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Abstract: In the field of computer vision, convolutional neural network (CNN)-based models have
demonstrated high accuracy and good generalization performance. However, in semantic segmenta-
tion, CNN-based models have a problem—the spatial and global context information is lost owing to
a decrease in resolution during feature extraction. High-resolution networks (HRNets) can resolve
this problem by keeping high-resolution processing layers parallel. However, information loss still
occurs. Therefore, in this study, we propose an HRNet combined with an attention module to address
the issue of information loss. The attention module is strategically placed immediately after each
convolution to alleviate information loss by emphasizing the information retained at each stage. To
achieve this, we employed a squeeze-and-excitation (SE) block as the attention module, which can
seamlessly integrate into any model and enhance the performance without imposing significant
parameter increases. It emphasizes the spatial and global context information by compressing and
recalibrating features through global average pooling (GAP). A performance comparison between
the existing HRNet model and the proposed model using various datasets show that the mean
class-wise intersection over union (mIoU) and mean pixel accuracy (MeanACC) improved with the
proposed model, however, there was a small increase in the number of parameters. With cityscapes
dataset, MeanACC decreased by 0.1% with the proposed model compared to the baseline model,
but mIoU increased by 0.5%. With the LIP dataset, the MeanACC and mIoU increased by 0.3% and
0.4%, respectively. The mIoU also decreased by 0.1% with the PASCAL Context dataset, whereas the
MeanACC increased by 0.7%. Overall, the proposed model showed improved performance compared
to the existing model.

Keywords: deep learning; computer vision; CNN; attention

1. Introduction

Studies on convolutional neural networks (CNNs) in the field of computer vision have
demonstrated the high accuracy and good generalization performance of CNNs for various
tasks and open datasets. CNNs exhibit excellent generalization performances in several
computer vision problems, including image classification, semantic segmentation, object
detection, and human pose estimation. However, capturing complex relationships between
channels or pixel positions in space is challenging because of insufficient feature extraction
for global context and spatial information.

To solve this problem, one study combined a CNN and an attention module with a
residual connection architecture by emphasizing global context information, leading to
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improved performance [1]. In addition, CNN-based models undergo a downsampling
process, in which a high-resolution image is transformed into a low-resolution image during
the feature extraction process. Downsampling causes a loss of global context and spatial
information. This problem is a major cause of performance degradation in semantic segmen-
tation in which image features must be restored to the original image. A high-resolution
network (HRNet) model was thus proposed to solve this resolution reduction problem [2].
Among the various models capable of performing semantic segmentation, HRNet was origi-
nally developed for human pose estimation and achieved superior performance. However,
because the process of downsampling and upsampling human pose estimation is similar to
semantic segmentation, it exhibits high performance in semantic segmentation.

HRNet is a parallelized model that maintains multi-scale resolution to efficiently
learn global context and spatial information. The high- and low-resolution convolutional
branches were kept parallel to extract and share features. This method can learn rich infor-
mation and partially solve the problem of information loss by undergoing a convergence
process in which branches share characteristics. Since then, the HRNet has undergone many
improvements in terms of accuracy and speed in human pose estimation, classification,
and object detection [3–5].

In this study, an attention module was added to every convolution block to improve the
performance by reducing the loss of global context and spatial information during feature
extraction. The method of adding an attention module enables more accurate semantic
segmentation by more efficient information fusion between the high-resolution and low-
resolution branches. The squeeze-and-excitation (SE) Block [6], published simultaneously
as [1], was used as an attention module. The SE Block has been used in various fields,
such as classification and semantic segmentation because it can be easily added to any
model [7,8]. The SE Block can efficiently recalibrate the features by applying squeeze and
excitation techniques. The SE Block was verified as effective in reducing errors while
minimizing the increase in the number of parameters [6]. The technique of increasing
accuracy while minimizing the increase in the number of parameters is easy in areas
similar to autonomous driving, where lightweight and accuracy are crucial. To evaluate the
performance of the proposed method, the Cityscapes [9], LIP [10], and PASCAL Context [11]
datasets were used. These datasets have been widely used for semantic segmentation. The
baseline model used was an HRNet model pretrained with ImageNet [12].

Experiments were then performed to compare the performances depending on the
presence or absence of the attention module. The contribution of this study is that it
proposes a method to improve performance while suppressing the increase in the number
of parameters as much as possible by using an attention module. The global context
information included in each channel was recalibrated to improve pixel segmentation
and class classification performance. The effect of global context information on semantic
segmentation was experimentally confirmed.

Section 2 describes the HRNet and the attention modules. Section 3 explains the
HRNet based on the attention module. In Section 4, we compare the improvement in the
accuracy of the proposed method with that of the existing method through experiments
using various datasets. Finally, Section 5 presents the conclusions of this study.

2. Related Works
2.1. Semantic Segmentation

Upsampling is the task of restoring features extracted from semantic segmentation
of the original image and classifying each pixel into a class. Spatial information of res-
olution is important for classifying pixel units. Therefore, the FCN [13], a model with
improved performance, was first proposed by reducing the pixel location information loss
and configuring all layers with convolution layers. Subsequently, SegNet [14] and UNet
that [15] use an encoder–decoder structure were proposed. In addition, noting that the
spatial information of different resolutions is important for performance improvement,
Deeplabv3 [16] and PSPNet [17], using Atrous Convolution and ASPP, were proposed.
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RefineNet [18], which combines feature maps of various resolutions using a refine block,
showed improved performance because a high resolution provides rich spatial informa-
tion. As another method using multi-resolution, research on transmitting and exchanging
low-resolution information with a residual connection structure [19] has been published;
in addition, several other studies have been published, such as combining multi-scale
pyramid representations [20,21].

Existing CNN-based models have a pyramid structure in which the size of the convo-
lution feature maps decreases as the depth increases [1,13]. However, HRNet maintains
feature maps with a smaller size than the high-resolution branched branches while main-
taining high-resolution feature maps in parallel. A new feature map is generated by
merging the feature maps in branches with different resolutions. This method obtains
richer information by exchanging information from different resolutions. Feature maps
containing information at multiple resolutions allow high-quality upsampling, resulting in
more accurate segmentation. The structure of HRNet is shown in Figure 1.
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Figure 1. Example of HRNet architecture. There are four stages. The architecture consists of high-
resolution convolutions with a transition unit and an exchange unit.

The HRNet consists of four stages. The first stage is a bottleneck structure with
64 channels like ResNet-50 [22]. The second, third, and fourth stages consist of transition
and exchange units. The transition unit fuses feature maps of different branches to generate
a new feature map. The exchange unit exchanges information on the feature maps of
different branches. The overall structure of the HRNet is one in which the unit exchange is
repeated four times after the unit transition and convolution. In HRNetV2-W18, W30, and
W48, W is the number of channels with the highest-resolution convolution. The size of the
convolution was 3 × 3, and the size of the first input image feature map was different for
each dataset, as explained in detail in Section 3. When generating a new feature map using
feature maps of different resolutions, downsampling or upsampling was performed to
match the resolutions. For downsampling, a stride 2 convolution was performed when the
resolution size was reduced by 1/2. Stride 2 convolution was performed again when the
resolution was reduced by 1/4. When upsampling by 2× or 4×, the maximum value was
used, and upsampling was performed in one step without intermediate steps. The number
of channels in a parallel branch doubled when the resolution was reduced by half. If the
original resolution image size was 32 channels, 1/2 had 64 channels, 1/4 had 128 channels,
and 1/8 had 256 channels.

Despite the aforementioned efforts, HRNet continues to experience information loss
during the feature extraction process, owing to the inherent characteristics of convolution-
based models. These factors contribute to a decrease in resolution, which is a significant
concern in semantic segmentation because they adversely affect the segmentation accuracy.
To address this issue, this study proposes inserting an attention module immediately after
each convolution to mitigate information loss and alleviate the resolution reduction problem.

2.2. Attention Module

The basic idea of attention in natural language processing is that the encoder refers
to the entire input sentence once again at each timestamp at which the decoder predicts
the output word. Rather than referencing the entire input sentence in equal proportions,
we refer to the part of the input word related to the word to be predicted at that time. The
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basic concept of the Attention technique is a dictionary data type consisting of key values
applied to many fields of computer engineering; this is shown in (1):

Attention(Q, K, V) = AttentionValue (1)

In Equation (1), Attention calculates the similarity between a given query and a key.
The output similarity is then multiplied by each value mapped to a key. The sum of all
values that reflected similarity was then obtained. Self-attention is an expanded form of
attention [23]. The query, key, and value of existing attention are different values, whereas
those of self-attention are the same. Self-attention recalibrates the channel by passing an
input query and key through a 1 × 1 convolution. Subsequently, keys are transposed
and multiplied to obtain the cosine similarity. The attention map is then outputted using
softmax. Finally, a self-attention feature map is generated by multiplying the values that
have undergone 1 × 1 convolution. Self-attention has expanded to various fields such as
reinforcement learning, image captioning, and natural language processing [24,25]. It is also
used to emphasize the relationship between context information and pixels [26]. Attention
mechanisms have been used in many computer vision tasks to address the limitations of
standard convolutions [27–30]. In some computer vision tasks, multi-head self-attention
with a sufficient number of heads produced notable results in a study by Cordonnier
et al. [31]. In addition, a standalone self-attention model in which all layers are composed
of self-attention achieved excellent performance [32].

The attention module is mainly used in tasks where context information is impor-
tant, such as visual question answering (VQA), image captioning, and scene character
recognition [33,34]. However, when the concept of attention was expanded to self-attention,
it began to be used in CNN. SENet uses an attention mechanism that captures the inter-
actions between channels such that each channel can be assigned a different weight. This
model can improve performance through different weightings per channel. A channel
with a large weight is interpreted as an important feature, whereas a channel with a small
weight is interpreted as containing less important information. Different weights were
assigned to different channels of the feature map and multiplied. The module was used
to assign different weights to each channel. The SE Block consists of two stages: squeeze
and excitation. In the squeeze stage, global average pooling (GAP) is performed to make
each channel of the image one-dimensional. In the recalibration stage, the squeezed vector
passes through two fully connected layers: a rectified linear unit (ReLU) and a sigmoid.
Finally, the flattened vector is multiplied by the image that has passed through a 1 × 1
convolution and the weight, which is squeezed information, to emphasize the important
information. Figure 2 illustrates an SE Block [6]. Figure 3 shows the detailed architecture of
the SE Block inserted into ResNet.

The hyperparameter in the SE Block is the reduction ratio, which reduces and increases
the number of nodes in the fully connected layer and ReLU parts. As the reduction ratio
decreased, the number of parameters increased. As the number of reduction ratio increased,
the number of parameters decreased. That is, it is a hyperparameter related to changes in
capacity and computational cost.
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3. Proposed Method

Section 3 explains the structure of the proposed model and how it is combined with
the attention module. The proposed method focuses on improving the upsampling perfor-
mance in semantic segmentation by adding an attention module to the HRNet. When the
attention module was added, an increase in the number of parameters was required. Thus,
an SE Block with a low computational load was used. Figure 4 presents an overview of
E-HRNet, where an SE Block, which is an attention module, is inserted at the end of each
convolution block. In addition, all convolution blocks, except for the bottleneck block, have
the same structure.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. E-HRNet overview. 

3.1. Details of HRNet Architecture 
The detailed architecture of an existing HRNet is shown in Figure 1. The baseline 

model used was HRNetV2-W48. In HRNetV2-W48, the highest-resolution branch had 48 
convolutional channels with resolutions of 1024 × 512 for Cityscapes, 473 × 473 for LIP, 
and 480 × 480 for PASCAL Context. Feature maps with 1/2, 1/4, and 1/8 resolutions were 
used only to exchange information at different resolutions. Therefore, attention modules 
can be easily added to all resolution branches per convolution block unit. There are four 
stages. Unit transitions and exchanges were repeated to form the 2nd, 3rd and 4th stages. 
The unit transition and exchange consist of a multi-resolution group convolution and 
multi-resolution convolution, as shown in Figure 5a,b. Figure 5a shows a simple extension 
of the convolution with multiple resolutions. Multi-resolution group convolution divides 
an input channel into subsets of several channels and performs each convolution sepa-
rately for different spatial resolutions. 

Figure 5b illustrates the multi-resolution convolution that exchanges and fuses fea-
tures extracted from parallel branches with information from different resolutions. Multi-
resolution convolution is similar to the multibranch full-connection method of a general 
convolution, as shown in Figure 5c. A normal convolution can be divided into several 
small convolutions. The input channels are divided into several subsets. The output chan-
nels are also divided into several subsets. The input and output subsets were connected 
in a fully connected manner. Each connection has a normal convolution. Each subset of 
the output channels was the sum of the convolution outputs for each subset of the input 
channels. 

 

Figure 4. E-HRNet overview.

3.1. Details of HRNet Architecture

The detailed architecture of an existing HRNet is shown in Figure 1. The baseline
model used was HRNetV2-W48. In HRNetV2-W48, the highest-resolution branch had
48 convolutional channels with resolutions of 1024 × 512 for Cityscapes, 473 × 473 for LIP,
and 480 × 480 for PASCAL Context. Feature maps with 1/2, 1/4, and 1/8 resolutions were
used only to exchange information at different resolutions. Therefore, attention modules
can be easily added to all resolution branches per convolution block unit. There are four
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stages. Unit transitions and exchanges were repeated to form the 2nd, 3rd and 4th stages.
The unit transition and exchange consist of a multi-resolution group convolution and
multi-resolution convolution, as shown in Figure 5a,b. Figure 5a shows a simple extension
of the convolution with multiple resolutions. Multi-resolution group convolution divides
an input channel into subsets of several channels and performs each convolution separately
for different spatial resolutions.
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Figure 5b illustrates the multi-resolution convolution that exchanges and fuses fea-
tures extracted from parallel branches with information from different resolutions. Multi-
resolution convolution is similar to the multibranch full-connection method of a general
convolution, as shown in Figure 5c. A normal convolution can be divided into several small
convolutions. The input channels are divided into several subsets. The output channels are
also divided into several subsets. The input and output subsets were connected in a fully
connected manner. Each connection has a normal convolution. Each subset of the output
channels was the sum of the convolution outputs for each subset of the input channels.

The difference from normal convolution is that in multi-resolution convolution, each
subset of the channels has a different resolution. In addition, to reduce the resolution
through downsampling, 2-stride 3 × 3 convolution was used to connect the input and
output channels. Bilinear upsampling was performed while upsampling the downsampled
feature map.

3.2. E-HRNet Architecture

A total of 71 ReLU layers were added by adding SE blocks to the existing HRNet
model, consisting of 307 convolution layers, 306 batch normalizations, 269 ReLU layers,
4 bottleneck layers, 104 basic blocks, and 8 high-resolution modules. A total of 108 GAP
layers were added for compression with one feature. Additionally, 206 fully connected layers,
108 sigmoid layers, and 108 SE Blocks were added. The existing number of parameters
increased by 0.4 M from 65.8 M based on the Cityscapes dataset to 66.2 M, an increase of less
than 1%. Giga floating point operations per second (GFLOPs) slightly increased to 0.0004.

Figure 6 illustrates the E-HRNet. The existing HRNet efficiently extracts features by
fusing the features between parallel branches. However, information loss still occurred
during downsampling. In the proposed model architecture, global context information
within the object domain can be recalibrated by adding an attention module at the end of
every convolution block to reduce information loss.

The SE Block is used in this context because of its ease of integration into any model
and its ability to address the issue of information loss by recalibrating features with a
minimal parameter increase. Specifically, the SE-Block-based attention module passes the
input features through the GAP and squeezes each channel into one feature, that is, a scalar
value. Subsequently, as shown in Figure 2, the importance of the feature squeezed through
the fully connected layer and sigmoid is calculated as a probability value between 0 and 1
for each channel. The calculated importance is normalized as a weight and multiplied by
an image that has undergone a 1 × 1 convolution to readjust the feature value.
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Figure 6. Details architecture of E-HRNet.

In this study, the SE block was selected to recalibrate the feature value of the global
context information for each channel within a range where the number of parameters did
not increase excessively. In addition, by adding an SE block to all the convolution processes,
information can be extracted uniformly at both high and low resolutions.

3.3. Instantiation

To check the effect of the attention module on the segmentation accuracy, this study
was implemented in a manner similar to that of HRNetV2. The network starts with a
branch of a 2-stride, 3 × 3 convolution that reduces the feature-map resolution to 1/4.
Stage 1 consists of 4 convolutional blocks, each of which comprise a 64-channel bottleneck.
Subsequently, a 3 × 3 convolution is continued one-by-one to reduce the width of the
feature map to C. C means 48 of HRNetV2-W48. Stages 2, 3 and 4 include 1, 4 and 3 multi-
resolution blocks, respectively. The widths of the four resolution convolutions were double
those of C, 2C, 4C and 8C. Each branch of the multi-resolution group convolution contains
4 convolution blocks. Each resolution contains two 3 × 3 convolutions. In Figure 7, the
middle box enlarges the input size 4 times through bilinear upsampling of the feature map
extracted from the four resolution branches.
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Figure 7. Concatenating the representation from all resolutions for semantic segmentation.

The outputs of all resolutions were then mixed using a 1 × 1 convolution to generate
a 15C dimensional representation. Finally, a segmentation map with the original resolution
is generated. Based on this architecture, a SE Block is added to every convolution block
unit. Algorithm 1 shows the pseudocode of the E-HRNet. The code is written in Python.
The deep learning library used was PyTorch. The SE Block was inserted at the end of the
Basic Block that undergoes two convolutions. The SE Block learns the nonlinearity between
channels through the fully connected layer and ReLU after being squeezed into a scalar
value through adaptive average pooling. Finally, important information is emphasized
through the sigmoid, and other information is zeroed out.

Pseudocode of E-HRNet (variables N, C, H, W denote sample number in a mini-batch,
feature channels, image height, and image width, respectively) as Algorithm 1.



Electronics 2023, 12, 3619 8 of 16

Algorithm 1: Attention Module Pseudocode, Torch-like

1 # input features with shape [N, C, H, W] = x
2 # N: batch size, C: channels, H: height, W: width
3 # SEBlock = Attention module
4 # reduction ratio = 16
5 def SEBlock (x)
6 squeeze = torch.nn.AdaptiveAvgPool2d(x)
7 excitation = torch.nn.Fully_connected(squeeze, out_channel/ratio)
8 excitation = torch.nn.ReLU(excitation)
9 excitation = torch.nn.Fully_connected(excitation/ratio, out_channel)
10 excitation = torch.nn.Sigmoid(excitation)
11 scale = x * excitation
12 return scale
13 def Convolution Basicblock (x)
14 residual = x
15 out = torch.nn.Convolution(x)
16 out = torch.nn.BatchNorm2d(out)
17 out = torch.nn.ReLU(out)
18 out = torch.nn.Convolution(out)
19 out = torch.nn.BatchNorm2d(out)
20 out = torch.nn.SEBlock(out)
21 out += residual
22 out = ReLU(out)
23 return out

4. Experiments

Semantic segmentation is the task of assigning a label to each pixel. In this study,
to verify the effect of the attention module on segmentation accuracy in semantic seg-
mentation, the parameters, datasets, and training rules were set the same as those of
the existing HRNetV2, except for the attention module. Cityscapes [9], a representative
scene-parsing dataset, and LIP [10], a human-parsing dataset, were used. In addition,
PASCAL Context [11], a general image dataset, is used. PASCAL Context extends the 2010
PASCAL-VOC. The HRNet-based models were pre-trained using ImageNet. Tables 1 and 2
list the hardware specifications and software versions used for development and testing.

Table 1. Hardware specifications.

Hardware Specifications

CPU Intel Core i7 7700k
Graphics Card NVIDIA Geforce RTX 3090 24 GB

RAM Samsung DDR4 32 GB
SSD Samsung 850 Pro 512 GB

Table 2. Software version.

Software Version

Operating System Ubuntu 20.04.1 LTS
CUDA 11.2.67
cuDNN 8.1.0

Programing Language Python 3.8.10
Pytorch 1.8.1

4.1. Cityscapes

The Cityscapes dataset consists of 5000 high-resolution and finely annotated scene
images. These finely annotated images were divided into 2975 training, 500 validation, and
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1525 testing images. There were 30 classes in total. In this study, 19 classes, excluding the
empty and sparse categories, were used for the training and evaluation of efficient learning.

The batch size was set to six. The same training protocol as HRNetV2 [17,35] was used,
except that a single GPU was used instead of multiple GPUs. An image with a resolution
of 1024 × 2048 pixels was randomly cropped to 512 × 1024 pixels. Data were augmented
using random scaling and random horizontal flip in the range of 0.5–2. The optimizer used
stochastic gradient descent (SGD). The initial learning rate was 0.01, and the momentum
was set to 0.9. The dampening was set to 0, and the weight decay was 0.0005. The nesterov
was set to false, and the maximize was set to false. The foreach was set to none, and the
differentiable was set to false. The learning rate schedule used a polylearning rate policy
with a power of 0.9. The reduction ratio used for the SE Block was 16. The performance of
the model was evaluated using a single-scale non-flipped dataset.

Table 3 presents a comparison of the number of parameters, GFLOPs, mIoU, and
MeanACC of the HRNet and the proposed models with those of the Cityscapes validation
set. The number of parameters increased by 0.4 M, and GFLOPs increased by 0.001 compared
to HRNetV2-W48, which became the baseline model. MeanACC, the average accuracy of
the pixel, decreased by 0.1%. However, the mIoU increased by 0.5% owing to the improved
performance in segmenting the regions of objects corresponding to pixel classes.

Table 3. Results of HRNetV2-based semantic segmentation model with the Cityscapes validation set
(single scale and no flipping). GFLOPs is calculated on RTX 3090 with input size of 1024 × 2048. The
proposed method backbone is HRNetV2-W48.

Method # Params [M] GFLOPs [G] mIoU [%] MeanACC [%]

HRNetV2-W18 1.5 7.774 63.6 72.9
HRNetV2-W48 65.8 174.043 79.4 87.1

Proposed Method 66.2 174.044 79.9 87.0

Table 4 shows the mIoU comparison of existing models and the proposed model with
the Cityscapes validation set. It achieved 4.2% higher performance than UNet++ [23],
a relatively lightweight model. It also showed 1.2% and 0.1% higher performance than
DeepLabv3 [16] and DeepLabv3+ [20] of similar weight, respectively.

Table 4. Results of semantic segmentation comparison with other models with Cityscapes dataset.

Method Backbone mIoU [%]

UNet++ [19] ResNet-101 75.5
DeepLabv3 [16] Dilated-ResNet-101 78.5

DeepLabv3+ [20] Dilated-Xception-71 79.6
Proposed Method HRNetV2-W48 79.9

Table 5 compares the mIoU, instance intersection over union (iIoU) classes, IoU cate-
gories, and iIoU categories between HRNet and the proposed model on the Cityscapes test
set. While IoU evaluates how well a model segments an entire class, iIoU is a measure that
determines how efficiently a model distinguishes individual objects within the same class
by evaluating segmentation accuracy at the instance level. Utilizing both metrics simultane-
ously provides a comprehensive understanding of how well the model segments individual
objects. The difference between class and category lies in the scope of consideration. For
example, a class encompasses all of the individual classes, while a category groups similar
classes into broader categories. ‘Bus’, ‘Car’, and ‘Truck’ are all grouped under the ‘Vehicles’
category. Overall, the proposed model demonstrated strong performance across all metrics,
with a particularly noticeable improvement in iIoU. This suggests that the performance of
the proposed model is more adept at segmenting individual objects than entire classes.
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Table 5. Results of HRNetV2-based semantic segmentation model with the Cityscapes test set (single
scale and no flipping). GFLOPs is calculated on RTX 3090 with input size of 1024 × 2048. The
proposed method backbone is HRNetV2-W48.

Method mIoU iIoU Class IoU Category iIoU Category

HRNetV2-W18 63.9 38.0 85.7 69.3
HRNetV2-W48 77.2 55.0 91.1 79.1

Proposed Method 77.5 55.5 91.2 79.9

Table 6 shows the results of class-wise IoU on the Cityscapes test set. The proposed
model demonstrated similar segmentation performance for large objects like ‘sky’ and
‘buildings’ compared to existing models, but excelled in segmenting relatively small
and complex objects such as ‘traffic lights’, ‘traffic signs’, and ‘fences’. The results of
Tables 5 and 6 show that by emphasizing channel information, the characteristics of objects
that belong to the same class or are small in size and easily confused can be mitigated.

Table 6. Class-wise results of HRNetV2-based semantic segmentation model with the Cityscapes test set.

Class HRNetV2-W18 HRNetV2-W48 Proposed Method

Road 97.4 98.6 98.6
Sidewalk 78.4 86.6 86.6
Building 88.8 93.0 93.1

Wall 33.8 56.7 53.8
Fence 40.9 59.0 60.0
Pole 51.8 68.9 69.5

Traffic light 56.2 76.5 77.0
Traffic sign 64.1 79.3 79.2
Vegetation 91.8 93.7 93.7

Terrain 69.7 72.2 72.9
Sky 93.4 95.5 95.5

Person 76.5 86.8 86.9
Rider 51.7 70.7 71.5
Car 92.4 95.8 95.7

Truck 34.8 60.1 63.0
Bus 46.7 67.8 67.2

Train 36.0 62.1 63.3
Motorcycle 46.6 68.9 68.5

bicycle 63.1 75.4 75.9

Figure 8 shows the semantic segmentation prediction maps of the model trained on the
Cityscapes dataset. HRNetV2-W18 exhibited relatively more misclassifications due to un-
clear boundaries between objects. On the other hand, HRNetV2-W48 demonstrated clearer
boundaries between objects and fewer misclassifications compared to HRNetV2-W18. Our
proposed model shares similarities with HRNetV2-W48; however, it displayed superior
capabilities in accurately segmenting small and intricate objects that are easily overlooked.
From these results, we can infer that the number of channels in convolution plays a sig-
nificant role in segmentation performance. Additionally, we observed that information
emphasis through attention modules has a meaningful impact on accurately segmenting
intricate objects.
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4.2. LIP

The LIP dataset consists of 50,462 carefully annotated images of human body parts.
The dataset was divided into 30,462 images for training and 10,000 images for validation. It
consisted of 19 classes related to human parts and one background class.

The image was resized to 473 × 473 according to the training and test settings in [36].
The performance was evaluated as the average of the segmentation maps of the original
and flipped images. The settings for the data augmentation and learning rate schedule and
reduction ratio of SE Block were the same as those for Cityscapes. The training settings
are the same as those in [26]. The optimizer used SGD. The initial learning rate was set to
0.01, and the momentum was set to 0.9. The dampening was set to 0, and the weight decay
was set to 0.0005. The nesterov was set to false, and the maximize was set to false. The
foreach was set to none, and the differentiable was set to false. The batch size was 8. The
performance of the model was evaluated using a single-scale non-flipped dataset.

Table 7 shows a comparison of parameters, GFLOPs, mIoU, and MeanACC indicators of
the existing HRNet model and the proposed model with the LIP validation set. The number of
parameters increased by 0.4 M, and GFLOPs increased by 0.0004 compared to HRNetV2-W48,
the baseline model. Both the object region and pixel class classification accuracy showed
improvement, with MeanACC increased by 0.3% and mIoU increased by 0.4%.

Table 7. Results ofHRNetV2-based semantic segmentation model results with LIP validation set
(single scale and no flipping). GFLOPs is calculated on the RTX 3090 and input size 473 × 473. The
proposed method backbone is HRNetV2-W48.

Method # Params [M] GFLOPs [G] mIoU [%] MeanACC [%]

HRNetV2-W18 1.5 3.3798 13.4 19.1
HRNetV2-W48 65.8 75.9817 52.6 65.4

Proposed Method 66.2 75.9821 53.0 65.7

Table 8 shows the mIoU comparison of several models and the proposed model with
the LIP validation set. The proposed model as a whole without additional data achieved
the best performance.
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Table 8. Results of semantic segmentation comparison with other models with LIP validation set.

Method Backbone Extra mIoU [%]

Attention + SSL [10] VGG-16 Pose 44.7
DeepLabv3+ [20] Dilated-ResNet-101 - 44.8

MMAN [37] Dilated-ResNet-101 - 46.8
SS-NAN [38] ResNet-101 Pose 47.9
MuLA [39] Hourglass Pose 49.3
JPPNet [40] Dilated-ResNet-101 Pose 51.3

Proposed Method HRNetV2-W48 N 53.0

4.3. PASCAL Context

The PASCAL Context dataset consists of 4998 scene images for training and 5105 test
images. This class consisted of 59 object classes and one background class.

The settings for the data augmentation and learning rate schedule and reduction ratio
of SE Block were the same as those in Cityscapes. The optimizer used SGD. According
to the training strategy in [41,42], the image size was resized to 480 × 480, and the initial
learning rate was set to 0.004. The momentum was set to 0.9, and the dampening was set
to 0. The weight decay was set to 0.001, the nesterov was set to false. The maximize was
set to false, and the foreach was set to none. The differentiable was false. The batch size
was 13. The test strategy was based on a previously described procedure [41,42]. The test
image was resized to 480 × 480 pixels and input into the model. The output 480 × 480
segmentation map was resized to the original image size. The performance of the model
was evaluated using a single-scale non-flipped dataset.

Table 9 shows a comparison of parameters, GFLOPs, mIoU, and MeanACC indicators
of the HRNet model and the proposed model with the PASCAL Context test set. The
number of parameters increased by 0.5 M, and GFLOPs increased by 0.0004 compared to
HRNetV2-W48, the baseline model. The classification accuracy of the pixel class seemed to
be improved, as the mIoU fell by 0.1%, whereas MeanACC increased by 0.7%.

Table 9. Results of HRNetV2-based semantic segmentation model results with PASCAL Context test
set (single scale and no flipping) (60 classes, single scale, and no flipping). GFLOPs is calculated on
RTX 3090 with input size of 480 × 480. The proposed method backbone is HRNetV2-W48.

Method # Params [M] GFLOPs [G] mIoU [%] MeanACC [%]

HRNetV2-W18 1.5 3.5484 21.1 29.8
HRNetV2-W48 65.8 76.8800 45.3 55.0

Proposed Method 66.3 76.8804 45.2 55.7

Table 10 shows the mIoU comparison of several models with the proposed model on
the PASCAL Context test set. As in Table 9, 60 classes were evaluated, with the proposed
model achieving the best performance.

Table 10. Results of semantic segmentation comparison with other models on PASCAL Context test
set (60 classes).

Method Backbone mIoU [%]

FCN-8s [13] VGG-16 35.1
BoxSup [43] - 40.5

HO_CRF [44] - 41.3
Piecewise [45] VGG-16 43.3

Proposed Method HRNetV2-W48 45.2

4.4. HRNet-Based Model Performance Comparison Results

In the mIoU comparison, the PASCAL Context dataset, which was designed for seg-
menting small objects, saw a decrease of 0.1%. On the other hand, the Cityscapes validation
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set, intended for scene parsing, improved by 0.5%. In the experiments on the Cityscapes
test set, the mIoU, iIoU class, IoU category, and iIoU category improved by 0.3%, 0.5%,
0.1%, and 0.8%, respectively. Additionally, the LIP dataset, designed for body parts pars-
ing, experienced a 0.4% increase. The MeanACC comparison showed that the proposed
model exhibited a decrease of 0.1% in Cityscapes, a scene understanding dataset, while
showing an increase of 0.3% in LIP and 0.7% in the PASCAL Context dataset, compared
with the existing HRNetV2-W48. Therefore, it can be seen that emphasizing global context
information can influence the performance of segmenting boundaries between objects in
scene understanding tasks; it also affects pixel classification accuracy more when segment-
ing small objects than relatively larger ones. Additional experiments to provide further
evidence are included in Appendix A.

5. Conclusions

In this study, we propose an HRNet model that combines an attention module. The
proposed method uses the SE Block as an attention module to reduce the loss of global con-
text information. An attention module is introduced in each convolution block to mitigate
the information loss, focusing on the information loss that occurs at every convolution. This
approach emphasizes and preserves crucial information throughout a network, thereby
effectively addressing the issue of information loss. The performance experiment compared
the performances of the existing HRNet model and the proposed model using different
learning strategies for each dataset. The number of parameters increased by 0.4 M in
Cityscapes and LIP and by 0.5 M in PASCAL Context. The GFLOPs values increased by
0.001 in Cityscapes, and 0.0004 in LIP and Pascal Context. When using the Cityscapes
dataset, the pixel class classification accuracy decreased slightly. However, the object-range
segmentation performance improved. With the LIP dataset, all the performance metrics
showed improvement. With PASCAL Context, the object region segmentation performance
decreased slightly, whereas the pixel class classification performance improved. Compared
to several other models, the best performance was achieved by the proposed model. Conse-
quently, the attention module improved the performance without excessively increasing
the complexity of the model. Furthermore, we observed that emphasizing global contextual
information has a significant effect on performance.

In the future, it is expected that higher performance can be obtained by precisely ad-
justing the optimizer, learning policy, and hyperparameter values suitable for the proposed
model. In future research, it will be necessary to develop an optimal attention module for
the proposed model. Therefore, it is necessary to develop a new method to combine the
extracted features for upsampling.
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Appendix A. More Segmentation

ADE20K

For several reasons, we conducted additional experiments with the ADE20K dataset [46].
First, ADE20K encompasses various scene categories and annotated objects, enabling the
evaluation of models even in complex scenarios. Second, in experiments using the Cityscapes
dataset, there was little difference in segmentation performance for relatively large objects
such as ‘buildings’ and ‘sky’ compared to other models, and in experiments using the
PASCAL Context dataset, the mIoU actually dropped further, necessitating more research.
Lastly, the granularity of the ADE20K annotations is particularly suitable to underscore the
strengths we claim in our proposed model.

The ADE20K dataset was used in ImageNet scene parsing challenge 2016. There are
150 classes and diverse scenes with 1038 image-level labels. The dataset was divided into
20,210 training, 4002 validation, and 3352 testing images. Since the test set does not provide
labels, the model’s performance is evaluated through validation. The batch size was set to
nine. The same training protocol as HRNetV2 + OCR [47] was used, except that a single
GPU was used instead of multiple GPUs. The image size was resized to 520 × 520. The
settings for the data augmentation and learning rate schedule and reduction ratio of SE
Block were the same as those in Cityscapes. The optimizer used SGD. The initial learning
rate was 0.02, and the momentum was set to 0.9. The dampening was set to 0, and the
weight decay was 0.0001. The nesterov was set to false, and the maximize was false. The
foreach was set to none, and the differentiable was set to false.

Table A1 presents a comparison of the number of parameters, GFLOPs, mIoU, and
MeanACC of the HRNet and the proposed models with those of the ADE20K validation set.
The number of parameters increased by 0.4 M, and GFLOPs increased by 0.004 compared
to HRNetV2-W48, which became the baseline model. MeanACC, the average accuracy of
the pixel, decreased by 0.1%. However, the mIoU increased by 0.5% owing to the improved
performance in segmenting the regions of objects corresponding to pixel classes. However,
the mIoU was maintained, and the MeanACC improved by 0.4%. As a result, the fine
object segmentation performance in the Cityscapes dataset was enhanced, and although
the boundary segmentation performance between objects in PASCAL Context was slightly
decreased, the accuracy of pixel classes improved. In other words, this indicates that the
channel information emphasis feature of the proposed model is effective in mitigating
characteristics that are easily confused with small objects.

Table A1. Results of HRNetV2-based semantic segmentation model results with ADE20K validation
set (single scale and no flipping). GFLOPs is calculated on the RTX 3090 and input size 520 × 520.
The proposed method backbone is HRNetV2-W48.

Method # Params [M] GFLOPs [G] mIoU [%] MeanACC [%]

HRNetV2-W18 1.5 4.5349 23.69 31.8
HRNetV2-W48 65.9 92.7324 42.0 53.5

Proposed Method 66.3 92.7328 42.0 53.9
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