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Abstract: Most well-known supervised dimensionality reduction algorithms suffer from the curse of
dimensionality while handling high-dimensional sparse data due to ill-conditioned second-order
statistics matrices. They also do not deal with multi-modal data properly since they construct
neighborhood graphs that do not discriminate between multi-modal classes of data and single-modal
ones. In this paper, a novel method that mitigates the above problems is proposed. In this method,
assuming the data is from two classes, they are projected into the low-dimensional space in the
first step which removes sparsity from the data and reduces the time complexity of any operation
drastically afterwards. These projected data are modeled using a mixture of exponential family
distributions for each class, allowing the modeling of multi-modal data. A measure for the similarity
between the two projected classes is used as an objective function for constructing an optimization
problem, which is then solved using a heuristic search algorithm to find the best separating projection.
The conducted experiments show that the proposed method outperforms the rest of the compared
algorithms and provides a robust effective solution to the problem of dimensionality reduction even
in the presence of multi-modal and sparse data.

Keywords: dimensionality reduction; feature extraction; mixture models; exponential family

1. Introduction

Lately, due to a significant decrease in the cost of deploying sensors and other data
collection devices, there has been a surge in the way these devices are used for collecting
samples of data. Consequently, there is tremendous redundancy in the stored data and this
has been a source of problem for many applications such as data analysis, classification,
and clustering. These problems include, but are not limited to, the difficulty of visualiza-
tion, introducing the curse of dimensionality [1,2], and an excessive need for processing and
storage resources. Feature selection techniques [3,4] are a group of methods that are used
to remedy this problem; however, dimensionality reduction (DR) methods prove to be a
more efficient way of reducing this redundancy while preserving most of the embedded
information [5–7] since they use a combination of features instead of a subset of them. Such
techniques are well studied and researched and are diverse in the approach they adopt to
solve the problem. From one general point of view, these algorithms are divided into linear
and non-linear types. In case of linear algorithms, a linear transform is used to project
the data to the low-dimensional space. These projections are the most popular due to
the simplicity of the final transform and the intuitive interpretation of the projection as a
weighted sum of the original features and often are based on the second-order statistics
of the data [8–11]. The second-order statistics of data refer to statistical properties that are
derived from the covariance matrix of the data, and involve analyzing the relationships
between different data features and how they vary together. The covariance matrix captures
the interdependencies between variables, providing valuable information about the data’s
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distribution and structure. In the context of the DR methods, the use of second-order
statistics enables an algorithm to preserve important discriminative information and en-
hance the separability of classes in the reduced feature space. Fisher Discriminant Analysis
(FDA) [12], Principal Component Analysis (PCA) [13], Local Fisher Discriminant Analysis
(LFDA) [14,15], Factor Analysis (FA) [16], Locality Preserving Projection (LPP) [17], and L1-
Norm Fisher Discriminant Analysis (LDA-L1) [18] are some of the well-studied ones among
them. In the non-linear category of DR techniques falls any other method that does not
use a linear projection for mapping the data into the low-dimensional space. For example,
Kernel PCA (KPCA) [19], Maximum Variance Unfolding (MVU) [20], Uniform Manifold
Approximation and Projection (UMAP) [21], t-distributed stochastic neighbor embedding
(t-SNE) [22], Locally Linear Embedding (LLE) [23], and Kernel-based Within-Class Collab-
orative Preserving Discriminant Projection (KWCCPDP) [24] are some of the most well
known among such methods. These techniques might be a better match to the problem
depending on the type of the data and their non-linear nature. From another point of view,
DR algorithms can be divided into supervised/unsupervised depending on whether they
use available data labels for projecting the data into the low-dimensional space. Of course,
the usage of data labels allows supervised DR techniques to capture the hidden structures
in the data more effectively.

In this research, we limit our focus to the linear supervised techniques since they are
highly efficient and capture the structures in the data very well. However, most of such
methods suffer from some weaknesses. For example, some may not be able to handle
multi-modal data effectively (for such analysis regarding LPP, see [14]). Also, some (e.g.,
LFDA and SOLPP) completely fail to produce any results in certain cases due to the sparsity
of the data as has been shown in Section 4. While dealing with extremely sparse data,
another important issue with many of the conventional algorithms is that the effectiveness
of the solution highly depends on the choice of the training data. This is due to the fact that
they depend on solving a generalized eigenvalue problem (GEVP), which is more likely to
become ill posed when the data are highly sparse.

The above-mentioned weaknesses while dealing with sparse high-dimensional data
motivated the design of a DR technique that uses a different approach to tackle the di-
mensionality reduction problem. This novel DR technique is designed to work best for
proportional data with very high dimensions, and specifically designed for classification
problems. Its goal is to maximize the separation of data in the new low-dimensional space.
Starting with the projection of data classes into the low-dimensional space, it assumes
each class of data in this new space has a distribution that is modeled with a mixture of
distributions from the exponential family. This mixture allows multi-modal data to be
modeled and is one of the advantages of this algorithm. After estimating the parameters
of this mixture for each class using the EM algorithm, we use an approximation of the
KL (Kullback–Leibler) divergence between the mixtures to estimate their distance. This
distance is then used as a measure to be maximized by the algorithm. To this end, one
can use an optimization technique to maximize this measure and hence optimize data
separation; however, the use of the EM algorithm limits the methods of optimization that
can be used efficiently. Specifically, heuristic search methods remain the best option in this
case, and we have used GA (genetic algorithm) effectively to solve the problem and find a
near-optimal projection for data separation. As mentioned above, the proposed technique
uses distributions from the exponential family. The choice of the distribution depends on
the type of the data and the hidden structures, e.g., the structure of the covariance matrix.
Nevertheless, as has been shown in the literature, some distributions can model propor-
tional data effectively [25–31] and we have used such distributions. It is important to note
that any desirable subset of distributions from the set of exponential family distributions
can be used in the proposed method. In general, our contributions is this paper can be
summarized as follows:
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• Proposing a novel supervised dimensionality reduction method that addresses the
curse of dimensionality in high-dimensional sparse proportional data by projecting
data into a low-dimensional space, mitigating sparsity significantly.

• Introducing a unique approach to handle multi-modal data by modeling the projected
data using a mixture of exponential family distributions for each class, allowing for
effective discrimination between multi-modal and single-modal classes.

• Formulating a closed form for the similarity between projected classes using KL-
Divergence and employing a heuristic search algorithm to optimize the separation of
classes, resulting in a robust and efficient solution to the problem of dimensionality
reduction, outperforming other compared algorithms in diverse experimental settings.

The remainder of this work is structured as follows. In Section 2, some conventional
techniques of DR are introduced which are used in the experiments for comparison pur-
poses to show the effectiveness of the designed method. The problem is formulated in
detail in Section 3. In Section 4, different datasets are used to test the performance of the
proposed technique. Finally, we draw our conclusion and present some final words in
Section 5.

2. Related Works

As has been mentioned before, conventional linear DR methods, despite all their
differences, use the second-order statistics of data to formulate and solve a GEVP. In this
section, we will briefly discuss some of the well-known supervised linear DR techniques
that are used in the literature, and will use them to assess the performance of our algorithm
later in Section 4.

Supervised Locality Preserving Projection (SLPP) [32] is an extension of the Locality
Preserving Projection (LPP) method and is adapted to use the labels of the data. In LPP,
first, a matrix A with elements ai,j ∈ [0, 1] is defined to reflect the neighborhood of the data,
and, based on this matrix, a transform T is defined as follows.

T = argmin
T∈RN×K

1
2

M

∑
i=1

M

∑
j=1

ai,j‖Txi − Txj‖2 (1)

s.t. TXDX>T> = I

where M is the number of data points, N and K are the original and target dimensions
respectively, and xi denotes a data point. Moreover, the elements of D are

di,j =

{
∑M

j=1 ai,j if i = j
0 if i 6= j

(2)

Solving the bellow GEVP, one can find the transform T.

X(D− A)X>vvv = λXDX>vvv (3)

By choosing the K eigenvectors corresponding to the K smallest eigenvalues of the
above GEVP, the transform T will reduce the dimensionality of the data to K.

LPP and its derivatives suffer from several problems, including overfitting, sensitivity
to noise, and disconnectivity of the neighborhood graph. In [33], the authors introduce
Supervised Optimal Locality Preserving Projection (SOLPP) to tackle these problems. This
has been accomplished by defining a discriminating similarity matrix between data points
called W. The following constrained optimization problem is then formulated, where i 6= j
and ti indicates the i-th row of T.

minimize
T

trace(TX(D−W)X>T>)

s.t. TT> = I, tiXDX>tj = 0, tjXX>ti = 0
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By solving this problem using an iterative method, the optimal projection T can
be evaluated.

Locality Sensitive Discriminant Analysis (LSDA) [34] is based on two connectivity
graphs, corresponding to inter-class and intra-class distances. By incurring heavy penalty
for neighboring points from the same class being mapped far from each other, or nearby
points from different classes being mapped close to each other, the authors formulate an
optimization problem and find an optimal projection.

Fisher Discriminant Analysis (FDA) starts by formulating the inter-class and intra-class
scatter matrices as follows:

SW =
1
2

M

∑
i,j=1

a(W)
i,j (xi − xj)(xi − xj)

> (4)

SB =
1
2

M

∑
i,j=1

a(B)
i,j (xi − xj)(xi − xj)

> (5)

where

a(W)
i,j =

{
1

ml
if li = lj = l

0 if li 6= lj
(6)

a(B)
i,j =

{
1
M −

1
ml

if li = lj = l
1
M if li 6= lj

(7)

Here, li and ml are the label of the sample xi and the number of samples in class l,
respectively. Solving the following optimization problem, one can arrive at the optimal
projection of FDA.

T = argmax
T∈RN×K

[
tr(T>SW T)−1(T>SBT)

]
(8)

The optimal transform T is actually formed by the K eigenvectors corresponding to
the K smallest eigenvalues of the following GEVP.

SBvvv = λSBvvv (9)

The authors in [14], on the other hand, use an affinity matrix similar to LPP to rebuild
the scatter matrices ā(W) and ā(B) as below.

ā(W)
i,j =

{
ai,j

1
ml

if li = lj = l
0 if li 6= lj

(10)

ā(B)
i,j =

{
ai,j(

1
M −

1
ml
) if li = lj = l

1
M if li 6= lj

(11)

Replacing these matrices with those of Equations (6) and (7), a new GEVP can be
solved to find the optimal projection corresponding to LFDA.

Finally, in [18], the authors introduce a new variant of LDA by replacing the L2 norm
with the L1 norm. This will make the algorithm more robust to outliers and sparsity;
however, the resulting problem is non-convex and therefore an iterative method must be
used to find the optimal projection.

All the above-mentioned methods of DR have been proved to be efficient in the litera-
ture. Nevertheless, they fail to effectively solve the problem of dimensionality reduction in
some cases. For instance, they mostly rely on the second-order statistics of data and solving
a GEVP. For very high-dimensional data (and specifically for the case of proportional data),
however, the sparsity of the data matrix results in near-singular correlation matrices that
cause the GEVP to be ill posed and not result in an optimal solution. Moreover, the above
methods majorly rely on the construction of a neighborhood graph that sometimes becomes
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disconnected and affects the solution of the GEVP. Multi-modal data representation is an-
other important task in which the above methods often fail [14]. Note that in all of the above
methods, the algorithm has to manipulate very large-size matrices, and, for example, invert
large sparse matrices, which is inefficient and of the order of O(N3) in terms of complexity.
Therefore, the complexity of the problem can grow rapidly by the number of features.
Finally, note that none of the mentioned algorithms are designed for proportional data
specifically and therefore the projected data may not respect the proportionality condition.

The above-mentioned problems with the current supervised linear DR methods moti-
vate us to introduce EXMMP. This algorithm is designed specifically as a pre-processing
step in classification problems. Therefore, easy separation of data classes is of utter impor-
tance in this algorithm. Since we start with mapping the data using a projection matrix to
the low-dimensional space, at this very first step, the problem of sparsity is resolved to a
good extent. The complexity of the algorithm, on the other hand, is not affected heavily by
the number of original features or the number of available samples. Note that the heuristic
search for the optimal projection embeds a property for the projection that guarantees the
proportionality of the mapped data, and therefore, unlike the conventional methods, maps
proportional data to a corpus of proportional data. As the final advantage, the usage of
mixture models allows the algorithm to model multi-modal data, where the rest of the
algorithms are unable to do so and fail to capture this property.

3. Proposed Method
3.1. Problem Statement

In this section, we will state the problem and formulate our method, which resolves the
issue of the sparsity of the data that hinders other algorithms in reducing the dimensionality
of data properly. We use a mixture of distributions from the exponential family along
with an estimation of the KL-Divergence between two mixtures—a similarity measure to
optimize the separability of classes.

Consider a set of proportional data containing M samples of N dimensions. Let us
represent each sample with xi where

xi,j ≥ 0,
N

∑
j=1

xi,j = 1 (12)

and 1 ≤ i ≤ M, 1 ≤ j ≤ N. Also, xi,j is the j-th element of the i-th sample xi. To facilitate
the manipulation of this data set, the matrix X is formed by accumulating xis as its columns.
The proposed algorithm maps this corpus of data from the N-dimensional space to a
smaller K-dimensional space where K < N. Representing this projection with P, the new
K-dimensional data set Y can be found as follows.

Y = PX (13)

Note that after the projection, columns of Y represent the corresponding data samples
in the original data matrix. Denote the elements of P by pr,s, where 1 ≤ r ≤ K and
1 ≤ s ≤ N. Moreover, to maintain the proportionality of the projected samples, we assume
the following property for P (which is both necessary and sufficient for the projected data
to be proportional [30]):

pr,s ≥ 0,
K

∑
r=1

pr,s = 1, 1 ≤ r ≤ K, 1 ≤ s ≤ N (14)

3.2. Class Distribution Estimation

In this step, we assume that the projected data of each class are generated using a
specific distribution. This distribution will then be used, along with its counterpart from the
other class, to maximize data separation in the low-dimensional space. Furthermore, we are
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going to make the assumption that this generating distribution is one of the distributions
from the exponential family and has a support on a simplex. These two assumptions are
crucial since the former facilitates the derivation of the results and the latter conforms to
the fact that the data are proportional [25]. Note that henceforward, it is assumed that
each class of (projected) data is modeled with a mixture of a specific distribution. This
assumption is also critical for the capacity of the algorithm for modeling multi-modal data.
In the following, the EM (Expectation–Maximization) algorithm is used for estimating the
parameters of such mixture model.

Representing the projected samples by yk = (y1,k, y2,k, . . . , yK,k)
T , their distribution

can be written as

p(yk|ΘΘΘ) =
Q

∑
j=1

φj pj(yk|θθθ j) (15)

where ∑K
i=1 yi,k = 1, 0 ≤ yi,k ≤ 1; the vertical vector θθθ j contains the corresponding

parameters of the j-th component; the matrix ΘΘΘ, of which the columns are θθθ js, represents
the complete set of the parameters of the mixture; and the number of components in the
mixture is represented by Q. Also, note that the prior φjs conform to the following:

Q

∑
j=1

φj = 1 (16)

Now, assuming two training sample sets C0 and C1 are chosen from two classes of
data such that |C0| = M0 and |C1| = M1, the likelihood of the data given the parameter
ΘΘΘ(κ), κ ∈ {0, 1} is as follows

L(Y(κ)|ΘΘΘ(κ)) =
Mκ

∏
i=1

(
Q

∑
j=1

φ
(κ)
j pj(y

(κ)
i |θθθ

(κ)
j )

)
(17)

where samples are assumed to be i.i.d., y(κ)i is the i-th sample from class κ and the matrix
Y(κ) is constructed by a column-wise population of all the class samples. Now, using the
EM algorithm and latent variables Zi,j, which are indices for mixture assignment, one can
find ΘΘΘ(κ) such that this likelihood is maximized. First, the mixing weights are estimated
from the equation

φ
(κ)
j (t + 1) =

∑Mκ
i=1 Ẑ(κ)

i,j (t)

Mκ
(18)

where t is the iteration number and Ẑ(κ)
i,j (t) is the expected value of Z(κ)

i,j (t).

In the next step, to maximize the log likelihood, θθθ
(κ)
j (t + 1) must be evaluated by

solving the below set of equations

Mκ

∑
i=1

Ẑ(κ)
i,j (t)

∂

∂θj,k
ln(pj(y

(κ)
i |θθθ j)) = 0 (19)

where 1 ≤ k ≤ NP, NP is the number of the parameters of the distribution, 1 ≤ j ≤ Q,
and θj,k is the k-th element of θθθ j.

Let us assume the following distribution from the exponential family:

p(yk|θθθ j) = h(yk)e
ηηηT

j ·T(yk)−A(ηηη j) (20)

where the base measure h(·) (a real-valued function) and sufficient statistics T(·) (a vector-
valued functions) are independent of the distribution parameter, ηηη j (the natural parameter)
is a vector-valued function of θθθ j, and A(ηηη j) (the log partition) is a real-valued function of
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ηηη j. Using this distribution in the EM algorithm, the maximization step yields the following
system of equations for 1 ≤ j ≤ Q and 1 ≤ k ≤ NP:

Mκ

∑
i=1

Ẑi,j(t)
∂

∂ηj,k
log
(

h(yi)e
ηηηT

j ·T(yi)−A(ηηη j)
)
= 0 (21)

where ηj,k indicates the k-th element of ηηη j and NP is the number of elements in the natural
parameter. Simplifying the above system results in a set of NP ×Q equations

∂A(ηηη j)

∂ηj,k
=

∑Mκ
i=1 Ẑi,jTk(yi)

∑Mκ
i=1 Ẑi,j

(22)

where Tk(·) is the k-th element of the sufficient statistics function T(·). Due to the non-
linearity of the above system, no closed-form solution is available to find the maximizing
parameters. Therefore, some type of numerical method is required to find the result. In this
paper, the Newton–Raphson (NR) algorithm, which is one of the most well-known methods,
has been used to find the parameters of the distribution. This method uses the Jacobian of
the system which is the Hessian matrix of the original system, and hence will be called H
for 1 ≤ k, s ≤ NP and 1 ≤ j ≤ Q. This matrix only depends on the log partition function
and is evaluated below.

H =
∂2 A(ηηη j)

∂ηj,k∂ηj,s
(23)

Note that since A(ηηηa) is independent of ηηηb for a 6= b, the resulting Jacobian matrix will
be block diagonal which is a significant advantage since inverting this matrix will be of
order of complexity O(N3

P) instead of O(Q3N3
P) (assuming cubic complexity for inverting

a matrix).

3.3. Measuring Inter-Class Distance

To facilitate separation of the data, we develop a measure of distance between the two
projected classes. One of the most well-known measures of distance between distributions
is the KL-Divergence [35], and it has been used in this section. Finding a closed form for
evaluating the KL-Divergence between two mixtures of distributions is not trivial. To do
so, we follow a method similar to the one in [36]. Assuming two mixtures f (y) and g(y)
consisting of Q f and Qg components, respectively, we start with the following equations.

f (y) =
Q f

∑
i=1

wi fi(y),
Q f

∑
i=1

wi = 1 (24)

g(y) =
Qg

∑
j=1

ujgj(y),
Qg

∑
j=1

uj = 1

Based on the definition of KL-Divergence, one arrives at

KL( f (y), g(y)) =
∫

f (y) ln
f (y)
g(y)

dy = (25)∫
f (y) ln f (y)dy−

∫
f (y) ln g(y)dy

The first term of the above equation can be expanded as follows.
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∫
f (y) ln f (y)dy =

∫ Q f

∑
i=1

wi fi(y) ln
Q f

∑
j=1

wj f j(y)dy (26)

=

Q f

∑
i=1

∫
wi fi(y) ln

Q f

∑
j=1

wj f j(y)dy

A maximum lower bound for the left side of the above statement can be found using
Jensen’s inequality, adjusting the introduced parameters ζi,j in the equation below.

Q f

∑
i=1

∫
wi fi(y) ln

Q f

∑
j=1

wj f j(y)dy = (27)

Q f

∑
i=1

∫
wi fi(y) ln

Q f

∑
j=1

ζi,j
wj f j(y)

ζi,j
dy ≥

Q f

∑
i=1

∫
wi fi(y)

Q f

∑
j=1

ζi,j ln

(
wj f j(y)

ζi,j

)
dy

Note that for the above to be true, the following condition must hold.

Q f

∑
j=1

ζi,j = 1, i ∈ {1, 2, . . . , Q f } (28)

To find the proper ζi,j parameters, we form the following cost function:

J̄ =
Q f

∑
i=1

∫
wi fi(y)

Q f

∑
j=1

ζi,j ln

(
wj f j(y)

ζi,j

)
dy (29)

+

Q f

∑
i=1

λi

Q f

∑
j=1

ζi,j − 1

+

Q f

∑
i=1

µi(−ζi,j)

for which the KKT (Karush–Kuhn–Tucker) conditions [37] are as below.

∂ J̄
∂ζi,j

= 0,
Q f

∑
j=1

ζi,j = 1

−ζi,j ≤ 0, µi ≥ 0

µi(−ζi,j) = 0, 1 ≤ i ≤ Q f

The solution to this optimization problem is

ζi,j =
wje

H( fi , f j)

∑
Q f
k=1 wkeH( fi , fk)

(30)

where we define the function H(·, ·) as

H( fi, f j) =
∫

fi(y) ln f j(y)dy (31)
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Replacing Equation (30) in the right-hand side of Equation (27), we will have

∫
f (y) ln f (y)dy ≥

Q f

∑
i=1

wi ln

 Q f

∑
k=1

wkeH( fi , fk)

 (32)

Similarly, a maximized lower bound can be found for the second term of Equation (25),
which is as below.

∫
f (y) ln g(y)dy ≥

Q f

∑
i=1

wi ln

( Qg

∑
k=1

ukeH( fi ,gk)

)
(33)

Using the resulting two maximized lower bounds and noting that

KL( fi, f j) = H( fi, fi)− H( fi, f j) (34)

a closed-form approximation can be found for the KL-Divergence of two mixtures of
distributions.

K̃L( f (y), g(y)) =
Q f

∑
i=1

wi ln
∑

Q f
k=1 wkeH( fi , fk)

∑
Qg
k=1 ukeH( fi ,gk)

(35)

=

Q f

∑
i=1

wi ln
∑

Q f
k=1 wke−KL( fi , fk)

∑
Qg
k=1 uke−KL( fi ,gk)

Note that this allows the KL-Divergence of two mixtures to be approximated in a
closed form using the KL-Divergence of the two corresponding single distributions.

The KL-Divergence of two distributions fi and f j from the exponential family with
parameters θθθi and θθθ j, respectively, is as below.

KL( fi, f j) = E fi

{
ln

fi
f j

}
= E fi{ln fi} − E fi

{
ln f j

}
(36)

Note that E fi{·} denotes the expected value with respect to fi. To simplify the first
term on the right-hand side of Equation (36), we plug Equation (20) and obtain

E fi{ln fi} = E fi{ln h(y)} − E fi{A(θθθi)}+ (37)
K

∑
k=1

ηk(θθθi)
∂A(η)

∂ηk

∣∣∣
θθθi

Similarly, for the second term,

E fi

{
ln f j

}
= E fi{ln h(y)} − E fi

{
A(θθθ j)

}
+ (38)

K

∑
k=1

ηk(θθθ j)
∂A(η)

∂ηk

∣∣∣
θθθi

And therefore, the closed form of the KL-Divergence will reduce to

KL( fi, f j) = A(θθθ j)− A(θθθi)+ (39)
K

∑
k=1

[ηk(θθθi)− ηk(θθθ j)]
∂A(η)

∂ηk

∣∣∣
θθθi

After this final step, a closed-form approximation for the KL-Divergence of two
mixtures of distributions can be obtained by using Equation (39) in Equation (35). Also,
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note that in this work we have used an approximation of the symmetric form of the
KL-Divergence, namely, J-Divergence, which is formulated as follows.

J̃( fi, f j) = K̃L( fi, f j) + K̃L( f j, fi) = (40)
K

∑
k=1

[ηk(θθθi)− ηk(θθθ j)]

[
∂A(η)

∂ηk

∣∣∣
θθθi
− ∂A(η)

∂ηk

∣∣∣
θθθ j

]
3.4. Maximizing Class Distance

To find the projection that maximizes the class distance between two projected classes,
an optimization problem must be formulated. In the case of high-dimensional data, this
results in solving for a significantly large number of parameters of the projection matrix,
namely N × K. Considering that estimating the parameters of the two mixtures of dis-
tributions is performed using the EM algorithm, which is iterative, using conventional
optimization techniques such as Gradient Descent (GD) is not practical in terms of complex-
ity. Also, note that the fitness function has many local minima and, hence, the GD method
is not suitable for this matter. Therefore, considering the nature of the problem, a heuristic
search algorithm proves to be a proper method. In this paper, we use genetic algorithm
(GA) along with the above-developed measure of distance as the fitness function. The initial
population in the GA is a set of random matrices which conform to Equation (14). In each
iteration, the data from both classes are projected to the low-dimensional space using one
of the members of the current population, and the mixture parameters for each class of
data are estimated and, then, used in Equation (40) to evaluate the fitness of the projecting
matrix. This value is then used in the GA to find the optimum projection. Algorithm 1
briefly describes this process in the form of pseudo-code.

Algorithm 1 Summary of the proposed algorithm

1: Input: Matrix of samples (X) and their labels
2: Output: Optimum projection P
3: Initialization: P1, . . . , PG , randomly initialized matrices that satisfy Equation (14)
4: for generation G(i) do
5: for member j ∈ G(i) do
6: Find projected data Yj = PjX
7: Using EM and data from Cκ , find ΘΘΘ(κ),j, κ ∈ {0, 1}
8: Estimate the symmetric KL-Divergence between two estimated mixtures repre-

sented by ΘΘΘ(0),j and ΘΘΘ(1),j

9: Assign the above value as the fitness of Pj
10: end for
11: Generate new population G(i + 1) based on the evaluated fitness
12: end for
13: Chose the fittest member of the current generation as the optimal projection

4. Experimental Results
4.1. Test Scenarios

To prove the efficacy of the proposed technique, it is compared with several supervised
linear DR methods in this section. As mentioned, EXPMMP uses distributions from the
exponential family to model the data. However, distributions with support on the simplex
are better suited for proportional/compositional data. In [38], Aitchison shows that an
invertible function, specifically the log-ratio transformation, can be used to convert the
support of any distribution to a simplex. For the experiments in this section, we used three
distributions which are defined on a simplex: Dirichlet, Generalized Dirichlet, and Beta-
Liouville. Moreover, we used the Additive Logistic Normal (ALN) distribution for our tests,
which uses the above-mentioned log-ratio function along with the normal distribution.
For all the performed experiments, a corpus of labeled data from two classes was mapped
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to a low-dimensional space using all the algorithms, followed by a Decision Tree (DT)
classifier for classification. The choice of classes was made either randomly or based on the
number of samples of that class in the dataset, where the classes with a high number of
samples were chosen for reliable results. For the proposed method, we divided the data into
training, validation, and testing sub-sets. This allowed us to perform the algorithm using
different distributions and, after the training phase, choose the projection corresponding
to the distribution that yielded the best classification accuracy on the validation sub-set.
Note that the reported values in the tables of this section are all from test sub-set and each
test was repeated 5 times while each repetition used a fivefold cross-validation method.
The reported values in the tables are average accuracies and their corresponding standard
deviation. Also, note that some algorithms are not present in the tables, which shows they
have failed to produce any meaningful result.

Experiment 1: For the first experiment, the 20-Newsgroups dataset was used in the
form of a bag-of-words model. This dataset contains 20,000 samples of text from 20 different
classes and originally has 61,189 words. We chose two classes of data, namely atheism
and forsale, and projected these classes into a low-dimensional space after reducing their
features to 1000 by removing stop words and low-frequency features. Table 1 represents
the resulting accuracies for the compared and proposed algorithms. Note that, the test was
run also on SOLPP and LFDA, which did not yield any result since these algorithms could
not solve the eigenvalue problem due to the sparsity of the data. Also, SLPP and LSDA
reported very high deviation values in the tests, which is due to the fact that depending
on the training sub-set, they may fail to solve the eigenvalue problem, again, because of
the sparsity of the representing matrix. On the other hand, EXPMMP consistently reports
a high accuracy of classification with a low value of standard deviation for different
tests. To contextualize these results in relation to our objectives, we aimed to address the
challenge of high-dimensional data classification while considering the sparsity inherent in
the data. Our experiments demonstrate that EXPMMP successfully tackles this challenge,
showcasing its potential as a promising solution for handling high-dimensional sparse data
and achieving improved classification accuracy.

Table 1. Classification accuracy (%) of 20-newsgroups dataset for different target dimensions K,
and 1000 original features. Boldface shows the best result.

K 3 4 5 6

SLPP 78.33 ± 0.11 78.27 ± 0.12 77.52 ± 0.10 77.85 ± 0.11
LSDA 78.22 ± 0.10 77.47 ± 0.10 78.81 ± 0.11 77.96 ± 0.12

LDA-L1 82.62 ± 0.03 82.74 ± 0.04 80.81 ± 0.02 83.48 ± 0.01
EXPMMP 94.15 ± 0.01 95.00 ± 0.01 94.89 ± 0.01 94.94 ± 0.01

Experiment 2: To test the proposed algorithm for a different application, we used
the Caltech-256 dataset, which consists of different samples of 256 objects. Some sample
images from this dataset are presented in Figure 1. In this experiment, two image cate-
gories were chosen and their SIFT features were extracted. This set of features was used to
construct a VBoW (Visual Bag of Words) using a dictionary of 750 words. The proposed
method was then run on this binary classification problem along with the other compared
algorithms with a target dimension of 3. Table 2 shows the results of this classification.
As has been mentioned before, a DT was used to classify the reduced-dimension data and
the mean and standard deviation of the resulting accuracies from all the tests have been
reported. Note that the use of a low target dimension of 3 allows for a meaningful reduc-
tion in the feature space, effectively enhancing computational efficiency while preserving
essential discriminative information. This aligns with our goal of developing an efficient
yet accurate approach for high-dimensional data classification.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Sample images from different categories (classes) in Caltech-256 dataset.

Table 2. Classification accuracy (%) of Caltech-256 dataset for unimodal data, K = 3. Boldface shows
best result.

Classes SLPP LSDA LDA-L1 EXPMMP

Greyhound vs. Galaxy 92.60 ± 0.04 92.75 ± 0.04 90.90 ± 0.03 94.90 ± 0.02

Lightning vs. Hourglass 81.02 ± 0.03 81.42 ± 0.03 72.38 ± 0.03 84.15 ± 0.02

Eyeglasses vs. Microscope 81.00 ± 0.03 81.00 ± 0.03 77.50 ± 0.03 83.00 ± 0.02

Hrmonica vs. Laptop 71.38 ± 0.03 71.51 ± 0.03 67.71 ± 0.02 76.03 ± 0.02

Necktie vs. Conch 71.77 ± 0.05 71.75 ± 0.06 73.50 ± 0.05 78.07 ± 0.02

Gas pump vs. Yarmulke 76.55 ± 0.06 76.13 ± 0.06 65.95 ± 0.04 83.30 ± 0.03

Kayak vs. Chandelier 77.52 ± 0.03 77.35 ± 0.03 64.55 ± 0.04 78.95 ± 0.02

Unicorn vs. Lathe 73.69 ± 0.03 73.91 ± 0.04 63.78 ± 0.03 75.26 ± 0.01

Motorbikes vs. Breadmaker 91.70 ± 0.02 91.37 ± 0.02 89.04 ± 0.01 97.12 ± 0.01

Note that the SOLPP and LFDA methods did not yield any results due to the sparsity
of the data. Moreover, the proposed method performs better than the rest of the algorithms,
consistently, in terms of both the average and standard deviation of accuracies, which
shows that our proposed method is effective on diverse types of data.

Experiment 3: This experiment tested the proposed method using a different image
dataset called Linnaeus-5 [39]. This dataset consists of images of five subjects (Berry, Bird,
Dog, Flower, Other) each containing 1600 images. Following the same methodology used
in the previous image classification experiment, we constructed a Visual Bag of Words
(VBoW) representation with a dictionary size of 750 words. The extracted features were then
employed for binary classification using the proposed method and several state-of-the-art
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algorithms as comparators. The results of this classification experiment are summarized in
Table 3. Notably, the proposed method consistently outperforms the compared algorithms
in terms of classification accuracy across all categories. This noteworthy improvement
in accuracy highlights the effectiveness and robustness of our proposed approach, even
when applied to a different and challenging image dataset like Linnaeus-5. By achieving
superior accuracy consistently, our method showcases its potential for addressing real-
world image classification tasks with diverse subject categories. The reliable performance
of our algorithm on the Linnaeus-5 dataset reaffirms its generalizability and underscores
its relevance in handling high-dimensional image data across various domains.

Table 3. Classification accuracy (%) of Linnaeus-5 dataset for unimodal data, K = 3. Boldface shows
best result.

Classes SLPP LSDA LDA-L1 EXPMMP

Berry vs. Bird 76.18 ± 0.03 76.25 ± 0.03 68.06 ± 0.03 77.62 ± 0.02

Berry vs. Dog 77.68 ± 0.05 77.37 ± 0.04 68.09 ± 0.04 78.50 ± 0.01

Berry vs. Flower 68.90 ± 0.03 69.34 ± 0.04 62.34 ± 0.03 69.93 ± 0.02

Berry vs. Other 79.96 ± 0.04 79.46 ± 0.04 70.96 ± 0.03 82.78 ± 0.02

Bird vs. Dog 63.84 ± 0.03 64.09 ± 0.03 58.25 ± 0.03 67.56 ± 0.01

Bird vs. Flower 71.37 ± 0.04 71.31 ± 0.04 62.34 ± 0.03 69.90 ± 0.01

Bird vs. Other 67.06 ± 0.04 66.90 ± 0.04 59.43 ± 0.04 69.68 ± 0.03

Dog vs. Flower 74.15 ± 0.03 74.28 ± 0.02 61.46 ± 0.03 75.12 ± 0.01

Dog vs. Other 74.59 ± 0.03 75.00 ± 0.03 68.75 ± 0.03 77.75 ± 0.02

Flower vs. Other 76.59 ± 0.03 76.65 ± 0.02 68.56 ± 0.02 79.03 ± 0.01

Experiment 4: In this experiment we, again, used the 20-Newsgroups dataset, al-
though in a different setup. In this case, we fixed the target dimension to 3 while we
tested different pairs of classes against each other. The preprocessing step left 1000 original
features, which were reduced to 3 using all the algorithms. Table 4 presents the results
of this pairwise classification test. As expected, the sparsity of the data posed challenges
for certain algorithms. Specifically, SOLPP and LFDA encountered difficulties in finding
a suitable low-dimensional representation for the data in this particular setup, leading to
suboptimal performance or failure to provide meaningful results. In contrast, our proposed
method consistently outperformed the compared algorithms in all cases, achieving supe-
rior classification accuracy for the pairwise tests. The ability of our method to handle the
fixed target dimension of 3 while maintaining competitive performance underscores its
adaptability and robustness in handling diverse experimental conditions. The outcomes
of this experiment provide valuable insights into the strengths and limitations of the al-
gorithms tested. The difficulties faced by SOLPP and LFDA emphasize the importance
of choosing an appropriate method that aligns with the specific experimental setup and
dataset characteristics (in this case, sparse compositional data). Moreover, the consistently
better performance of our proposed method confirms its efficacy in capturing relevant
discriminative information and effectively representing data in a low-dimensional space,
even under challenging conditions.
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Table 4. Classification accuracy (%) of 20-newsgroups dataset for unimodal data, K = 3. Boldface
shows best result.

Classes SLPP LSDA LDA-L1 EXPMMP

Hockey vs. Crypt 90.84 ± 0.02 91.58 ± 0.02 80.61 ± 0.04 93.85 ± 0.01

Electronics vs. Religion 75.72 ± 0.02 75.66 ± 0.02 73.24 ± 0.03 90.19 ± 0.01

Politics vs. Hockey 87.52 ± 0.01 87.63 ± 0.01 77.64 ± 0.04 92.88 ± 0.01

Christian vs. Religion 66.19 ± 0.01 65.95 ± 0.01 67.79 ± 0.02 76.11 ± 0.01

Windows vs. Electronics 74.46 ± 0.08 80.36 ± 0.02 65.20 ± 0.04 83.11 ± 0.01

Graphics vs. Guns 86.32 ± 0.01 86.26 ± 0.01 76.74 ± 0.01 91.37 ± 0.01

Autos vs. Politics 81.43 ± 0.01 81.54 ± 0.01 69.84 ± 0.04 87.56 ± 0.01

Atheism vs. Baseball 85.63 ± 0.02 85.13 ± 0.01 71.88 ± 0.01 87.81 ± 0.01

Experiment 5: In this experiment, the ImageNet dataset was used to compare the
proposed method with the rest of the algorithms. This dataset is composed of more
than 20,000 categories with a different number of images in each category. Similar to
Experiment 2, we chose two image categories in each test and constructed a VBoW with
a 750-word dictionary. Then, we reduced the dimension of the data to 3 and used DT to
classify the images. The results of the tests are presented in Table 5. Notably, we observed
that our proposed method consistently achieved competitive results compared to the
other algorithms across different category pairings. The ability of our method to maintain
its performance on the vast and diverse ImageNet dataset underscores its potential as a
robust and versatile approach for large-scale sparse image datasets. The ImageNet dataset
poses significant challenges due to its diversity, with categories exhibiting varying image
quantities and unique visual characteristics. Despite these complexities, our proposed
method showed its capacity to capture meaningful discriminative information effectively,
even when the representation of the images were highly sparse. Our objective for this
experiment was twofold: firstly, to assess the performance of the proposed method on a
widely recognized and complex image dataset, and secondly, to highlight its adaptability
to highly sparse proportional data even when the target dimension is as low as 3.

Table 5. Classification accuracy (%) of ImageNet dataset for unimodal data, K = 3. Boldface shows
best result.

Classes SLPP LSDA LDA-L1 EXPMMP

statue vs. azure 65.03 ± 0.03 64.98 ± 0.02 60.67 ± 0.03 70.13 ± 0.02

outbuilding vs. high altar 78.00 ± 0.02 77.54 ± 0.02 67.46 ± 0.03 81.68 ± 0.02

falcon vs. leash 62.63 ± 0.02 63.71 ± 0.02 64.04 ± 0.02 72.52 ± 0.02

blue peafowl vs. horseman 71.23 ± 0.02 71.48 ± 0.02 67.41 ± 0.01 77.18 ± 0.01

purl vs. odometer 89.77 ± 0.02 89.72 ± 0.02 83.52 ± 0.03 93.50 ± 0.02

chickadee vs. pipe 71.84 ± 0.02 72.14 ± 0.02 72.14 ± 0.02 77.27 ± 0.01

woodpecker vs. kitten 73.37 ± 0.02 73.12 ± 0.03 68.02 ± 0.03 80.68 ± 0.02

watermelon vs. crocodile 71.07 ± 0.01 71.32 ± 0.01 69.54 ± 0.02 80.30 ± 0.01

guinea pig vs. sea eagle 72.69 ± 0.03 73.14 ± 0.02 66.68 ± 0.02 74.19 ± 0.02

caiman vs. parrotfish 67.21 ± 0.02 66.70 ± 0.03 70.35 ± 0.02 79.13 ± 0.02

fig vs. wild carrot 85.41 ± 0.02 85.14 ± 0.02 81.62 ± 0.03 91.43 ± 0.01
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Experiment 6: In this experiment, we used an image dataset known as Food-101
which contains images from 101 types of dishes. Similar to the previous experiments, we
chose pairs of classes, constructed a VBoW for each pair using a 750-word vocabulary
and SIFT features, and reduced the dimensionality to 3. The data were then classified
and the test was repeated, and the mean and standard deviation of the accuracies were
evaluated. Table 6 presents the results of this test. As observed, our proposed method
consistently outperformed the compared algorithms across all class pairings. The ability
of our method to maintain its superiority on the Food-101 dataset with its diverse visual
characteristics underscores its effectiveness in image classification tasks under significantly
sparse conditions. Notably, certain algorithms, such as SOLPP and LFDA, encountered
challenges in producing meaningful results on this dataset. The difficulties faced by these
algorithms highlight the importance of choosing appropriate methods that can handle
the sparsity of the dataset. The consistently superior results achieved by our proposed
method reaffirm its potential as a powerful tool for dimensionality reduction of proportional
sparse data.

Table 6. Classification accuracy (%) of Food-101 dataset for unimodal data, K = 3. Boldface shows
best result.

Classes SLPP LSDA LDA-L1 EXPMMP

carrot cake vs. poutine 76.75 ± 0.02 76.65 ± 0.02 71.40 ± 0.03 84.15 ± 0.02

miso soup vs. pad thai 89.95 ± 0.02 90.25 ± 0.02 85.10 ± 0.02 94.45 ± 0.02

panna cotta vs. ramen 75.30 ± 0.02 74.05 ± 0.02 69.65 ± 0.04 79.90 ± 0.01

cheesecake vs. tacos 76.40 ± 0.02 76.30 ± 0.02 74.55 ± 0.02 82.50 ± 0.02

ice cream vs. tuna tartare 65.25 ± 0.03 64.65 ± 0.03 62.55 ± 0.03 74.20 ± 0.03

fried rice vs. waffles 81.85 ± 0.02 81.30 ± 0.02 78.10 ± 0.02 87.85 ± 0.02

caesar salad vs. oysters 74.85 ± 0.03 74.95 ± 0.03 70.50 ± 0.01 83.40 ± 0.01

hot and sour soup vs. sushi 83.35 ± 0.02 83.15 ± 0.02 78.95 ± 0.02 91.20 ± 0.01

Example 7: In this test, we investigated the capacity of the introduced method for the
case of multi-modal data. The previously used dataset, Food-101, was used in this case.
After choosing three classes of data, two of them were combined as one multi-modal class
and used for classification against the third. Similar to the previous tests, after constructing
a VBoW model and reducing the dimensionality to 3, the samples were classified using
a DT classifier. Table 7 presents the results of this multi-modal data test. Note that our
proposed method consistently outperformed the compared algorithms in terms of both
robustness and accuracy. This significant performance gain further supports the efficacy and
adaptability of our approach, even when handling multi-modal data with diverse classes.
The successful classification results achieved by our method on the multi-modal dataset
highlight its potential in various real-world scenarios, where the dimensionality of sparse
proportional data from different modalities need to be reduced to be effectively utilized
for classification tasks. The ability of our method to consistently outperform the rest of the
algorithms in this multi-modal data scenario further strengthens its position as a versatile
and reliable solution for dimensionality reduction of highly sparse proportional data.
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Table 7. Classification accuracy (%) of Food-101 dataset for multi-modal data, K = 3. Boldface shows
best result.

Classes SLPP LSDA LDA-L1 EXPMMP
french onion soup + garlic bread

vs. strawberry shortcake 77.16 ± 0.02 76.60 ± 0.02 67.80 ± 0.02 79.83 ± 0.02

breakfast burrito + cheesecake
vs. miso soup 83.63 ± 0.02 83.33 ± 0.02 75.53 ± 0.01 86.13 ± 0.01

french toast + greek salad
vs. seaweed salad 82.56 ± 0.01 82.30 ± 0.01 73.26 ± 0.02 84.80 ± 0.01

breakfast burrito + hummus
vs. ramen 75.76 ± 0.03 75.63 ± 0.03 68.40 ± 0.02 78.46 ± 0.02

baklava + fish and chips
vs. strawberry shortcake 72.46 ± 0.02 71.90 ± 0.02 67.36 ± 0.02 74.23 ± 0.02

cheese plate + pancakes
vs. spring rolls 73.40 ± 0.02 73.50 ± 0.02 68.26 ± 0.02 77.90 ± 0.02

chicken curry + crab cakes
vs. foie gras 70.26 ± 0.02 70.80 ± 0.02 69.26 ± 0.01 76.02 ± 0.01

beef tartare + french toast
vs. spaghetti bolognese 82.60 ± 0.02 82.73 ± 0.01 73.93 ± 0.01 85.20 ± 0.01

beef tartare + cup cakes
vs. lobster bisque 84.43 ± 0.02 84.43 ± 0.02 78.13 ± 0.01 87.26 ± 0.01

donuts + gyoza
vs. pho 86.43 ± 0.01 85.96 ± 0.01 76.56 ± 0.01 88.10 ± 0.01

4.2. Complexity Analysis

In terms of performance and computational complexity, the proposed method solves a
major problem in the compared algorithms. Most of the linear DR methods in the literature
formulate and solve a GEVP. In cases of extremely high-dimensional data though, this GEVP
cannot be solved efficiently. Moreover, often, solving this problem involves manipulating
sparse high-dimensional matrices that result in near-singular matrices. The proposed
method takes a different approach to resolve this issue. The original data are first projected
into the new low-dimensional space, and, therefore, all the calculations are performed
in the low-dimensional space, which avoids all the problems caused by the sparsity and
high dimensionality of the data. In fact, the main reason SOLPP and LFDA did not yield
any results in our experiments is that the data were extremely sparse. Also note that
the proposed algorithm has the capacity to be parallelized easily, since the evaluation
of the fitness function in the GA is independent for different members. This can be
achieved even in the case of one processing unit leveraging vector calculations in software
packages. In fact, the most intensive calculation in our proposed method is the matrix
multiplication of the candidate projections with the data. This can be performed highly
efficiently by concatenating all the projections, multiplying this matrix by the data, and then
disassembling the resulting projected data. Such matrix multiplications are often performed
very efficiently, with minimal time complexity in the current software libraries.

Moreover, the proposed method is significantly lighter in terms of resource usage
since it (unlike the rest of the methods) does not need to invert any high-dimensional
matrices that are of the order O(N3), and, due to the fact that it only uses some statistics
of the data (compared to the rest of the algorithms which have to build a neighborhood
matrix of size M×M), it needs much fewer resources, which becomes very important in
the case that there are a large number of samples or the algorithm is running on low-power,
low-resource devices. In general, the time complexity of solving the GEVP using dense
linear algebra techniques is typically on the order of O(N3), specifically O(N3 + cN2) for
some software libraries, where c is a constant depending on the specific implementation
and machine architecture. If the matrix is sparse, specialized algorithms based on iterative
methods are often used to solve the GEVP more efficiently. However, the time complexity
of these sparse eigenvalue solvers is still on the order of O(kN3) to O(kN3), where k is the
number of desired eigenpairs (eigenvectors and eigenvalues), which, considering the large
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dimensionality of the data, is a significantly time-consuming process. Finally, the choice of
the distributions used in the algorithm is affected by several properties of the data. In case
there is no information about the underlying distribution of the data, the covariance matrix
structure and the number of parameters of each distribution (in relation to the number of
training samples) are good guides for choosing the possible candidate distributions.

5. Conclusions

High-dimensional sparse data are encountered more and more due to the low cost
and ease of acquiring data, and several problems, including but not limited to the curse of
dimensionality and resource usage, are associated with this type of data. In the present
work, we have introduced an algorithm of supervised linear dimensionality reduction
that remedies some of the problems of the conventional DR techniques in this context.
The method has been tested against some of the well-known dimensionality reduction
techniques and its superiority was demonstrated. Considering that the curse of dimen-
sionality is a major problem while manipulating sparse data, our proposed method solves
this problem effectively. The experiments show that EXMMP is, unlike the rest of the
methods, robust in all cases of sparse data and yields better accuracies. It also can handle
multi-modal data due to the fact that it models the data using a mixture of distributions,
while the rest of the algorithms fail to do so. Moreover, the algorithm is scalable since
increasing the number of features and samples have minimum effect on the complexity.
Note that this increase only affects the first step of the algorithm, which is the projection
into the low-dimensional space in the form of a matrix multiplication, while in the rest
of the methods, it is carried along in the algorithm to the last step. Our contributions are
briefly summarized below:

• Proposing a novel supervised DR method that addresses the sparsity of the data
effectively and efficiently.

• Introducing a unique approach to handle multi-modal data by modeling the projected
data using a mixture of exponential family distributions.

• Formulating a closed form of KL-Divergence between the mixtures as a measure of
separability.

Considering the above advantages, EXMMP is an effective tool in solving problems
related to sparse high-dimensional data. Finally, as the next step in the further development
of the algorithm, one can consider using other measures of distance between mixtures of
distributions which yields better data separation. Also, the method can benefit from using
a better approximation for the closed form of the KL-Divergence.
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