, there are also some limitations to consider. Firstly, BoT-SORT is specifically
designed for tracking pedestrians and does not extend its capability to track other objects
or vehicles. Secondly, it relies on pre-detection of pedestrians, which may restrict its
applicability in certain scenarios where detection is challenging or unavailable. Lastly,
it may face difficulties in crowded environments with substantial occlusion and limited
distinguishable features among pedestrians.

The algorithm was thoroughly evaluated on various public datasets, and the results
demonstrated its superior performance compared with other existing state-of-the-art multi-
object tracking algorithms. It excelled in terms of tracking accuracy and computational
efficiency. The effective combination of Bayesian optimization, bottom-up data association,
and state-space modeling makes it highly suitable for real-world applications, including
video surveillance and crowd monitoring.

The application of the BoT-SORT algorithm to maritime surveillance holds potential,
but it would necessitate tailored modifications and adaptations to account for the spe-
cific characteristics and challenges of this domain. For instance, the algorithm could be
customized to detect and track ships instead of pedestrians, accommodating the distinct
movement patterns and sizes of vessels compared with humans. Additionally, the algo-
rithm may require adjustments to effectively handle occlusions resulting from obstacles
like other ships, waves, or weather conditions. In essence, the BoT-SORT algorithm offers
a resilient framework for multi-object tracking that can be flexibly adapted to diverse
surveillance applications, including those encountered in maritime scenarios.

4.2.14. StrongSORT: Make DeepSORT Great Again

The paper [61] introduced a novel multi-object tracking algorithm that enhances
the performance of the popular DeepSORT (deep-learning-based SORT) algorithm. The
primary objective of this research is to overcome the limitations inherent in DeepSORT and
to deliver a more robust and accurate solution for object tracking.

The main contribution of the StrongSORT algorithm lies in its adoption of a new
tracking framework that incorporates a powerful CNN feature extractor known as the
Strong CNN. This deep neural network is pre-trained on a vast dataset of images, enabling
it to extract high-level features that are highly relevant for object tracking. By utilizing
the Strong CNN as a feature extractor, the algorithm generates embeddings for each
detected object, facilitating object matching across frames and enabling robust tracking
over extended periods of time.

Alongside the Strong CNN feature extractor, StrongSORT incorporates various other
enhancements compared with DeepSORT. One notable improvement is the introduction
of an adaptive tracklet length that can be dynamically adjusted according to the motion
patterns exhibited by objects in the scene. This adaptive approach enables the algorithm to
effectively handle objects with different speeds and accelerations, enhancing its tracking
capabilities in diverse scenarios.

Another enhancement introduced in StrongSORT is the utilization of a multi-scale
approach to object detection and feature extraction. This approach involves detecting
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objects at various scales and employing multiple feature extractors to generate embeddings
for each scale. By incorporating this multi-scale strategy, StrongSORT enhances the accuracy
of object detection and tracking, particularly for small or distant objects that may require
more precise analysis.

Finally, the authors of StrongSORT also introduce a novel gating mechanism that im-
proves the reliability of object associations. This gating mechanism uses a learned function
to score the likelihood of each potential object association and only allows associations with
high scores to be used in the tracking process. This helps to reduce the number of false
positive associations and to improve the overall tracking accuracy.

Lastly, the authors of StrongSORT introduce a novel gating mechanism aimed at
enhancing the reliability of object associations. This gating mechanism utilizes a learned
function to assign scores to potential object associations, allowing only associations with
high scores to be utilized in the tracking process. By incorporating this gating mechanism,
the algorithm effectively reduces the occurrence of false-positive associations, leading to
improved tracking accuracy overall.

One of the primary contributions of StrongSORT is the introduction of a novel online
learned affinity metric. This metric enables the tracker to update its matching criteria
dynamically and to adapt to the appearance changes of tracked objects. This adaptive
approach enhances the algorithm’s robustness in handling variations in object appearance.
Moreover, StrongSORT integrates re-identification with tracklet generation, resulting in a
more efficient and robust process, particularly when dealing with occlusions. Additionally,
the algorithm incorporates a feature selection mechanism that effectively reduces the
dimensionality of the feature space, leading to improved tracking accuracy.

However, there are also some disadvantages to consider. One of the main drawbacks
of the StrongSORT algorithm is the high computational resources required for training
the deep neural network and making predictions. Another potential limitation is that
the algorithm relies on appearance features, which can be susceptible to issues such as
illumination changes, occlusions, and other visual distortions. Lastly, although StrongSORT
has demonstrated improved accuracy compared with DeepSORT, it may still encounter
challenges when dealing with crowded scenes or scenes with a high density of objects.

The algorithm represents a substantial improvement over DeepSORT and offers a
highly accurate and robust solution for object tracking in complex scenes. It attains state-of-
the-art performance on various tracking benchmarks, surpassing not only DeepSORT but
also other recent tracking methods. Its advanced feature extraction capabilities and adaptive
tracking framework render it well suited for a broad range of applications encompassing
surveillance, robotics, and autonomous driving.

The algorithm has the potential to be applied to maritime surveillance since it is a
versatile multi-object tracking algorithm capable of handling different types of objects,
including those found on the water. However, the feasibility of applying the algorithm
to maritime surveillance tasks would depend on specific requirements and challenges,
such as the size and movement characteristics of the tracked objects, lighting and weather
conditions, and the presence of occlusions or other visual distortions. Additionally, when
evaluating its suitability for the task, considerations should be given to the algorithm’s
accuracy and computational requirements.

4.2.15. SimpleTrack: Rethinking and Improving the JDE Approach for
Multi-Object Tracking

The paper introduces SimpleTrack, a multi-object tracking algorithm presented in [62].
SimpleTrack aims to enhance the performance of the widely used Joint Detection and
Embedding (JDE) approach by implementing several modifications. The core concept of
SimpleTrack is to streamline the JDE approach, resulting in improved efficiency and accuracy.

The SimpleTrack algorithm introduces a decoupled approach for object detection
and appearance identification, which differs from the JDE approaches that utilize a single
network for both tasks. SimpleTrack utilizes the DLA-34 architecture as the backbone for
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extracting feature maps and incorporates two distinct fusion methods: up-to-bottom fuse
for detection and bottom-to-up fuse for re-identity. The authors highlight the challenges of
using intersection over union (IoU) alone in occlusion scenarios or when the target loses its
ID, which can make ID retrieval difficult. To address this, the algorithm introduces JDE-
based methods that mitigate the issue. Additionally, when the ID loss duration becomes
significant, accuracy may decline when using Kalman-filter-based predictions.

To address these challenges, the authors proposed a solution called SimpleTrack,
which incorporates similarity matrices, specifically the EG Matrix-Embedding and Giou
Matrix. The EG Matrix utilizes the cosine distance to track long-range targets, while the
Giou Matrix helps to limit correspondence gaps. These matrices are constructed using
information such as object location, movement, and appearance. The EG matrix combines
the location matrix, which represents the Giou matrix based on bounding box information,
and the appearance distance matrix, which measures the cosine distance between different
appearance embedding vectors. The final EG matrix is obtained by linearly combining
these two matrices. Notably, the EG matrix itself, even without the SimpleTrack algorithm,
is a valuable contribution to the development of new models, as demonstrated through its
evaluation with other JDE-based approaches.

The algorithm has several advantages. Firstly, it has demonstrated improved per-
formance compared with the original JDE algorithm across several benchmark datasets.
SimpleTrack achieved a better balance between accuracy and efficiency, particularly in
crowded scenes with a high object density. This improvement was achieved by enhancing
the quality of detection and re-identification strategies, as well as by introducing a more
efficient similarity metric. Secondly, SimpleTrack employed a simple yet effective approach
to handle occlusions and crowded scenes. Instead of relying on complex models or tech-
niques, the algorithm utilized straightforward heuristics and assumptions. For example, it
leveraged the observation that occluded objects tend to move slowly and that objects in
close proximity are more likely to belong to the same category. This simplicity not only
enhanced interpretability but also facilitated easier implementation. Finally, SimpleTrack
achieved its improved performance with fewer computational resources compared with
the original JDE algorithm. This was accomplished through code optimization, a reduction
in model parameters, and the introduction of an efficient GPU implementation. These
optimizations made the algorithm more practical and accessible for real-world applications.

Despite its advantages, SimpleTrack also has some limitations. One of the main draw-
backs is its dependence on the object detection module, which can be susceptible to the
quality and accuracy of the input images. This reliance introduces the possibility of tracking
failures or inaccurate predictions, particularly in challenging or noisy environments. More-
over, the algorithm still relies on appearance features, which are vulnerable to illumination
changes, occlusions, and other visual distortions.

Overall, SimpleTrack enhances the tracking performance of the JDE approach by
simplifying the detection network and introducing a new tracklet-level feature aggregation
approach. The experimental results demonstrate that SimpleTrack surpasses the JDE
approach across multiple benchmark datasets.

The algorithm is well-suited for maritime surveillance applications. It is designed to
detect and track multiple objects in real time, making it particularly applicable in environ-
ments with a high density of vessels or other objects in a marine setting. Furthermore, its
capability to handle occlusions and track objects over long distances makes it a valuable
tool for effective maritime surveillance.

However, it is important to consider that the algorithm’s performance may be influ-
enced by specific factors present in a maritime environment, such as the presence of waves
or varying weather conditions. These factors can affect the appearance and movement of the
tracked objects, potentially leading to tracking challenges. Potentially leading to tracking
challenges, the performance of the entire system would be heavily influenced by the quality
of the detection module, which may pose some difficulties in the marine environment.
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4.2.16. GTR (Global Tracking Transformers)

Global Tracking Transformers (GTR), proposed by Zhou et al. in 2021 [63], is a state-
of-the-art multi-object tracking algorithm. It introduces a novel tracking methodology
that harnesses the power of transformers, a deep neural network architecture known for
its exceptional performance in natural language processing and computer vision tasks.
The core concept behind GTR involves conducting multi-object tracking through a global
attention mechanism that operates on entire frames rather than processing individual
objects separately. This distinctive approach sets it apart from conventional methods that
rely on a detection and association pipeline for tracking objects individually. By addressing
the challenge of associating objects across extended temporal gaps, where appearance
changes and occlusions may occur, GTR aims to enhance tracking accuracy and robustness.

GTR employs an encoder–decoder architecture based on transformers to capture the
interdependencies among all object pairs within a scene. This global modeling approach
enables the algorithm to consider all objects simultaneously, leading to enhanced tracking
performance, particularly in challenging scenarios characterized by numerous occlusions
and object interactions. Given a sequence of RGB frames as input, GTR generates predicted
object trajectories as its output. The encoder module processes each frame to extract spatial
and temporal information, producing a set of features. Subsequently, the decoder module
utilizes these features to generate object detections and their corresponding trajectories.

GTR possesses a notable advantage in its capability to conduct online tracking with-
out the need for pre-processing tasks like object detection or feature extraction. This is
accomplished by leveraging a self-attention mechanism, which enables GTR to learn to
focus on pertinent regions within the input frames while disregarding irrelevant or noisy
data. Moreover, GTR incorporates a memory module that permits the retention of infor-
mation regarding previously observed objects, enabling effective tracking across extended
temporal gaps.

GTR offers an additional advantage in its capability to manage occlusions and to
track objects across multiple camera views. This is achieved through the acquisition of a
view-invariant object representation that can be shared across various camera perspectives.
Consequently, GTR can effectively track objects across different camera views and address
occlusions by predicting the movement of occluded objects using their prior trajectories.

While GTR offers notable advantages, it also has certain limitations to consider. Firstly,
the algorithm’s high computational cost can hinder its suitability for real-time applica-
tions on low-power devices. Secondly, GTR’s dependency on a substantial volume of
training data may pose challenges in acquiring sufficient data for optimal performance in
certain applications.

In summary, GTR is a transformer-based approach to multi-object tracking that utilizes
a global attention mechanism operating on entire frames. It offers several advantages,
including the capability to handle occlusions and to track objects across multiple camera
views. However, it also has certain limitations, such as its high computational cost and
data requirements.

The algorithm is specifically designed for multi-object tracking, a task commonly
encountered in various surveillance scenarios, including maritime surveillance. With its
impressive features, GTR stands out as a powerful algorithm for multi-object tracking
that can be applied to diverse surveillance scenarios, including maritime surveillance.
However, it is important to note that deep-learning-based methods such as GTR necessitate
a substantial amount of training data and significant computational resources, which can
pose challenges in certain applications.

4.3. Comparison of the Trackers

This section provides a comparison of the state-of-the-art work in object tracking
discussed previously. These studies employ diverse approaches and techniques, such as
transformer-based models, Siamese networks, correlation filters, and memory networks.
They utilize different evaluation metrics, including precision, recall, and F1-score, and
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conduct testing on various datasets such as MOT17 and LaSOT. Through this comparative
analysis, we can develop a comprehensive understanding of the strengths and limitations
of different object tracking and we can develop a comprehensive understanding of the
potential avenues for future advancements in the field.

The studies mentioned in this context employ diverse metrics to assess their tracking
performance. However, the selection of metrics can vary depending on the specific task and
dataset used for evaluation. Certain studies even introduce novel metrics or modifications
to existing ones to effectively evaluate their proposed methods. Consequently, while there
are some shared metrics among these studies, the precise choice of metrics may differ based
on the research objectives and methodology of each individual work.

In order to establish a link between datasets and metrics, Table 2 summarizes the
metrics used in each dataset presented in this section.

Table 2. Metrics used in each dataset.

Dataset Metrics

LaSOT AUC, P and Pnorm
OTB-2015 Precision plot, success plot (overlap score, average overlap score, and AUC)
VOT-2016 Accuracy, robustness, and EAO

MOT17 MOTA, IDSW, IDF1, and HOTA

Table 3 summarizes the performances of the best trackers using all datasets until the
writing of this review. The meaning of arrows in Table 3 are as follows: down ↓ means that
the lower value is the best and UP ↑means that the higher value is the best.

Table 3. General performance comparison.

Tracker AUC Pnorm P S− AUC P A ↑ R ↓ EAO ↑ HOTA ↑ IDF1 ↑ MOTA ↑ IDs↓
1 0.711 0.811 0.776 - - - - - - - - -
2 0.702 0.784 0.753 - - - - - - - - -
3 0.701 0.799 0.763 - - - - - - - - -
4 0.690 0.794 0.738 - - - - - - - - -
5 0.685 0.766 0.741 - - - - - - - - -
6 - - - 0.719 - - - - - - - -
7 - - - 0.709 - - - - - - - -
8 - - - 0.712 - - - - - - - -
9 - - - 0.700 0.910 - - - - - - -

10 - - - 0.692 0.922 - - - - - - -
11 - - - - - 0.677 0.224 0.466 - - - -
12 - - - - - 0.564 - 0.351 - - - -
13 - - - - - 0.590 0.340 0.360 - - - -
14 - - - - - - - - 65.0 80.2 80.6 1257
15 - - - - - - - - 64.4 79.5 79.6 1194
16 - - - - - - - - 61.6 76.3 75.3 1260
17 - - - - - - - - 59.1 71.5 75.3 2859

The studies are numbered as follows: 1—OSTrack [48]; 2—Swintrack [49];
3—MixFormer [50]; 4—AiAtrack [51]; 5—Unicorn [4]; 6—STMTrack [54]; 7—KeepTrack [55];
8—KeepTrackFast [55]; 9—AAA [56]; 10—ASRCF Model [57]; 11—SiamMask [3];
12—SiamVGG [58]; 13—SE-SiamFC [59]; 14—BotSORT [60]; 15—StrongSORT [61];
16—SimpleTrack [62]; and 17—GTR [63].

5. Open Problems and Challenges

The field of object tracking has undergone significant advancements in recent years,
with numerous methods and techniques proposed to enhance tracking performance in
various scenarios. However, several open problems and challenges still exist, necessitating
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further improvements in the accuracy, robustness, and efficiency of object tracking systems.
This section explores potential research directions that can advance the state-of-the-art
in object tracking. These include the exploration of novel architectures and models; the
development of improved object representations and feature extraction methods; the
enhancement of data association techniques; and the utilization of additional sources of
information, such as contextual cues, semantic segmentation, and object detection, to
enhance tracking performance. Additionally, the need for more robust evaluation metrics
and benchmarks is highlighted to enable fair comparisons between different tracking
algorithms and to facilitate progress in the field.

Despite the advances in the field of object tracking, several open problems still require
attention from researchers. Some of the possible open problems are listed next.

• Handling occlusions: It presents a challenge in object tracking as occluded objects
are no longer fully visible, making it difficult to maintain accurate identities for
each tracked object. Therefore, when multiple objects occlude each other in a video
sequence, tracking becomes even more challenging. There is a need to develop
robust algorithms that can handle occlusions effectively. In the context of maritime
surveillance, occlusions pose a specific challenge as vessels can move behind each
other or other obstacles in the scene. This can make it difficult to track the movement
of a specific vessel over time.

• Real-time tracking: Real-time tracking is crucial in various applications, including
autonomous driving, surveillance, and robotics. While some trackers are designed to
operate in real time, many others are not. Achieving real-time performances requires
the development of efficient algorithms that can process video frames at high speeds
while maintaining accurate tracking. Optimizing computational efficiency, reducing
memory requirements, and leveraging hardware acceleration techniques are important
considerations for real-time tracking systems. Therefore, there is a need to develop
trackers that can process video frames in real time without sacrificing accuracy and
increasing complexity.

• Robustness to appearance changes: Objects can undergo variations in illumination,
scale, pose, or clothing. This can make it difficult for trackers to recognize the same ob-
ject across different frames of a video. Developing trackers that can handle appearance
changes robustly is a challenging problem. In the context of maritime surveillance,
vessel appearance variability adds another challenge, as vessels can differ in size,
shape, color, and texture. This variability makes it difficult to identify and track ves-
sels accurately. Furthermore, environmental factors such as lighting conditions, sea
state, and weather can significantly impact the performance of tracking systems.

• Robustness to complex scenes: Tracking objects in scenes with multiple moving
objects, diverse motion patterns, and varying speeds poses a significant challenge.
The presence of numerous objects moving in different directions can hinder trackers
in accurately identifying and tracking each individual object. Robustness to complex
scenes involves developing algorithms that can handle occlusions, scale changes,
cluttered backgrounds, and interactions among objects.

• Generalization to diverse scenarios: Most tracking algorithms are designed to work
under specific conditions, such as indoor or outdoor settings, particular camera view-
points, etc. However, to address the practical requirements of real-world applications,
it is essential to develop trackers that can effectively generalize across diverse scenarios.

• Multi-object tracking: Tracking multiple objects in a crowded scene remains a chal-
lenging problem. Developing algorithms that can track multiple objects accurately
and robustly is an open problem.

• Explainable tracking: It is crucial to understand why a tracker may fail in certain
scenarios or how it arrives at specific decisions in order to build trust in the algorithm.
Developing explainable tracking algorithms is an open problem.

• Long-term tracking: Most object trackers focus on short-term tracking, i.e., tracking
objects over a few seconds. Tracking objects over extended periods is a challenging
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problem, especially in large-scale scenes or videos spanning multiple frames, which re-
quires overcoming various difficulties. These challenges include handling appearance
changes, variations in pose, and occlusions that may occur over time. Therefore, devel-
oping algorithms that can maintain consistent tracking performance over long-term
sequences is an ongoing research area.

• Transfer learning: Training object trackers on one dataset does not guarantee their
generalization to other datasets. Variations in objects appearances, scales, and other
factors across different datasets can hinder the performance of trackers. Developing
methods for transfer learning that can improve the generalization ability of object
trackers is an important research direction.

• Joint object detection and tracking: Object tracking algorithms should be able to
perform joint object detection and tracking, which can improve tracking performance
and reduce false positives.

• Robustness to adversarial attacks: Object tracking algorithms should be robust to adver-
sarial attacks, which can be used to fool the algorithm into tracking the wrong object.

• Uncertainty estimation: Object tracking algorithms should be able to estimate uncer-
tainty in the tracking process, which is important for decision-making in applications
such as autonomous driving.

These represent only a few of the potential open problems being addressed by re-
searchers in the field of object tracking. There are still unresolved questions regarding the
design of effective tracking architectures, the integration of different tracker types, and
the most suitable evaluation methodologies for assessing object tracking systems. These
areas serve as active domains where researchers are actively investigating novel ideas and
methods to enhance object tracking in real-world scenarios. In the following sections, we
outline potential directions for future research in the field of object tracking.

While numerous recent studies have investigated the utilization of attention mecha-
nisms in object tracking, there is still ample opportunity for further advancements. Future
research could focus on developing more advanced attention mechanisms that can better
capture complex relationships between objects and their surroundings context.

Transformer-based models have demonstrated tremendous potential in natural lan-
guage processing, and recent studies have shown their potential in object tracking as well.
Future research could focus on exploring more advanced transformer architectures to
improve object tracking performance.

Many existing object tracking algorithms require significant computational resources
and can present challenges when attempting real-time execution. Future research could
focus on developing more efficient tracking algorithms that can run on low-power devices.

Most existing object tracking algorithms rely primarily on visual information. How-
ever, future research could explore the incorporation of additional sensor modalities, such
as depth information or light detection and ranging (LIDAR) data, to improve tracking
performance in challenging environments.

Several tracking algorithms make the assumption that objects will not leave the field
of view or occlude for a long period. However, objects can disappear for extended periods
in real-world scenarios, reappear in different locations, or undergo significant appearance
changes. Therefore, future research should focus on developing more robust and accurate
tracking methods that can handle long-term occlusions and changes in appearance.

The detection of objects on complex backgrounds poses significant challenges in com-
puter vision, including robustness to cluttered scenes, variations in lighting conditions,
occlusion, scale, viewpoint, contextual understanding, data imbalance, transferability to
real-world scenarios, and interpretability. Achieving accurate detection in the presence
of multiple moving objects and complex backgrounds remains an open problem. Light-
ing changes, occlusion, and variations in scale and viewpoint further complicate the task.
Additionally, understanding context, addressing data imbalance, ensuring transferability
to real-world environments, and incorporating interpretability are crucial for advancing
detection on complex backgrounds. Future research should explore multidisciplinary ap-
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proaches, leverage advanced techniques like deep learning and attention mechanisms, foster
the availability of diverse datasets, establish standardized evaluation protocols, and focus
on addressing these challenges to enhance detection performance in real-world scenarios.

Multi-object tracking remains a challenging task, especially in crowded scenes where
multiple objects may occlude each other, or appear and disappear frequently. Future
research should focus on developing more effective methods to handle occlusions, re-
identifying objects that have disappeared, and accurately associate multiple objects with
their corresponding tracks.

Current tracking algorithms are limited in scalability, making applying them in real-
time or large-scale scenarios challenging. Future research should focus on developing more
scalable tracking methods that can handle large-scale scenarios and run in real time on a
standard computer or mobile device.

Recent advances in deep learning have demonstrated significant potential in enhanc-
ing tracking performance. Future research can focus on exploring novel deep learning
architectures, such as graph neural networks, generative adversarial networks, and atten-
tion mechanisms, to enhance tracking accuracy, robustness, and scalability.

Different tracking applications, such as autonomous driving, surveillance, and robotics,
possess distinct requirements and challenges. Hence, future research can focus on develop-
ing tailored tracking algorithms for specific applications, taking into account the unique
characteristics of the application and the specific demands of the task.

In addition to these challenges, there are specific requirements for maritime tracking
systems that must be considered. For instance, the system should be able to operate over
large distances and handle the movement of vessels in different directions and speeds.
Moreover, the system should be able to operate in real time and handle large amounts
of data efficiently. These requirements demand high-performance computing and effi-
cient data storage capabilities, which can pose a significant constraint for designing and
deploying such systems.

Therefore, developing effective trackers for maritime surveillance requires using
advanced computer vision and machine learning techniques, particularly deep-learning-
based methods, to handle the complexity and variability of the maritime environment.
These techniques can surpass the limitations of traditional image-processing-based methods
and can deliver more accurate and robust tracking results. Furthermore, the creation of
large-scale datasets tailored to maritime scenarios is crucial for evaluating and comparing
the performance of various tracking systems, as well as promoting the development of
new approaches.

6. Discussion

This review aimed to highlight the treatment of maritime surveillance in the context of
object tracking, It provided insights into the metrics employed in recent datasets to assess
object tracking performance and how they are diverse. The review also examined notable
trackers that utilize various approaches for object tracking and discussed their potential
application in maritime tracking scenarios.

6.1. Trackers

The algorithms discussed in Section 2 were developed using traditional (i.e., classic)
image processing techniques, such as line detection, binarization for segmentation, and
subsequent detection for tracking. These methods were developed before the rise of
neural network and increase in computational power. One of the main drawbacks of
these methods is their sensitivity to environmental changes, as they rely on specific scene
characteristics to detect the tracked object. For instance, horizon line detection, background
removal, and segmentation using binarization methods were commonly employed. These
limitations might justify the lack of comparison of the trackers discussed in that section
with other trackers that used newer techniques. While classical methods have shown



Electronics 2023, 12, 2789 36 of 41

satisfactory performance in controlled environments, they may not perform as well in
real-world scenarios.

On the other hand, the methods discussed in Section 4 heavily rely on deep learning
algorithms, incorporating techniques such as convolutional layers, visual transformers,
and neural network models for the detection, recognition, and tracking of objects. These
approaches offer the trackers a new level of flexibility, reducing or even eliminating their
sensitivity to environmental changes. Employing convolutional layers for feature learning,
visual transformers for capturing the object’s attention, and neural network models for
integrating these techniques into robust tracking systems give the tracker a new level
of flexibility.

Convolutional layers play a crucial role in deep-learning-based trackers as they extract
relevant features from images. These layers are specifically designed to detect patterns and
structures that may be challenging for traditional image processing methods to capture.
By doing so, the model learns more abstract representations of the object being tracked,
making it more robust to changes in the environment. Visual transformers enable the
model to focus its attention on certain parts of the image that are most relevant to tracking
an object’s movements. This is achieved by learning a set of weights that determine the
importance of different parts of the image. By selectively attending to the most relevant
parts, the tracker becomes more efficient and accurate. Training the models on extensive
datasets of images allows them to learn and recognize objects under a wide range of
conditions, including changes in lighting, background, and occlusions. Consequently, the
models exhibit adaptability to new environments, displaying robustness in the face of
environmental changes and continually improving their performance. Therefore, using
deep learning techniques in object tracking has enabled a new level of flexibility and
robustness, making these trackers more effective than traditional image-processing-based
methods, like the ones used by the works described in Section 2.

6.2. Datasets

In Section 4, several datasets were discussed, which are commonly used for evaluating
and training object trackers. These datasets encompasses a wide range of scenes, including
objects such as cars, motorcycles, persons, bicycles, buses, and boats. The LaSOT dataset,
for instance, comprises 70 classes and includes 20 video sequences of boats. Although it
may not provide a comprehensive dataset for maritime scenarios, these boat-related video
sequences can still be utilized for training and evaluating trackers specifically designed for
boat tracking. The boats featured in the LaSOT dataset exhibit diversity, captured from
various viewpoints, which is crucial for evaluating a tracker’s robustness, considering that
the camera is not fixed. Figure 4 shows some examples of video sequences containing boats,
displaying the dataset’s diversity of boat types, sizes, and orientations.

Among the other datasets presented in this review, LaSOT is the only one that can be
used directly for evaluating and training trackers for maritime scenarios since no videos
with vessels are found in the other datasets. However, other datasets, such as OTB-2015,
VOT2016, and MOT17, are valuable as benchmark datasets for evaluating different tracker
proposals, including for SOT and MOT in general. Although these datasets do not include
dedicated vessel videos, they contribute to the advancement of object tracking research as
a whole and attract researchers to explore the field further.

The utilization of diverse datasets for evaluating and training object trackers plays a
crucial role particularly in the development of novel approaches and in evaluating their
effectiveness. For example, using benchmark datasets such as OTB-2015, VOT2016, and
MOT17, in addition to specialized datasets such as LaSOT, can provide valuable insights
for reproducing results in maritime scenarios and beyond.

The absence of dedicated datasets tailored for maritime surveillance poses a challenge
when it comes to the development and evaluation of object trackers within this domain.
Most datasets available for evaluating object trackers focus on general object tracking,
including cars, pedestrians, and bicycles, while neglecting vessels or boats. This lack of



Electronics 2023, 12, 2789 37 of 41

specialized datasets presents difficulties in accurately evaluating the performance of object
trackers specifically in maritime scenarios.

Nonetheless, datasets such as LaSOT, containing boat sequences, can offer partial
understanding for evaluating object trackers in the maritime domain. However, they
do not encompass the complete range of scenarios that can be encountered in maritime
surveillance, such as different types of vessels, challenging environmental conditions, and
specific tracking requirements. The development of specialized datasets for maritime
surveillance can aid in developing and evaluating new tracking approaches and provide
insights into the unique challenges encountered within this particular domain.

Specialized datasets can provide a more comprehensive evaluation of tracking algo-
rithms’ effectiveness in maritime surveillance, leading to the development of robust and
dependable tracking systems. Creating such datasets necessitates substantial effort and
resources but can provide long-term benefits for the research community, enabling the
development of new techniques that can enhance maritime surveillance applications.

Figure 4. Example of frames in video sequences containing boats in LaSOT dataset.

6.3. Metrics

The evaluation of tracking algorithms is a crucial task in computer vision, and the met-
rics used for this evaluation can have a significant influence on the measured performance
and effectiveness of these algorithms. However, despite the shared goal of accurately
approximating the ground truth bounding box, there is no consensus on the best way to
evaluate this performance.

In this review, several metrics were discussed, including precision, normalized pre-
cision, accuracy, and expected average overlap (EAO). Precision is commonly used to
quantify the distance from the center of the predicted and ground truth bounding boxes.
Normalized precision takes into account variations in image sizes by normalizing the
distance relative to the diagonal length of the ground truth bounding box. Finally, accuracy
computes the overlap between the predicted and ground truth bounding boxes, while EAO
extrapolates the frame view to derive an average metric for the entire sequence.
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While these metrics share the same objective, they use different formulations. The
EAO metric, in particular, offers a comprehensive assessment of tracking by considering the
entire video sequence. Trajectory metrics, such as the identity switching metric is used in all
the datasets discussed here to measure the tracking robustness in the presence of occlusion.

The EAO and identity switching metrics, used in combination, offer a comprehensive
analysis of tracking performance. While the computation of EAO is more complex, it pro-
vides valuable insights by considering bounding boxes overlap and provides information
about the entire video sequence, including the zero overlaps, also known as failures. On the
other hand, identity switching allows the tracker to re-identify an object after an occlusion.

In summary, the lack of unified or common metrics for evaluating object tracking
algorithms remains a challenge. As mentioned before, there is no common sense when
evaluating a tracking algorithm, and different metrics are used to evaluate the performance
of different trackers. The absence of a unified or common set of metrics makes it difficult to
compare the performance of different trackers across different datasets and scenarios.

Moreover, the selection of metrics is often dependent on the specific application or
scenario under consideration. For instance, a metric that proves effective in tracking small
objects in a static scene may not be suitable for tracking larger objects in a dynamic scene.
Therefore, it is vital to have a set of metrics available to evaluate trackers in different
scenarios but also to have a common baseline that can allow for more direct comparisons.
Additionally, the development of new metrics and evaluation protocols should be based on
a thorough understanding of the limitations and challenges of object tracking. Metrics solely
based on bounding box overlap may fail to capture the intricacies of real-world scenarios,
where occlusions, object deformations, and other factors can affect tracking performance.

Hence, it is crucial to strive for the development of a unified or common set of
evaluation metrics and protocols in order to advance the field and to facilitate meaningful
comparisons between different tracking approaches. However, developing such a set
of metrics and evaluation protocols that provide a more accurate and comprehensive
assessment of tracking performance across different scenarios can be challenging due to
the complexity of tracking tasks and the different evaluation scenarios.

7. Conclusions

In conclusion, object tracking has gained significant research interest, leading to
the development of numerous datasets and tracking algorithms for various objects and
scenarios. However, in the specific context of maritime surveillance, there is a lack of
benchmark datasets and tracking algorithms that incorporate the latest advancements in
computer vision.

By combining image/video-based tracking technologies with traditional tracking
technologies like AIS and radar, it is possible to enhance tracking accuracy in maritime
surveillance. However, it is worth noting that tracking in maritime surveillance has
predominantly been developed in specific contexts, often utilizing private datasets to
address particular challenges, as discussed in Section 2.

However, the discussion presented in this review is insufficient to address the spe-
cific requirements of maritime scenarios. To develop tracking systems using the latest
techniques, as described in Section 4, a dedicated dataset that encompasses various boat
types and diverse scenes is needed. Although vision transformer has been widely used,
no specific tracker for ships has been identified. The scarcity of datasets for maritime
surveillance hampers the development and evaluation of tracking algorithms in this field,
highlighting the need for future contributions from researchers to fill this gap. Furthermore,
different metrics have been used in a similar context: object tracking. However, common
sense is still lacking regarding trackers since the metrics change with the dataset.

This literature review aimed to provide insights into the development of novel datasets;
benchmarking metrics; and primarily, new ship tracking algorithms. However, there is
still significant work to be carried out in this field, and this review serves as a foundational
starting point for future research in this area.
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45. Čehovin, L.; Leonardis, A.; Kristan, M. Visual object tracking performance measures revisited. IEEE Trans. Image Process. 2016,
25, 1261–1274. [CrossRef]

46. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.; Pflugfelder, R.
The visual object tracking vot2015 challenge results. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, Santiago, Chile, 7–13 December 2015; pp. 1–23.

47. Luiten, J.; Osep, A.; Dendorfer, P.; Torr, P.; Geiger, A.; Leal-Taixé, L.; Leibe, B. Hota: A higher-order metric for evaluating
multi-object tracking. Int. J. Comput. Vis. 2021, 129, 548–578. [CrossRef] [PubMed]

48. Ye, B.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Joint feature learning and relation modeling for tracking: A one-stream framework.
In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–27 October 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 341–357.

49. Lin, L.; Fan, H.; Xu, Y.; Ling, H. Swintrack: A simple and strong baseline for transformer tracking. arXiv 2021, arXiv:2112.00995.
50. Cui, Y.; Jiang, C.; Wang, L.; Wu, G. MixFormer: End-to-End Tracking with Iterative Mixed Attention. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13608–13618.
51. Gao, S.; Zhou, C.; Ma, C.; Wang, X.; Yuan, J. Aiatrack: Attention in attention for transformer visual tracking. In Proceedings of

the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 146–164.

52. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5999–6009 .

53. Fan, H.; Bai, H.; Lin, L.; Yang, F.; Chu, P.; Deng, G.; Yu, S.; Harshit; Huang, M.; Liu, J.; et al. LaSOT: A High-Quality Large-Scale
Single Object Tracking Benchmark, 2020. Available online: http://xxx.lanl.gov/abs/2009.03465 (accessed on 6 October 2022).

54. Fu, Z.; Liu, Q.; Fu, Z.; Wang, Y. Stmtrack: Template-free visual tracking with space-time memory networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13774–13783.
Available online: http://xxx.lanl.gov/abs/2103.16556 (accessed on 5 October 2022).

55. Mayer, C.; Danelljan, M.; Paudel, D.P.; Van Gool, L. Learning target candidate association to keep track of what not to track.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 13444–13454.

56. Song, H.; Suehiro, D.; Uchida, S. AAA: Adaptive Aggregation of Arbitrary Online Trackers with Theoretical Performance
Guarantee. arXiv 2020, arXiv:2009.09237.

57. Dai, K.; Wang, D.; Lu, H.; Sun, C.; Li, J. Visual tracking via adaptive spatially-regularized correlation filters. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4670–4679.

58. Li, Y.; Zhang, X. SiamVGG: Visual tracking using deeper siamese networks. arXiv 2019, arXiv:1902.02804.
59. Sosnovik, I.; Moskalev, A.; Smeulders, A.W. Scale equivariance improves siamese tracking. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 2765–2774.
60. Aharon, N.; Orfaig, R.; Bobrovsky, B.Z. BoT-SORT: Robust associations multi-pedestrian tracking. arXiv 2022, arXiv:2206.14651.
61. Du, Y.; Song, Y.; Yang, B.; Zhao, Y. Strongsort: Make deepsort great again. arXiv 2022, arXiv:2202.13514.
62. Li, J.; Ding, Y.; Wei, H.L.; Zhang, Y.; Lin, W. SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking.

Sensors 2022, 22, 5863. [CrossRef] [PubMed]
63. Zhou, X.; Yin, T.; Koltun, V.; Krähenbühl, P. Global tracking transformers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8771–8780.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/AVSS56176.2022.9959441
http://dx.doi.org/10.1109/TIP.2016.2520370
http://dx.doi.org/10.1007/s11263-020-01375-2
http://www.ncbi.nlm.nih.gov/pubmed/33642696
http://xxx.lanl.gov/abs/2009.03465
http://xxx.lanl.gov/abs/2103.16556
http://dx.doi.org/10.3390/s22155863
http://www.ncbi.nlm.nih.gov/pubmed/35957422

	Introduction
	Related Work
	Review of Performance Metrics
	Precision ()
	Normalized Precision ()
	Area Under Curve () or Success
	Accuracy ()
	Robustness ()
	Expected Average Overlap ()
	Multiple Object Tracking Accuracy ()
	 Metric
	Higher-Order Tracking Accuracy ()
	Identity Switching ( or )
	Tracker Velocity ()

	Tracking Review
	Datasets
	LaSOT
	OTB-2015
	VOT-2016
	MOT17

	Trackers
	OSTrack-Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
	SwinTrack: A Simple and Strong Baseline for Transformer Tracking
	MixFormer: End-to-End Tracking with Iterative Mixed Attention
	AiATrack: Attention in Attention for Transformer Visual Tracking
	Unicorn—Towards Grand Unification of Object Tracking
	STMTrack: Template-Free Visual Tracking with Space-Time Memory Networks
	KeepTrack and KeepTrackFast-Learning Target Candidate Association to Keep Track of What Not to Track
	AAA: Adaptive Aggregation of Arbitrary Online Trackers with Theoretical Performance Guarantee
	ASRCF Model-Visual Tracking via Adaptive Spatially Regularized Correlation Filters
	SiamMask-Fast Visual Object Tracking with Rotated Bounding Boxes
	SiamVGG: Visual Tracking Using Deeper Siamese Networks
	SE-SiamFC-Scale Equivariance Improves Siamese Tracking
	BoT-SORT: Robust Association Multi-Pedestrian Tracking
	StrongSORT: Make DeepSORT Great Again
	SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking
	GTR (Global Tracking Transformers)

	Comparison of the Trackers

	Open Problems and Challenges
	Discussion
	Trackers
	Datasets
	Metrics

	Conclusions
	References

