
Citation: Jánki, Z.R.; Bilicki, V.

Rule-Based Architectural Design

Pattern Recognition with GPT

Models. Electronics 2023, 12, 3364.

https://doi.org/10.3390/

electronics12153364

Academic Editors: Iouliia Skliarova,

Jinhyun Kim, Seonah Lee

and Suwon Lee

Received: 13 July 2023

Revised: 31 July 2023

Accepted: 4 August 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Rule-Based Architectural Design Pattern Recognition with
GPT Models
Zoltán Richárd Jánki * and Vilmos Bilicki

Department of Software Engineering, Institute of Informatics, University of Szeged, 6720 Szeged, Hungary;
bilickiv@inf.u-szeged.hu
* Correspondence: jankiz@inf.u-szeged.hu

Abstract: Architectural design patterns are essential in software development because they offer
proven solutions to large-scale structural problems in software systems and enable developers to
create software that is more maintainable, scalable, and comprehensible. Model-View-Whatever
(MVW) design patterns are prevalent in many areas of software development, but their use in Web
development is on the rise. There are numerous subtypes of MVW design patterns applicable to Web
systems, but there is no exhaustive listing of them. Additionally, it is unclear how these subtypes
can be utilized in contemporary Web development, as their usage is typically unconscious. Here, we
discuss and define the most prevalent MVW design patterns used in Web development, as well as
provide Angular framework examples and guidance on when to employ a particular design pattern.
On the premise of the primary characteristics of design patterns, we created a rule system that large
language models (LLMs) can comprehend without doubt. Here, we demonstrate how effectively
Generative Pre-trained Transformer (GPT) models can identify various design patterns based on our
principles and verify the quality of our recommendations. Together, our solution and GPT models
constitute an effective natural language processing (NLP) solution capable of detecting MVW design
patterns in Angular projects with an average accuracy of 90%.

Keywords: large language models; GPT; software engineering; design pattern; natural language
processing; Web development; Angular

1. Introduction

Software development is a multidimensional field that centers on the creation, test-
ing, and maintenance of applications and frameworks. It encompasses a comprehensive
process that includes comprehending user requirements, designing software architecture,
coding, testing, and maintenance. This process is constantly evolving as new technologies,
methodologies, and instruments are continuously introduced. Even though there are a
large number of duties in the background of design and development, developers face
problems frequently. Later, from recurring problems, well-known solutions will arise. From
the solutions, more abstract but still applicable best practices may emerge, and from the
best practices, the most abstract and generally applicable design patterns are defined.

There is a vast array of design patterns that are categorized by various aspects and
solutions. The Gang of Four (GoF) [1] created a taxonomy of design patterns for object-
oriented software development in their book, which is still widely acknowledged today.
However, these are software design patterns that provide guidance for implementing a
class or function based on the nature of the problem. When considering a piece of software
as a system, we can zoom out to its architecture in order to observe its components and
their interactions. Obviously, there are taxonomies for architectural design patterns, but
their application and interpretation are highly dependent on the underlying technology
and framework.

The Model-View-Controller (MVC) pattern was created by Trygve Reenskaug in
1979 [2,3]. It is one of the most common and earliest design patterns. As an objective, it

Electronics 2023, 12, 3364. https://doi.org/10.3390/electronics12153364 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153364
https://doi.org/10.3390/electronics12153364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1829-5663
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.3390/electronics12153364
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153364?type=check_update&version=1


Electronics 2023, 12, 3364 2 of 26

separates the domain model, the user interface (UI), and their connector component [4].
The first conscious application of MVC was introduced by Krasner and Pope [5] in 1988.
They presented how MVC can be implemented in the Smalltalk-80 programming language
and environment to enhance the creation of user interface applications. As a result of its
popularity, new technologies and frameworks are perpetually adopting MVC or creating
new variants of it. The majority of variants utilize the same structure, separating the Model,
View, and Controller, but their modes of communication and relationships may vary.

Taligent [6] was the first to implement Model-View-Presenter (MVP), a modified and
generalized variant of the original MVC concept that appeared more than a decade after
MVC. They maintained the principle of separating the components, but increased the
Presenter’s responsibility by transforming the domain data for the View and governing its
content and behavior. MVP first went live by implementing Dolphin Smalltalk, an open-
source Smalltalk programming solution for the Windows platform. Later, additional MVP
variants were developed by modifying the communication and responsibilities among the
components [7].

Microsoft’s John Gossman [8] introduced the Model-View-ViewModel (MVVM) design
pattern in 2005. The Windows Presentation Foundation (WPF) was the first framework
to implement MVVM principles. Martin Fowler [9] presented MVP and the Presentation
Model, which served as its primary motivations. There are currently MVVM variants
with minor modifications, such as Application Model and Presentation Model, that have
different principles [10]. However, there are numerous MVVM implementation variants
as well. There are prominent frameworks, such as WPF, that offer their best practices by
employing the MVVM design pattern. However, there are technologies in which MVVM
is not predominate but can be readily implemented. MVVM can be used to implement
native Android and iOS applications in mobile application development, but it is not the
primary approach [11,12]. In addition to structural distinctions, these methods may also
have varying effects on performance [13,14].

All of these design patterns are extensively used in software development, and while
there are numerous variants of them today, their core concepts remain the same. They are
also utilized in Web and mobile development [15,16]. Some modern frameworks are said to
be pattern-specific, but there are use cases and practices in which other patterns or variants
function more effectively. Since the origin of all Model-View-related design patterns
is the same, they are commonly referred to as Model-View-Whatever (MVW) patterns.
Developers frequently combine the solutions provided by design patterns to create new best
practices. Object orientation is advised to implement these design patterns. React, Vue, and
Angular are the front-end frameworks that use the Node.js runtime environment the most
frequently today. The history of MVW design patterns reveals that the majority of their
origins are related to Microsoft. Since its second edition, Angular has been a framework
that supports typed implementation by using TypeScript as its principal development
language. We discovered that in Angular application development, it is unclear which
MVW design pattern is the most prevalent. AngularJS and Angular 2+ have fundamentally
distinct concepts. Throughout the remainder of this article, Angular pertains to the Angular
2+ framework. To examine MVW design patterns in contemporary Web frameworks, we
concentrate on Angular projects because only then can we guarantee typed source code.

Numerous researchers are currently concerned with design patterns and their effects
on software development, and an increasing number of studies are being conducted to
detect them using natural language processing (NLP) techniques and compile global
statistics. Continuously and abruptly, OpenAI [17–19] is developing Generative Pre-trained
Transformer (GPT) models. Within five years, they released four major model iterations,
and with the release of the GPT-3 and GPT-4 models in the guise of chatbots, a plethora
of opportunities opened up in numerous fields. Using their Application Programming
Interface (API), the properties’ creativity and consciousness can be readily controlled.
There are large language models (LLMs) that can be fine-tuned, but their capabilities
vary considerably.



Electronics 2023, 12, 3364 3 of 26

Our aim is to present how architectural design pattern variants can be applied and
combined in modern Web development, and to provide a novel approach for design pattern
detection using prompt engineering with GPT models. On the basis of an elaborated
taxonomy of MVW design patterns and an examination of open-source projects, we can
acquire a clearer understanding of how and why MVW variants are utilized in Angular
application development.

The following are the primary contributions of this paper:

• a classification of MVW design patterns for Angular application development with
formal definitions and examples;

• a rule-based approach for detecting MVW design patterns in Angular applications
using GPT models;

• the results of the accuracy attained in design pattern detection with GPT models;
• the distribution of MVW design patterns in Angular development.

The remaining sections are organized as follows. In Section 2, we provide an overview
of the related works. In Section 3, we present the proposed materials and methods. Section 4
presents the experimental results and Section 5 presents a short discussion. In Section 6, we
present the limitations of our study. Section 7 concludes the study by presenting the key
findings, limitations, and future research.

2. Related Work

Design pattern detection and analysis are active research fields. Koirala [20] provided
a thorough comparison of four distinct MVW design patterns in a Microsoft environment
by addressing the key issues and proposed solutions. Based on his study, Syromiatnikov
and Weyns compiled an inventory of well-documented MVW design patterns utilized
in UI architectures [10]. There are similarities between specific design patterns, but new
technologies are constantly modifying them and creating new alternatives. They did a
decent job of comparing example use cases, but it is difficult to identify design patterns
in projects based on a single example and brief description. In addition, the MVW design
pattern family has expanded as new technologies have become prevalent and as new
best practices have emerged. Software design pattern detection yields promising results,
whereas architectural design pattern detection appears to be a more difficult endeavor.
N. Nazar et al. attained an accuracy of 80% with their trained Random Forest Classifier [21].
Since that study, NLP has advanced significantly, and LLMs can now perform better.
L. Wang et al. [22] trained Visual Geometry Group (VGG) and Support Vector Machine
(SVM) classifiers for 12 GoF design patterns with more than 85% stable precision and
recall. The sample sets were constructed in the form of Unified Modeling Language (UML)
models, and image classification was used to detect design patterns. While GoF design
patterns can be discovered by analyzing one or two files within a project, architectural
design patterns necessitate the analysis of source codes from multiple files. R. Nord and
Z. Kurtz compared machine learning approaches for detecting MVC and assisting with
software quality evaluations with a comparatively low degree of precision [23]. With
these outcomes, global statistics cannot be compiled. In [24], a novel hybrid approach was
presented for detecting MVC architectural layers in Android applications. By exploring
the layers, students and beginners can better understand the projects. Similar to our
study, Komolov et al. [25] focused on architectural design patterns in their research. They
evaluated multiple machine learning strategies and analyzed Android applications with
MVVM and MVP as their focal points. The training dataset was founded on source code
metrics. Their approach to machine learning has an accuracy of 83%, but it is limited to
two main categories and lacks a semantic analysis of the projects. Complex tasks may also
require semantic analysis; simple metrics are insufficient. To conduct a reliable semantic
analysis, it is necessary to develop a well-defined rule system. This article focuses on
Angular projects and provides a detailed classification of MVW design patterns with clearly
defined rules. By modifying the classification criteria based on the employed technology,



Electronics 2023, 12, 3364 4 of 26

our method is applicable to other Web frameworks and other technologies. This technique
does not require neural network training.

3. Materials and Methods

This section presents a taxonomy and formal definitions of MVW design patterns. In
this study, we present a machine learning technique for identifying MVW design patterns
through semantic analysis of source code. The semantic analysis is founded on a set of
principles that distinguish the design patterns with precision. In addition, we provide
Angular framework implementation examples to elucidate what elements and components
the language model seeks.

3.1. MVW Taxonomy for Frontend Frameworks

According to the available literature, MVW is a design pattern family consisting of
three primary groups: MVC, MVP, and MVVM. It has been discovered, however, that new
UI frameworks may modify the original concepts and produce new best practices and,
eventually, new design patterns. The same thing occurred with MVW design patterns,
as modified alternatives emerged in addition to the traditional MVC, MVVM, and MVP
design patterns. Here, we present a taxonomy of MVW design patterns and classify
them according to the design pattern group to which they are conceptually closest. The
MVW design pattern family that can be found in modern Web development is depicted in
Figure 1.

Figure 1. Categories of MVW design patterns and their variants.

MVC has the longest history and the most extensive list of variants. MVC is the
foundation for a variety of technologies with architectural modifications. It is addition-
ally frequently employed in the development of desktop, mobile, and Web applications.
MVC has significantly influenced iOS development, becoming a standard in this field [26].
Android development follows somewhat distinct principles. MVC has been applicable to
both desktop and Web applications since it was first introduced and demonstrated with
Smalltalk. In Web development, however, Spring Web MVC was the most influential in the
dissemination of the MVC design pattern [27]. In Angular development, we discovered
that not only is it possible to implement components using Smalltalk-80 MVC concepts, but
it is also a commonly used architectural technique. Since Angular is a component-based
framework, hierarchy plays an essential role, and components are frequently nested within
one another. Signs of Hierarchical MVC (HMVC) are also common in Angular application
development, where hierarchical communication and data transfer between MVC compo-
nents are essential. The Controller functions as a mediator when the control of UI elements
and the manipulation of their content are delegated to the Controller [28]. Typically, this



Electronics 2023, 12, 3364 5 of 26

alternative to MVC is referred to as Model-View-Adapter (MVA). It is also possible to
delegate the adapter role and implement adapters for individual elements. This particular
design pattern is known as Model-GUI-Mediator (MGM) [29]. These are the four most
prevalent MVC design pattern variants that can exist in Angular.

MVVM represents the tiniest subset of the MVW design pattern family. Application
Model [30] and Microsoft MVVM are variants. The fundamental idea is to isolate the
business model and the View. This induces a layer responsible for the View by providing a
model for it, thereby increasing the Model’s responsibility. The majority of modern Web
frameworks, such as Angular, support MVVM and adhere to its principles. However, it is
crucial to note that there are implementation techniques that contradict the use of MVVM,
with MVC or MVP characteristics being more common.

MVP is the second-largest group in the MVW family. It consists of three variants: the
Dolphin Smalltalk MVP, the Supervising Controller, and the Passive View. In MVP, the
Controller has been replaced by the so-called Presenter, which has increased responsibility
for the View and its state. In all MVP variants, the Presenter is responsible for validating
user input and may manipulate View elements based on the validation result. MVP can be
implemented with various strategies in Angular. On the one hand, the Presenter can be
a distinct class in the class hierarchy whose sole responsibility is to handle, validate, and
process the data. On the other hand, the Presenter can be integrated into a component that
manages View directly. The Model can alter based on which domain model properties are
included. In some instances, the UI widget properties are also present in the domain model;
these are the main implementation strategies of the design pattern. Additionally, the level
of responsibility of the Presenter depends on the distinct MVP variants.

The subsequent sections define the variants of the MVW design pattern family using
the GoF definition structure.

3.1.1. Smalltalk-80 MVC

Intent: Smalltalk-80 MVC divides a component into three interconnected sections, effec-
tively addressing distinct application concerns. This division facilitates the management of
complex applications that involve user interactions and the representation of data.
Also Known As: MVC.
Motivation: A library management system in which the library and its properties are rep-
resented by a service and an interface. The property values are depicted in a table format.
Applicability:
• If View does not require additional attributes, the entire logic can be governed by

domain data.
• If change detections can be managed using component-implemented functions rather

than the Angular engine.
Structure: See Figure 2.
Participants:
• Model: in a form of a service and an interface or class describing the entity’s properties

and methods.
• View: UI that is visible to the user and display domain data.
• Controller: responsible for receiving the user input and manipulating domain data.
Collaborations:
• User input is transmitted to the Controller, which manipulates the Model based on

the input.
• The Domain model modifies and alters View-displayed properties.
• View displays domain data.
Consequences:
• A straightforward implementation consisting of the required properties and methods.
• The source code is easy to understand and the applications can be thoroughly tested.
Implementation: Model can be implemented in multiple files, but a class representing the
domain model and its capabilities is required.



Electronics 2023, 12, 3364 6 of 26

Sample Code: See Code S1 in Supplementary Materials.
Known Uses: Spring Web MVC framework, Smalltalk applications, AngularJS applica-
tions.
Related Patterns: HMVC, MVA, MGM.

Figure 2. Structure of Smalltalk-80 MVC.

3.1.2. HMVC

Intent: A component is divided into three interconnected sections. This strategic division
helps to segregate concerns within a component. HMVC provides a robust framework to
manage complex components and modules that involve intricate user interactions and the
representation of diverse data.
Also Known As: This pattern has no aliases.
Motivation: A dashboard includes a menu, a timeline, a table, and various charts. The data
are already accessible at the dashboard level, but the smaller components (menu, timeline,
table) are hierarchically at a lower level, so domain data must be sent to or shared with
them. Data are shared via component-based communications, such as input and output
directives, between the different subcomponents that use the domain’s data.
Applicability: If components start to become difficult to comprehend, it is reasonable to
divide them into multiple smaller components by constructing a hierarchy.
Structure: See Figure 3.
Participants:
• Model: a service and interface or class that describes an entity’s properties and methods.
• View: UI that is visible to the user and displays domain data.
• Controller: responsible for receiving user input and manipulating domain data. Con-

trollers at a lower level in the hierarchy receive input data and propagate output data.
Higher-level controllers that implement entire pages send data to lower-level con-
trollers that implement only a portion of the page and may manipulate a portion of the
domain data. The highest-level controller receives data segments and merges them.

Collaborations:
• User input is sent to the Controller, which evaluates it and modifies the Model based

on the input.
• Domain model changes and modifies properties that are propagated to sub-controllers

and returned to higher-level controllers.
• View displays a portion of the domain data.



Electronics 2023, 12, 3364 7 of 26

Consequences: Implementation is more complicated, whereas source codes and compo-
nents are simpler to comprehend.
Implementation: It is advised to avoid creating excessively small components because
applications can become too fragmented.
Sample Code: See Code S2 in Supplementary Materials.
Known Uses: Angular 2+ applications with @Input() and @Output() directives.
Related Patterns: There are no related patterns.

Figure 3. Structure of HMVC.

3.1.3. MVA

Intent: Smalltalk-80 MVC divides a component into three interconnected sections, effec-
tively addressing distinct application concerns. This division facilitates the management of
complex applications that involve user interactions and the representation of data.
Also Known As: Model-Mediator-View, Mediated MVC.
Motivation: In an accounting information system, the domain model defines the financial
status of the company, whereas the View contains properties that are not explicitly stored
but are rather inferred from domain data values. For instance, if the income falls below a
certain threshold, the text color changes and a down arrow appears. All page properties
are administered by a single controller.
Applicability: Multiple UI elements are served based on the same domain property, but
other variables technically refer to the domain property’s value.
Structure: See Figure 4.
Participants:
• Model: in the form of a service and interface or class that describes the entity and

its properties and methods. It modifies the domain entity properties and inferred
properties within the Adapter.

• View: the UI component that displays the domain data and the adapter’s properties.
• Adapter: receiving user input and processing domain data.
Collaborations:
• User input is transmitted to the Adapter, which manipulates the Model based on the

input.
• The Domain model modifies and alters displayed properties.
• Properties of an adapter are inferred from domain data.



Electronics 2023, 12, 3364 8 of 26

• View displays the domain data and the Adapter’s properties.
Consequences:
• Variables and properties are managed by multiple components, resulting in a more

complicated implementation.
• Multiple UI module attributes are maintained in a centralized location.
Implementation: It is recommended to alter Adapter properties collectively in the same
scope or in separate functions to keep them organized.
Sample Code: See Code S3 in Supplementary Materials.
Known Uses: Applications with multiple UI elements whose appearance is dependent on
domain data.
Related Patterns: MGM, Application Model.

Figure 4. Structure of MVA.

3.1.4. MGM

Intent: In this software development design strategy, the component is divided into four
interconnected parts. These sections are linearly connected at endpoints to segregate
application concerns efficiently. To enhance the View visualization, domain data are
transformed. The management of the distinct properties of UI widgets is assigned to
different controllers, ensuring a more specialized and streamlined operation.
Also Known As: This pattern has no aliases.
Motivation: An accounting information system’s domain model describes the company’s
financial status, but the View’s properties are inferred from domain data values. If income
drops below a certain value, the text color changes and a down arrow appears. Distinct
Controllers manage different page properties.
Applicability: In the case of more complex UI widgets (e.g., charts, popups), it may be
preferable to manage the Controller as a separate component.
Structure: See Figure 5.
Participants:
• Model: a service and interface or class describing the entity’s properties and methods.

It modifies the Adapter’s domain entity properties and inferred properties.
• GUI: UI that is visible to the user and presents widget components collectively. It is

responsible for notifying the Mediator and transmitting user input.



Electronics 2023, 12, 3364 9 of 26

• Mediator: It manages a specific complex GUI and its content via a Model that is only a
portion of the entire domain entity and does not include other UI widgets.

Collaborations:
• User input is transmitted to the Mediator, which manipulates Model based on the

input.
• The Domain model modifies and alters View-displayed properties.
• Properties of an adapter are inferred from domain data.
• View displays the domain data and Mediator’s properties.
Consequences:
• Complex UI widgets are simpler to comprehend and maintain.
• Component is reusable in other sections of the project.
Implementation: Only large and unique components should be implemented with Mediator.
Sample Code: See Code S4 in Supplementary Materials.
Known Uses:
• Ionic framework popup implementations.
• Angular Material mat-table implementation.
Related Patterns: MVA.

Figure 5. Structure of MGM.

3.1.5. Application Model

Intent: The Application Model design pattern divides a component into four connected
sections to implement distinct concerns within an application. The behavioral properties of
UI elements are dependent on domain data and are wrapped in an Application Model. For
View and Controller and Application Model interaction, data-binding is used.
Also Known As: This pattern has no aliases.
Motivation: In a hotel reservation system, the user can view the rooms’ descriptions and
ratings. In addition to the rating value, there is a UI widget consisting of five stars. The
Application Model manages the star data according to the rating value. The Controller is
still capable of updating the View based on domain data. The page’s UI elements are all
updated based on the same domain model. Through data binding, user input and view
content are managed.
Applicability:
• With data binding, data can be sent to the controller and returned to the view without

the need for additional function implementations.
• There are distinct View objects created in the business logic that are served by the

domain model. These objects are Application Model properties. Additionally, the
domain model can be retained and utilized. It has a loose structure overall.

Structure: See Figure 6.
Participants:
• Model: a service and interface or class describing the entity’s properties and methods.

It updates the Application Model’s domain entity properties and objects.
• View: UI that is visible to the user and displays elements containing data.



Electronics 2023, 12, 3364 10 of 26

• Application Model: objects created for the View and supplied data from the domain.
It only affects the behavior of UI elements.

• Controller: This component manages user input and receives model updates. It is
only applicable to the domain model.

Collaborations:
• User input is transmitted to the Controller, which manipulates the Model based on

the input.
• Domain model modifications and updates are returned to the Controller, and the

Application Model is also updated.
• Application Model properties are behavioral properties of UI widgets that are inferred

from domain data.
• View displays the domain data and Application Model properties.
Consequences:
• Separate logic for the displayed data.
• Difficulty in maintaining domain model and view consistency.
Implementation: Recommended to have a strongly typed Application Model.
Sample Code: See Code S5 in Supplementary Materials.
Known Uses: Angular 2+ and Ionic applications.
Related Patterns: MVA, MGM, Microsoft MVVM.

Figure 6. Structure of Application Model.

3.1.6. Microsoft MVVM

Intent: Microsoft MVVM separates a software application into three interdependent sec-
tions and maintaining distinct concerns within an application. The behavioral properties of
the UI widgets and View contents are dependent on domain data and are encapsulated in a
ViewModel. View and ViewModel interaction is managed via data binding.
Also Known As: Presentation Model.
Motivation: In a system for scheduling appointments, domain data are passed to a distinct
object that is extended with additional fields, such as ratingColor. The rating data are
utilized in both a chart and a table, so a single object can serve multiple UI elements.
However, the ViewModel is a copy of the domain data with potential extensions. Through
data binding, user input and view content are managed.
Applicability:
• With data binding, data can be sent to the ViewModel and returned to the view

without the need for additional function implementations.



Electronics 2023, 12, 3364 11 of 26

• Additional properties required by the view are not maintained in separate objects;
rather, the developer is provided with an unstructured and expanded structure.

Structure: See Figure 7.
Participants:
• Model: a service and interface or class defining the entity’s properties and methods. It

synchronizes the ViewModel.
• View: UI that is visible to the user and displays elements containing data.
• ViewModel: a replica of the domain model with view-specific properties added.
Collaborations:
• Data binding transfers user input to the ViewModel. ViewModel processes it and

manipulates Model.
• Domain model modifications are communicated back to the ViewModel.
• ViewModel duplicates the domain entity and extends or transforms the data so that

they are suitable for the View. It refreshes the View.
Consequences: Looser ViewModel structure achieved by extending the domain model
copy.
Implementation: ViewModel should be a mapping of the domain model to ensure data
consistency.
Sample Code: See Code S6 in Supplementary Materials.
Known Uses: Angular 2+ and Ionic applications.
Related Patterns: MVA, MGM, Application Model.

Figure 7. Structure of Microsoft MVVM.

3.1.7. Dolphin Smalltalk MVP

Intent: This design pattern partitions an application into three interconnected sections
and maintains distinct concerns within an application. Here, View has less control, and
modifications depend on user input and its validation.
Also Known As: MVP.
Motivation: The application form of a hotel scheduling system contains multiple input
fields with validators. The status and color of the submit icon are determined by the results
of input validations.
Applicability:
• User input must be validated prior to Model modification, and the result must be

presented to the user.
• View serves only for presentation purposes; intricate logic is left to the Presenter.
Structure: See Figure 8.
Participants:
• Model: a service and interface or class specifying the entity’s properties and methods.



Electronics 2023, 12, 3364 12 of 26

• View: UI that is visible to the user and displays elements containing data.
• Presenter: receives user input, validates it, and alters the Model if the input is legiti-

mate; the View also displays this result.
Collaborations:
• Data binding is used to transmit user input to the Presenter. Presenter processes it and

manipulates Model if data are valid.
• Domain model modifications are transmitted back to the Presenter.
• View only displays data and validation results from user input.
Consequences: Presenter has direct access to View and greater control over View.
Implementation: Use FormControls to automatically manage data binding and validation.
Sample Code: See Code S7 in Supplementary Materials.
Known Uses: Angular 2+ and Ionic applications.
Related Patterns: Supervising Controller, Passive View.

Figure 8. Structure of Dolphin Smalltalk MVP.

3.1.8. Supervising Controller

Intent: Supervising Controller splits an application into three interconnected sections. View
is modified based on user input and its validation result. View has less control and Model
is not limited to domain data.
Also Known As: Supervising Presenter.
Motivation: The user can customize the displayed UI elements in a chat room application
to his or her liking. The colors of elements are saved in the user profile so that it can be
reloaded in any environment.
Applicability:
• Domain data may need to be extended with UI behavior that is not dynamically

derived from the domain entity’s values.
• Application development if review procedures are time-consuming.
Structure: See Figure 9.
Participants:
• Model: a service and interface or class that describes the entity, its properties and

methods, and potentially the behavioral properties of the UI elements.
• View: User interface that is visible to the user and displays elements containing data.
• Presenter: receives user input, validates it, and alters the Model if the input is valid;

the View also displays this result.
Collaborations:
• User input is forwarded to the Presenter by data binding. Presenter processes it and

manipulates Model if data are valid.



Electronics 2023, 12, 3364 13 of 26

• Domain model changes occur and updates are sent back to the Presenter. If there
are properties in domain data that refer to other properties, they can be updated
immediately.

• View presents data and behavioural properties based on the stored data and the results
of the user input validation.

Consequences: Due to the extended domain model, domain data may be overly static.
Implementation: Use objects for each property group that is associated with a UI widget
or domain property.
Sample Code: See Code S8 in Supplementary Materials.
Known Uses: Serverless development to ease application updates.
Related Patterns: Dolphin Smalltalk MVP, Passive View.

Figure 9. Structure of Supervising Controller.

3.1.9. Passive View

Intent: Passive View divides an application into three interconnected sections and main-
tains distinct concerns within an application. View has no controller role and UI widgets
are display based on the result of user input validation.
Also Known As: Humble View.
Motivation: In an image editor application, the Presenter class implements the mechanism
and appearance of the available tools. The user interface is the business logic.
Applicability: The logic and behavior of UI elements are too intricate to implement in the View.
Structure: See Figure 10.
Participants:
• Model: a service and interface or class describing the entity’s properties and methods.
• View: UI widget references that must be visible to the user.
• Presenter: receives user input, validates it, and updates Model if input is valid; has

complete control over the states and controls of UI widgets.
Collaborations:
• Data binding is used to transmit user input to the Presenter. If data are valid, Pre-

senter processes it and manipulates Model. Moreover, Presenter entirely controls the
View elements.

• Domain model modifications are transmitted back to the Presenter.
• View has no control and only a reference to the visible UI element.
Consequences:
• Easy to make spaghetti code.
• Provide increased implementation flexibility for the UI.



Electronics 2023, 12, 3364 14 of 26

Implementation: Use separate classes for complex UI elements to make the source code
more maintainable.
Sample Code: See Code S9 in Supplementary Materials.
Known Uses: Implementation of GUI widgets and GUI libraries.
Related Patterns: Dolphin Smalltalk MVP, Supervising Controller.

Figure 10. Structure of Passive View.

3.2. Rule-Based Design Pattern Identification in Angular Projects

The manual identification of design patterns is a time-consuming and error-prone
process. Some design patterns are readily identifiable, while others are intricate and require
complex thought. In addition, human error may result from a superficial examination of the
source code, incorrectly used variable and component names, and program codes written
in a rarely used spoken language. With the introduction of ChatGPT, LLMs gained tremen-
dous popularity. Due to the fact that GPT models can be programmed using prompts, a
new discipline known as prompt engineering arose. It was a major breakthrough to develop
a language model that can be used to have topic-independent conversations. In addition to
dialogues, we can delegate tasks to it, and if the descriptions are accurate, it returns precise
answers within seconds. Training a neural network for the detection of design patterns
is not a simple operation; it requires a large number of samples from all classes. Taking
into account the MVW design patterns and their subtypes, the task becomes even more
challenging. Using the capabilities of GPT models, we developed rule sets for detecting
MVW design patterns in Angular projects. These principles define the relationship between
the files and the component responsibilities using plain English sentences. Tables A1–A3
in the Appendix A the applicable rules for each design pattern. The R1-R30 rules enable us
to refer to a particular rule in the text. In Table A4, we provide an overview of the most
essential criteria for determining whether a component applies a particular MVW design
pattern. If MVC is used in Angular, data must be passed to components via methods
and not data binding. The remaining design patterns send data to the component via
data binding. The management of user input can be differentiated between these two
approaches. HMVC requires a hierarchical structure, so domain data must also be shared
with lower-level components. If a component maintains View-specific attributes, it is either
MVA-, MGM-, Application Model-, or Microsoft MVVM-specific. Microsoft MVVM has
only a few limitations and offers the finest Angular practices. Validation of user input
is a requirement for MVP variants. Moreover, if UI behavioral properties are part of the
domain data, the component is deemed to use the Supervising Controller pattern, whereas
the Passive View pattern is used if the View has no control.

Due to the fact that an MVW design pattern can only be identified by examining three
or four interconnected files, we must locate the connected components. Due to Angular’s
component-based architecture, the MVW components can be readily separated. Each



Electronics 2023, 12, 3364 15 of 26

Angular component consists of a TypeScript-written component logic, an HTML template,
and an interface or class representing the domain entity, typically in the form of a service.
To identify the relevant design patterns, we must answer the following questions.

• Q1: What functions do the interconnected files serve?
• Q2: What responsibilities do the interconnected files have?
• Q3: What are the relationships and orientations of file-to-file communication?

If we can determine which file contains the component’s implementation, we can
readily answer a portion of Q1. The component source must be a TypeScript file with a
@Component() annotation and a .ts extension. In the MVW structure, component code
denotes Whatever (W). View can be located based on the component’s source code by
identifying the template or its path in the component’s definition. Model can be detected
according to the imports and private attributes instantiated in the constructor’s argument
list. To ascertain what the W in MVW stands for, the model must identify a subset of
entirely applied rules. Q2 and Q3 can be resolved by employing the principles’ subsets.
Rules are completely independent, so there are no dependencies between rules in a subset.
A design pattern can only be applied to a component if all of its subset’s principles are
applicable. It is essential to note that the listed design pattern variations can be combined,
and that the application of one design pattern does not preclude the application of another
design pattern from the other MVW group.

3.3. MVW Dataset and Evaluation with GPT Models

In our research, we downloaded 18,830 open-source Angular projects from GitHub
and chose those with the highest number of forks, which indicates a higher level of project
maturity. Obviously, GPT models have limitations for tokens, so we cannot give the model
an entire Angular project to identify design patterns. Thus, we must organize the project’s
content by level of interest. Each project’s MVW structure was isolated and analyzed
separately. We discovered that some components lack a model, whereas other, more
complex components are compatible with multiple models. The dataset analyzed consists
of 125 Angular applications. Various GPT models have differing context restrictions.
At the time of our research, the gpt-3.5-turbo and gpt-4-0613 models could contain a
maximum of 4096 and 8192 tokens, respectively. An Angular component with a template
and used service codes contains an average of 5334 tokens, which exceeds the gpt-3.5-turbo
token limit. A set of parameters can be used to configure and control the output of GPT
models. The models cannot be configured via the ChatGPT interface in the browser, so it
is necessary to utilize GPT models via their API. Pricing is determined by the number of
tokens composing both the input and output. We sent the source code in a minified form
so as to use fewer tokens without sacrificing the efficacy of the models. By adhering to
OpenAI’s best practices, more than two consecutive whitespaces are removed from the
minified code, new lines are substituted with the \n notation, and tabulators are removed
so that each source file contains a single line of code. Because the entire file is stored as a
single line, single-line comments could be problematic, but the \n notation indicates that
the comment has ended. This minification reduces the number of characters by 8% but
tokens by an average of 25%. Consequently, the average number of tokens is only 4006;
consequently, the majority of components are within the context limit. After minifying the
code, the greatest reduction can be observed in Angular templates, averaging 28.33%. Only
those MVW components that fit within the context of both GPT models were analyzed in
our investigation. Note that the token limit is valid for a request and response pair.

For evaluating the MVW components, we used the Chat Completions API with the
following configurations for both models. In accordance with OpenAI’s recommendations,
we employ two categories of messages: system and user messages, respectively. The
system messages can be used to specify the context and provide instructions. In the system
message, the source code is provided in minified form while preserving the MVW structure
and segregating the various MVW components. The assistant will resolve the requests and
remarks contained in the user messages. It is used to provide the provided rule and request



Electronics 2023, 12, 3364 16 of 26

substantiation from the model in order to validate the results. To ensure a straightforward
response, we capped the number of tokens in the response at 150. In addition, decisions
must be as deterministic as possible, so we set the temperature to 0.0. This variable
controls the model’s creativity, which is irrelevant because we only care about the facts.
Another metric for controlling randomization, Topp, is used to determine the next token
in the response. We used the default value so that we could receive a clear explanation
of the decision. In addition, we request that models respond with “no” if the provided
source code lacks sufficient information to make a decision. Both the f requencypenalty and
presencepenalty parameters are subsequently set to 0.0.

4. Results

During the course of our research, we formulated rule sets for detecting variations in
MVW design patterns using GPT models. Here, we strive to respond to the four research
questions listed below.

RQ1: How precisely can MVW design pattern variations in Angular applications be
detected?

RQ2: Which variation of the MVW design pattern is most prevalent in Angular applica-
tion development?

RQ3: What design recommendations and best practices can be formulated for Angular
applications?

RQ4: What additional opportunities do the results present?

4.1. RQ1: MVW Design Pattern Detection in Angular Projects

After several iterations on our rule sets, we developed a method for instructing LLMs
to determine whether a rule can be applied to an Angular component. If all elements of a
rule set can be applied to a component, then the component employs the design pattern
described by the rule set. First, the gpt-3.5-turbo model was evaluated using the rule
sets. The results were quite encouraging, but we discovered that gpt-3.5-turbo cannot
identify certain classes. We attempted to fine-tune our rules in order to achieve improved
outcomes, but we could have achieved an aggregate average of 78.98%. Numerous false
positives were observed for the NO MVW and Microsoft MVVM categories. Figure 11
demonstrates this effect with green bars. Considering the rules listed in Table A1, R16 was
the most problematic provision. In many instances, GPT-3.5 did not accurately locate the
domain model or confused it with the object defined in the ViewModel. GPT-3.5 identified
Microsoft MVVM in approximately 18% of instances. After missing numerous Microsoft
MVVM cases and asserting that the component lacks MVW-related indicators, the accuracy
of both classes decreased. However, after evaluating the components with GPT-4 and the
same configuration parameters, we discovered that the rules adequately characterize the
requirements, but that some of them require a model that can comprehend more complex
cohesions. This occurred with GPT-3.5 and the Microsoft MVVM rule set. GPT-4 was
able to employ the principles, whereas GPT-3.5 committed errors. According to the graph,
GPT-4 performs better, or at least at the same level as GPT-3.5. The Dolphin Smalltalk MVP
class obtained the lowest level of accuracy, which was 77.8%.



Electronics 2023, 12, 3364 17 of 26

Figure 11. Detection precision of GPT models for MVW design patterns.

R19, R23, and R26, listed in Table A1, generated some confusion because there were
components in which the input forms and validators were defined in the Model as functions,
but the Presenter invoked the Model function that returned the form and performed the
validation in the Presenter. This resulted in a number of false negatives when evaluating
MVP variants.

4.2. RQ2: Most Typical MVW Design Pattern in Angular Application Development

In general, Angular is regarded as an MVVM framework, but there are implemen-
tations that contradict this. However, MVVM variations are without a doubt the most
prevalent, with Microsoft MVVM present in 34.4% of the components. Microsoft MVVM
is present in 97.73% of the components that implement any of the aforementioned MVW
design patterns. After analyzing 125 mature projects containing 1576 components, we
discovered that 64.8% of the components do not conform to any of the enumerated design
patterns. In these components, we cannot locate a Model that is related to the other partici-
pants, or the component is vacant, so the separation criterion fails at its most fundamental
level. Smalltalk-80 MVC is the second most common design pattern, accounting for 11.2%
of all components. It represents traditional method-based communication between View
and Controller in Angular, and the domain model is not transformed. HMVC and MVP are
found in 8% of components and are the third most common design patterns in Angular
application development. Application Model is less prevalent in Angular development;
only 3.2% of components use it. In Angular, it is extremely uncommon to maintain a distinct
model in the component for UI widget behavior. The remaining design patterns only exist
in 2% of the components. These results are displayed in Figures 12 and 13. Overall, the
Microsoft MVVM design pattern is the most popular among developers. Moreover, we
discovered that the same design patterns are typically used in the components of the same
project. A particular library typically enforces infrequently used design patterns.



Electronics 2023, 12, 3364 18 of 26

Figure 12. Distribution of MVW design patterns in Angular projects.

Figure 13. Distribution of MVW design patterns in Angular projects that adhere to the MVW design principles.

4.3. RQ3: Recommendations for Using MVW Design Patterns in Angular Application Development

It is challenging to catalog all implementation variations of how a particular design
pattern can be applied to application development. Nevertheless, some design patterns are
too specific for a given framework. Here, we provide a list of recommendations for when a



Electronics 2023, 12, 3364 19 of 26

particular design pattern should be used in the development of Angular applications. Due
to the fact that our rule sets for detecting MVW design patterns are not example-based but
rather descriptive, GPT models identified some code sections that apply a particular design
pattern that we overlooked during manual analysis. The sections that follow provide
recommendations for using particular MVW design patterns in Angular development. It is
essential that specific design patterns do not exclude one another, and in practice, multiple
design patterns are typically combined.

4.3.1. Smalltalk-80 MVC

This design pattern is the most fundamental in terms of implementation and compo-
nent communication. The Angular service should implement the entity’s required methods.
Only domain-specific attributes and no View-specific properties may be present in the
Domain model. The Angular component instantiates the service as a private attribute and
transmits the original domain entity to the View. The typical usage scenario involves the
use of an async-pipe that presents the domain model’s data without component control.
When a change event occurs, user input is transmitted to the controller using methods
implemented in the component. If additional View logic is required, Smalltalk-80 MVC is
not the optimal solution.

4.3.2. HMVC

HMVC is quite similar to Smalltalk-80 MVC, but it is essential to maintain component
hierarchy. In Angular, it is advised to divide a page into smaller components if the compo-
nents are exceedingly large to maintain and may have too much responsibility. Components
at a lower level receive the result of a query to the domain model initiated by the compo-
nent responsible for the entire page. The domain data must be preserved in their original
format. Through the use of input and output directives, this hierarchy and communication
between two components are managed. User input continues to be managed by methods
implemented in lower-level components and delegated back to higher-level components.

4.3.3. MVA

MVA introduces new attributes for managing the properties and behaviors of UI
widgets. If the domain model lacks View-specific attributes, MVA can assist in separating
the View behavior by adding View-specific attributes to the component. The lifecycle of
these attributes is identical to that of their component counterparts. MVA does not require
sophisticated objects to maintain the behavior of widgets; only basic component attributes
are required. If the behavior of the View, such as color, direction, and size, depends on
the value of the domain model, MVA is a viable option. User input must be transmitted
directly to the component using change-triggered methods.

4.3.4. MGM

MGM employs a similar strategy, which is beneficial when the UI widget is too intricate
to implement in the same component. Complex elements dependent on the domain model,
such as charts and calendars, are typically organized into libraries in Angular. In this
instance, the UI widget’s properties are implemented in the library, and the data must
be passed to the library’s component. Inferring the behavior of UI widgets occurs within
the library. For implementing complex UI libraries in Angular, this design pattern is
recommended. User input must be processed via component-defined methods activated
by state changes.

4.3.5. Application Model

This design pattern introduces the Application Model as the new fourth component
in the MVW structure. It is an object that is exclusive to View. Typically, the data are
derived from the domain model, but it is of a distinct class. It is advantageous if the data
depicted in the View differ substantially from the data in the domain model. If the database



Electronics 2023, 12, 3364 20 of 26

serves multiple applications, this may occur. In Angular, it is recommended to create
a distinct class for display-related data in order to create code that is easily maintained.
Here, user input is processed via data binding rather than controller-implemented methods.
FormsModule and ReactiveFormsModule are recommended for data binding in Angular.

4.3.6. Microsoft MVVM

This is the most common design pattern in Angular development because the frame-
work’s best practices are built using Microsoft MVVM, so developers implicitly employ
this design pattern. It is reasonable in a component-based architecture because large pages
are broken down into smaller components and View-specific attributes can be managed
independently. In Angular, it is recommended that user input management be handled via
data binding. If no reasonable alternative design pattern is necessary, it is recommended to
stick with this one.

4.3.7. Dolphin Smalltalk MVP

This is a traditional MVP architecture, in which the component serves as the Presenter
and connects the Model and View. In the case of form implementation in Angular, it
is recommended to use it. The user’s input is sent to the component that validates the
data and determines whether the input is legitimate. The behavior and visibility of View
elements are determined by the validation results, so the Presenter governs the behavior
of UI widgets. View is not encumbered with business logic; its sole responsibility is to
display data.

4.3.8. Supervising Controller

This design pattern expands the Presenter’s control over the View. It implies that
the Presenter instructs the View on how to display data and UI elements, as well as
what to display. The Model is not limited to the domain entity, as the Presenter may
receive information about UI widget behaviors from the domain model. This pattern
is advantageous when persisting UI widget settings and appearance. The management
of user profiles and preferences is a typical use case. This pattern is also utilized by UI
elements incorporated in installable libraries, such as modals. Validation of user input is
still required, and data are presented based on the outcome.

4.3.9. Passive View

This pattern gives the Presenter the most control. Although it is uncommon in Angular,
it is still possible to implement the entire View or portions of it in component code. This
pattern is recommended when the View is extremely complex and contains more logic than
View-specific code. A graphical use case, such as using a canvas, necessitates view-specific
logic that is simpler and more maintainable to implement within the component. The
validation of user input is required, and UI elements are displayed based on the result.

4.4. RQ4: Future Potentials Based on the Results

During the evaluation of our results and answering the research questions, we found
that GPT models can not only find MVW design patterns with high accuracy by applying
the defined rule sets, but they can also highlight information that humans may miss. This
occurred during the validation process for us as well. Currently, using GPT-3.5 and GPT-4
models via API is not free, so we cannot afford to evaluate a larger number of GitHub
projects. However, it is evident that our solution does not necessitate training and also
functions with a relatively small dataset. Here, we presented a novel methodology of
prompt engineering that may give an opportunity to apply this technique in other fields
as well. Our approach is a valuable starting point that could be easily improved if the
models do not function well on other projects. The models have a firm foundation for
perceiving and analyzing diverse coding styles and techniques that are not limited to the
Angular framework and any spoken languages, so it is proposed to apply our rule-based



Electronics 2023, 12, 3364 21 of 26

methodology to the evaluation of additional Web applications and framework-specific
projects. It is still intended to train a neural network capable of detecting MVW design
patterns in Angular projects with high accuracy, but the available dataset is too limited
and one-sided, as Microsoft MVVM is the most prevalent design pattern in Angular
development. Nonetheless, a Bidirectional Encoder Representations from Transformers
(BERT) model was trained. Since we have limited data from numerous classes, we merged
them and labeled them based on our taxonomy as NO MVW, MVC, MVVM, and MVP. Our
model can detect NO MVW, MVC, MVVM, and MVP with F1-scores of 81%, 40%, 67%,
and 80%, respectively, using these four categories. It is evident that there is still a dearth of
information in MVC, whereas MVP is readily identifiable. In the future, it is planned to
further enhance our rule-based approach, attain a higher level of precision, and expand our
dataset using GPT models for automated labeling. It is also intended to generate samples
utilizing GPT models and expand the training dataset. In addition, if fine-tuning of GPT
models becomes available, we can promptly achieve superior results.

5. Discussion

This investigation effectively demonstrated that Angular is a Microsoft MVVM-
dominant framework. However, developers frequently integrate the Microsoft MVVM
methodology with other MVW design patterns. According to our evaluations, design
pattern usage is not only framework- or library-specific but also heavily influenced by the
preferences of developers and development teams. In the components developed by the
same team, not only is the use of design patterns but also the organization of source code
remarkably similar.

By evaluating our rule sets, we were required to determine the utmost complexity of
requests that are still distinct and appropriate for the context. If a rule is too complicated, it
must be broken down and simplified. We discovered that it is crucial to employ expressions
that cannot affect the model’s decision. Due to the model’s factual knowledge, it is able to
integrate requests with its knowledge and may produce incorrect results. The names of
the concrete design patterns have been omitted from the prompts because GPT models are
familiar with MVW design pattern variations. The prompt is constructed using the rule
that must be applied and the minified source code in order to adhere to the token count
restriction. By expanding the context limit of the models, more complicated requests could
be sent, and perhaps entire projects could be analyzed.

Considering the relevant literature, it is evident that detecting MVW design patterns
is not a simple task. Identifying architectural patterns requires a significant portion of a
project, whereas most GoF design patterns can be discovered by analyzing a single class.
In the analysis of MVW design patterns in common programming languages such as Java,
C#, and C++, we discovered that the detection of design patterns in Angular applications
is an unexplored area of research, but all the tools are available to implement and detect
different variants of MVW. MVW design patterns are typically managed as three design
patterns, MVC, MVVM, and MVP, and the highest-accuracy results were slightly more
than 80%. Our attained accuracy of 90% is encouraging, particularly considering that our
method does not require a large sample size and can detect not only the MVW categories
but also their variants.

6. Study Limitations

There are a few threats to the validity of the results presented in this study. Although
the number of involved projects in our analysis may not be representative, the choice of
mature projects compensates for this. In addition, we obtained an overall accuracy of 90%
on Angular applications by combining the GPT-4 model with our defined rule sets. The
30 presented rules define the MVW design patterns in Angular applications but the rules
may not cover all possible implementations. If this is the case, rule sets must be enhanced
and expanded. Lastly, it is possible that our recommendations are too Angular-specific.



Electronics 2023, 12, 3364 22 of 26

However, they draw up best practices that could enhance the development process and
serve as a gold standard for Angular application development.

7. Conclusions

We developed a taxonomy for MVW design patterns in Angular application develop-
ment as part of our research. We introduced a novel method for detecting design patterns
with LLMs based on a taxonomy. We found that the Microsoft MVVM design pattern is
the most prevalent in Angular application development, but the Smalltalk-80 MVC and
HMVC design patterns are also quite popular. In the future, it is intended to fine-tune the
rule sets and enhance the GPT-4 model’s current 90% accuracy. Due to a paucity of samples
for specific design patterns, it is more difficult to train a neural network. Nevertheless, by
modifying the rule sets, GPT models can analyze a greater number of projects and other
types of projects as well.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics12153364/s1. Each example is contained in a folder
bearing the name of the design pattern. Code S1: Smalltalk-80 MVC example in Angular; Code S2:
HMVC example in Angular; Code S3: MVA example in Angular; Code S4: MGM example in Angular;
Code S5: Application Model example in Angular; Code S6: Microsoft MVVM example in Angular;
Code S7: Dolphin Smalltalk MVP example in Angular; Code S8: Supervising Controller example in
Angular; Code S9: Passive View example in Angular.

Author Contributions: Conceptualization, Z.R.J. and V.B.; methodology, Z.R.J.; validation, Z.R.J.;
writing—original draft preparation, Z.R.J.; writing—review and editing, Z.R.J. and V.B.; visualization,
Z.R.J.; supervision, V.B. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-
00004). Project no. TKP2021-NVA-09 has been implemented with the support provided by the
Ministry of Innovation and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme.

Data Availability Statement: All data were presented and referred in the main text.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Rule sets of MVW design pattern detection in Angular projects.

Design Patterns Rules

Smalltalk-80 MVC

R1: View (HTML) presents domain data but data can be modified via events (e.g., methods in the
component (implemented in TypeScript)) and not via two-way data binding.

R2: Component file (TypeScript) works with domain data in its original form, there is no transformation
of it, and additional attributes cannot be present in the View (HTML).

R3: View (HTML) properties (e.g., color) are not part of the domain model.

R4: There are no @Input() and/or @Output() decorators for sending domain data between user-defined
components. Also, there are no input and output directives in the View (HTML) as user-defined
component selectors.

https://www.mdpi.com/article/10.3390/electronics12153364/s1
https://www.mdpi.com/article/10.3390/electronics12153364/s1


Electronics 2023, 12, 3364 23 of 26

Table A1. Cont.

Design Patterns Rules

HMVC

R5: Component file (TypeScript) contains @Input() and/or @Output() decorators and domain data are
transmitted through component parameters, or in the View (HTML), user-defined component selectors
have input and/or output directives.

R6: Component file (TypeScript) is working with a smaller part of a domain entity; the entire domain
entity is not present in the component. Only some properties of the entity are in use.

R7: Component file (TypeScript) works with domain data in its original form, there is no transformation
of it, and additional attributes cannot be present in the View (HTML).

MVA

R8: Domain model data are transformed for a different visualization purpose and the variable containing
the transformed value is used in the View (HTML).

R9: Domain model data transformations are handled in one component that is responsible for an entire
page and contains multiple widgets.

MGM

R10: Domain model data are transformed for a different visualization purpose and the variable
containing the transformed value is used in the View (HTML).

R11: Domain model data transformation is handled in a component that is responsible only for a given
UI widget.

Table A2. Rule sets of MVW design pattern detection in Angular projects.

Design Patterns Rules

Application Model

R12: UI widget (HTML) attributes are parts of the Application Model declared in the Component file
(TypeScript).

R13: UI widget (HTML) attributes (e.g., CSS class, color, size, etc.) are set based on the values of the
domain model attributes. Only UI widget (HTML) attributes that change the behavior of the content are
valid here.

R14: UI widget (HTML) attributes are not part of the domain model; these properties can be only present
in the Component file (TypeScript).

R15: There are multiple Application Model attributes (declared in the TypeScript code) that refer to the
same domain model attribute (e.g., value and color attributes in the Application Model refer to the value
in the domain model).

Microsoft MVVM

R16: The Component file (TypeScript) acts as an interface between the domain model and the View
(HTML). It should encapsulate any logic needed to convert the domain model data into a form that is
suitable for the View (HTML).

R17: UI widget (HTML) attributes are not part of the domain model; these properties can only be present
in the Component file (TypeScript).

R18: The changes in the ViewModel (Component) attribute values trigger data retrieval from the Model
and the View (HTML) is updated through data binding.



Electronics 2023, 12, 3364 24 of 26

Table A3. Rule sets of MVW design pattern detection in Angular projects.

Design Patterns Rules

Dolphin Smalltalk MVP

R19: Input fields are checked with validators in the component file (TypeScript code), e.g., FormControl
value validations.

R20: UI widget (HTML) appearance (behavior) depends on the result of a validator (e.g., a button is
disabled if a validator fails).

R21: View states (behaviors) are handled in the HTML code, not in the component file, so HTML DOM
elements are not accessed explicitly from TypeScript code.

R22: Model is maintained only for the domain entity and its attributes; UI widget (HTML) attributes
(e.g., colors, validity) are not present in the domain model.

Supervising Controller

R23: Input fields are checked with validators in the component file (TypeScript code), e.g., FormControl
value validation.

R24: UI widget (HTML) appearance (behavior) depends on the result of a validator (e.g., a button is
disabled if a validator fails).

R25: Domain model contains the results of the user input validations, so widget appearance (behavior)
explicitly depends on domain model attribute values.

Passive View

R26: Input fields are checked with validators in the component file (TypeScript code), e.g., FormControl
value validation.

R27: UI widget (HTML) appearance (behavior) depends on the result of a validator (e.g., a button is
disabled if a validator fails).

R28: Some UI widgets (HTML DOM elements) are created and/or modified in the component file
(TypeScript).

R29: There are View states (behaviors) that are handled in the component file (TypeScript), so HTML
DOM elements may be accessed explicitly from TypeScript code.

R30: Model is maintained only for the domain entity and its attributes; UI widget (HTML) attributes
(e.g., colors, validity) are not present in the domain model.



Electronics 2023, 12, 3364 25 of 26

Table A4. A summary of key considerations for employing MVW design pattern variants in Angular.

Design
Patterns

User Data
Sent via
Methods

Triggered by
Change
Events

User Data
Sent via

Data-
Binding

Domain
Data Shared

between
Compo-

nents

View-
Specific

Attributes
Declared

within the
Component
but Not in

the Domain
Entity

View-
Specific

Attributes
Are Part of
the Domain

Entity

View-
Specific

Attributes
Refer to the

Same
Domain
Property

View-
Specific

Attributes
Refer to

Different
Domain
Property

Only UI
Widget

Behavioral
Attributes

Can Be
Declared in

the
Component

UI Widgets
Have

Different
Controllers

User Input
Is Validated
and Has an
Impact on

the
Presented

Data

View
Receives

Data from
the

Component
and Is

Maintained
by It

Smalltalk-80
MVC X

HMVC X X

MVA X X X

MGM X X X X

Application
Model X X X X

Microsoft
MVVM X X

Dolphin
Smalltalk

MVP
X X

Supervising
Controller X X X

Passive View X X X



Electronics 2023, 12, 3364 26 of 26

References
1. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Professional Computing Series; Pearson Deutschland GmbH: Munchen, Germany, 1998; ISBN 978-0-201-63498-3.
2. Model View Controller History. Available online: https://wiki.c2.com/?ModelViewControllerHistory (accessed on 11 July 2023).
3. Myer, T. Professional CodeIgniter, 1st ed.; Wrox: Birmingham, UK, 2008; pp. 7–9.
4. Fowler, M. Patterns of Enterprise Application Architecture; Addison-Wesley Professional: Francisco, CA, USA, 2002; pp. 330–332.
5. Krasner, G.E.; Pope, S.T. A Cookbook for Using the Model-View Controller User Interface Paradigm in Smalltalk-80. JOOP J.

Object-Oriented Program. 1988, 1, 26–49.
6. Potel, M. MVP: Model-View-Presenter the Taligent Programming Model for C++ and Java; Taligent Inc.: Auburn, CA, USA, 1996.
7. Iordan, A. MVP Architecture and Design Patterns Applied to an Optimal Development of a Soft Used for Shortest Path Problem

Study. Res. Highlights Math. Comput. Sci. 2023, 9, 36–54. [CrossRef]
8. Smith, J. Patterns—WPF Apps with the Model-View-ViewModel Design Pattern. MSDN Mag. 2009, 24, 135.
9. GUI Architectures. Available online: https://martinfowler.com/eaaDev/uiArchs.html#Model-view-presentermvp (accessed on

12 July 2023).
10. Syromiatnikov, A.; Weyns, D. A Journey through the Land of Model-View-Design Patterns. In Proceedings of the IEEE/IFIP

Conference on Software Architecture, Sydney, NSW, Australia, 7–11 April 2014; pp. 21–30. [CrossRef]
11. Indrawan, D.; Kusumo, D.; Puspitasari, S. Analysis of the Implementation of MVVM Architecture Pattern on Performance of iOS

Mobile-based Applications. J. Ilm. Penelit. Dan Pembelajaran Inform. (JIPI) 2023, 8, 59–65. [CrossRef]
12. Sampayo-Rodriguez, C.J.; González-Ambriz, R.; Gonzálczmartinez, B.A.; Aldana-Herrera, J. Processor and memory performance

with design patterns in a native Android application. J. Appl. Comput. 2022 6, 53–61.
13. García, R.F. MVVM: Model–View–ViewModel. In iOS Architecture Patterns; Apress: Berkeley, CA, USA, 2023. [CrossRef]
14. Epiloksa, H.A.; Kusumo, D.S.; Adrian, M. Effect Of MVVM Architecture Pattern on Android Based Application Performance.

J. Media Inform. Budidarma 2022, 6, 1949–1955. [CrossRef]
15. Forte, L. Building a Modern Web Application Using an MVC Framework. Bachelor’s Thesis, Oulu University of Applied Sciences,

Degree Programme in Business Information Technology, Oulu, Finland, 2016.
16. Badurowicz, M. MVC architectural pattern in mobile web applications. Actual Probl. Econ. 2011, 6, 305–309.
17. GPT-4 Technical Report, OpenAI Blog. 2023. Available online: https://cdn.openai.com/papers/gpt-4.pdf (accessed on 12 July 2023).
18. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training, OpenAI

Blog. 2018. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/
language_understanding_paper.pdf (accessed on 12 July 2023).

19. Roumeliotis, K.I.; Tselikas, N.D. ChatGPT and Open-AI Models: A Preliminary Review. Future Internet 2023, 15, 192. [CrossRef]
20. Koirala, S. Comparison of Architecture Patterns MVP(SC), MVP(PV), PM, MVVM and MVC. 2010. Available online: http:

//www.codeproject.com/Articles/66585/Comparison-of-Architecture-presentation-patterns-M (accessed on 12 July 2023).
21. Nazar, N.; Aleti, A.; Zheng, Y. Feature-Based Software Design Pattern Detection. J. Syst. Softw. 2020, 185, 111179. [CrossRef]
22. Wang, L.; Song, T.; Song, H.-N.; Zhang, S. Research on Design Pattern Detection Method Based on UML Model with Extended

Image Information and Deep Learning. Appl. Sci. 2022, 12, 8718. [CrossRef]
23. Nord, R.; Kurtz, Z. Using Machine Learning to Detect Design Patterns, Carnegie Mellon University, Software Engineering

Institute’s Insights (blog). March, 2020. Available online: https://insights.sei.cmu.edu/blog/using-machine-learning-to-detect-
design-patterns/ (accessed on 11 July 2023).

24. Dobrean, D.; Diosan, D. A Hybrid Approach to MVC Architectural Layers Analysis. In Proceedings of the 16th International
Conference on Evluation of Novel Approaches to Software Engineering (ENASE 2021), Online, 26–27 April 2021; pp. 36–46.

25. Komolov, S.; Dlamini, G.; Megha, S.; Mazzara, M. Towards Predicting Architectural Design Patterns: A Machine Learning
Approach. Computers 2022, 11, 151. [CrossRef]

26. Model-View-Controller. Available online: https://developer.apple.com/library/archive/documentation/General/Conceptual/
DevPedia-CocoaCore/MVC.html (accessed on 11 July 2023).

27. Li, Y.; Jing, W. Research on Integrated Management System of Physical Education Course Information based on Spring MVC
Framework. In Proceedings of the International Conference on Information System, Computing and Educational Technology
(ICISCET), Montreal, QC, Canada, 23–25 May 2022; pp. 121–124. [CrossRef]

28. Model-View-Adapter (MVA, Mediated MVC, Model-Mediator-View). Available online: https://stefanoborini.com/book-
modelviewcontroller/02-mvc-variations/05-variations-on-the-triad/01-model-view-adapter.html (accessed on 11 July 2023).

29. Bulka, A. Model GUI Mediator. 2001. Available online: https://www.atug.com/andypatterns/AndyBulkaModelGuiMediatorPattern.
pdf (accessed on 12 July 2023).

30. Hopkins, T.; Horan, B. Smalltalk: An Introduction to Application Development Using VisualWorks; Prentice Hall International (UK)
Ltd.: London, UK, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://wiki.c2.com/?ModelViewControllerHistory
http://doi.org/10.9734/bpi/rhmcs/v9/5089B
https://martinfowler.com/eaaDev/uiArchs.html#Model-view-presentermvp
https://doi.org/10.1109/WICSA.2014.13.
http://dx.doi.org/10.29100/jipi.v8i1.3293
https://doi.org/10.1007/978-1-4842-9069-9_4
http://dx.doi.org/10.30865/mib.v6i4.4545
https://cdn.openai.com/papers/gpt-4.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://dx.doi.org/10.3390/fi15060192
http://www.codeproject.com/Articles/66585/Comparison-of-Architecture-presentation-patterns-M
http://www.codeproject.com/Articles/66585/Comparison-of-Architecture-presentation-patterns-M
http://dx.doi.org/10.1016/j.jss.2021.111179
http://dx.doi.org/10.3390/app12178718
https://insights.sei.cmu.edu/blog/using-machine-learning-to-detect-design-patterns/
https://insights.sei.cmu.edu/blog/using-machine-learning-to-detect-design-patterns/
http://dx.doi.org/10.3390/computers11100151
https://developer.apple.com/library/archive/documentation/General/Conceptual /DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual /DevPedia-CocoaCore/MVC.html
https://doi.org/10.1109/ICISCET56785.2022.00039
https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/05-variations-on-the-triad/01-model-view-adapter.html
https://stefanoborini.com/book-modelviewcontroller/02-mvc-variations/05-variations-on-the-triad/01-model-view-adapter.html
https://www.atug.com/andypatterns /AndyBulkaModelGuiMediatorPattern.pdf
https://www.atug.com/andypatterns /AndyBulkaModelGuiMediatorPattern.pdf

	Introduction
	Related Work
	Materials and Methods
	MVW Taxonomy for Frontend Frameworks
	Smalltalk-80 MVC
	HMVC
	MVA
	MGM
	Application Model
	Microsoft MVVM
	Dolphin Smalltalk MVP
	Supervising Controller
	Passive View

	Rule-Based Design Pattern Identification in Angular Projects
	MVW Dataset and Evaluation with GPT Models

	Results
	RQ1: MVW Design Pattern Detection in Angular Projects
	RQ2: Most Typical MVW Design Pattern in Angular Application Development
	RQ3: Recommendations for Using MVW Design Patterns in Angular Application Development
	Smalltalk-80 MVC
	HMVC 
	MVA
	MGM
	Application Model
	Microsoft MVVM
	Dolphin Smalltalk MVP
	Supervising Controller
	Passive View

	RQ4: Future Potentials Based on the Results

	Discussion
	Study Limitations
	Conclusions
	Appendix A
	References

