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Abstract: Due to the open nature of the wireless channel, wireless networks are vulnerable to jamming
attacks. In this paper, we try to solve the anti-jamming problem caused by smart jammers, which can
adaptively adjust the jamming channel and the jamming power. The interaction between the legitimate
transmitter and the jammers is modeled as a non-zero-sum game. Considering that it is challenging
for the transmitter and the jammers to acquire each other’s information, we propose two anti-jamming
communication schemes based on the Deep Q-Network (DQN) algorithm and hierarchical learning
(HL) algorithm to solve the non-zero-sum game. Specifically, the DQN-based scheme aims to solve the
anti-jamming strategies in the frequency domain and the power domain directly, while the HL-based
scheme tries to find the optimal mixed strategies for the Nash equilibrium. Simulation results are
presented to validate the effectiveness of the proposed schemes. It is shown that the HL-based scheme
has a better convergence performance and the DQN-based scheme has a higher converged utility of the
transmitter. In the case of a single jammer, the DQN-based scheme achieves 80% of the transmitter’s
utility of the no-jamming case, while the HL-based scheme achieves 63%.

Keywords: anti-jamming communication; game theory; Deep Q-Network

1. Introduction

Due to the broadcast nature of wireless communications, wireless transmissions
are vulnerable to various security threats such as eavesdropping, jamming attacks and
so on. Jamming attacks could cause serious effects on the communication quality [1],
therefore, the study of anti-jamming techniques has become one of the critical topics in
wireless communications. Frequency hopping communication is an effective technique to
combat jamming attacks and has been widely used in military and civilian communications.
The traditional approaches mainly focus on changing the frequency table and frequency
hopping bandwidth. Since the spectrum resources are limited, in addition to the anti-
jamming techniques in the frequency domain, anti-jamming techniques in the power
domain have also been investigated [2–4]. More and more research tries to design anti-
jamming strategies in multiple domains jointly to enhance the wireless communication [5,6].

With the development of cognitive technology and artificial intelligence, a smart
jammer, which can actively detect the legitimate communication and adaptively adjust
its jamming policy [7], will cause a great threat to the current anti-jamming technologies.
Since the smart jammer and the transmitter have to adjust their transmit strategies based
on their sensing results, it is important to model the competition between the jammer and
the transmitter. Non-cooperative game theory and the powerful concepts of equilibrium
strategies are natural tools to study such problems [2,8]. In methodology, the schemes
based on game theory require that the legitimate transmitter needs to know the jamming
information such as jamming patterns and parameters. However, in practical wireless
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networks, this requirement is difficult to be fulfilled, especially when a smart jammer exists
and causes dynamic and intelligent jamming attacks.

Recently, reinforcement learning (RL) has attracted much attention in the anti-jamming
research area [9,10]. The anti-jamming schemes based on RL first distinguish different
jamming patterns by learning the jamming environment and then carry out the anti-
jamming strategies for each jamming pattern. However, new challenges arise when a smart
jammer does not obey a certain jamming pattern. To deal with smart jamming attacks,
game theory has been used to model the competition between the smart jammer and the
transmitter, but it is necessary to find a new approach to solve the game problem when the
jamming information is unavailable. In this paper, we try to tackle this game problem by
exploiting RL methods.

1.1. Related Work

In order to effectively defend the communication against the attack of the malicious
jammer, many related techniques have been proposed [7,11–13].

Frequency hopping (FH) is a commonly used technique to counteract jamming at-
tacks [14]. The optimal frequency hopping rate was investigated in [15] to resist tracking
jamming, considering detection expense and detection errors. In [16], an adaptive chaotic
frequency hopping scheme was proposed to enhance anti-jamming capabilities. Anti-
jamming techniques in the power domain are regarded as the most direct and effective
anti-jamming schemes and have been widely used [8]. In recent work, an intelligent
anti-jamming algorithm based on Slot Cross Q-Learning (SCQL) was proposed in [17] to
deal with the time-varying jamming environment where the jamming channel changed
rapidly. In addition to the anti-jamming techniques in a certain single domain, in [5], an
anti-jamming scheme in the spectrum–power domain has been proposed, which formu-
lated a power control game and utilized a multi-armed bandit-based method to select
the communication channel. An anti-jamming scheme based on the joint use of FH and
the transmission rate adaptation technique was proposed in [18]. It was proved that
multi-domain anti-jamming schemes perform better than single-domain anti-jamming
schemes [5,18].

When resisting the malicious attack of a smart jammer, which can sense the legitimate
communication and adaptively adjust its jamming policy based on the sensing results,
game theory is usually used to model the competition between the legitimate devices and
the jammer [19]. A power control Stackelberg game was formulated in [12] to resist a smart
jammer. Further, a time–power domain anti-jamming strategy using a Stackelberg game
has been proposed in [6] for wireless relay networks.

Many studies based on game theory consider the strategy with perfect information,
which is not realistic in practical communication systems. A power control scheme based
on a Stackelberg game was discussed in [7] to defend against intelligent jamming with
observation errors. The Bayesian game theory is a common method used to deal with
incomplete information [8]. In [20], a Bayesian Stackelberg game was formulated to coun-
teract the jamming of a smart jammer with multiple antennas. Authors in [2] proposed an
anti-jamming Bayesian Stackelberg game in which utility functions were defined over statis-
tics to describe incomplete information and only distribution information was required.
In [21], a multi-domain anti-jamming scheme was proposed based on a Bayesian Stakelberg
game with imperfect information, which included observation errors and the bounded
rationality of the jammer. By using backward induction, the closed-form solution in the
time domain has been derived in [21]. When it is difficult to derive the optimal solutions of
the Stackelberg game, the hierarchical learning (HL) algorithm has been used in [22–24] to
find the mixed strategy of a Nash equilibrium (NE) point. Specifically, in [22,23], authors
have investigated the anti-jamming problem with discrete power and found the mixed
policies in the power domain by using the HL algorithm. In [24], the HL algorithm has been
used to solve the capacity offloading problem over unlicensed band for two-tier dual-mode
small cell networks.
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When the jamming information was unavailable, authors in [25] proposed a method
based on maximum likelihood estimation to obtain the parameter of jamming. RL tech-
niques can be used to achieve an optimal communication policy via trial-and-error without
being aware of the jamming and network model [26]. A two-dimensional anti-jamming
mobile communication scheme has been proposed by applying RL techniques in [27] to
obtain an optimal policy without any knowledge about the jamming models.

However, most of the existing work focused on the case of fixed jamming patterns,
for example, a two-dimensional anti-jamming communication for a fixed jamming pattern
based on the Deep Q-Network (DQN) was proposed in [28]. The existence of a smart
jammer and unavailability of the jamming information could cause fatal challenges to the
existing anti-jamming schemes.

1.2. Contribution

Different from the existing related work, which assumes the availability of the jamming
strategies or jamming patterns, in this paper, we try to solve the multi-domain anti-jamming
problem caused by smart jammers, which adjust their jamming strategies adaptively and
are not bound to a certain jamming pattern. We firstly use the game theory to model the
competition between the transmitter and the jammers. Then, due to the unavailability of
the jamming information, we propose anti-jamming communication schemes by exploiting
reinforcement learning methods. The contributions of this paper can be summarized as follows:

• A non-zero-sum game model is used to formulate the competition between the legiti-
mate transmitter and the smart jammers. Two learning-based schemes are proposed
to solve the frequency–power domain anti-jamming communication game under the
assumption that the information about the jammers is unavailable to the transmitter.

• An anti-jamming scheme based on the DQN algorithm is proposed to optimize the
transmit channel and transmit power, while another anti-jamming scheme based on
the HL algorithm is proposed to solve the mixed strategy for the Nash equilibrium.
Simulation results show that the HL-based anti-jamming scheme has the best con-
verge performance among the learning-based schemes and the DQN-based scheme
achieves the largest utility value for the transmitter compared to the anti-jamming
communication schemes.

1.3. Organization

The remainder of this paper is organized as follows. We give the problem formulation
and present the anti-jamming game model in Section 2. The considered multi-domain
anti-jamming issue is solved and two anti-jamming schemes based on the DQN algorithm
and the HL algorithm are presented in Section 3. Simulation results and discussions are
given in Section 4. Finally, Section 5 concludes this paper.

2. System Model and Anti-Jamming Game with Smart Jammers
2.1. System Model

Consider an anti-jamming communication system shown in Figure 1, where the
communication between the transmitter at the source node (S) and the receiver at the
destination node (D) is maliciously interfered with by N smart jammers (N ≥ 1). In
this system, the transmitter employs frequency hopping, which involves changing its
operating frequency over time. In addition to the frequency hopping, the transmitter has
the capability to adjust its transmit power to encounter the jamming. The jammers are
smart in the sense that they can sense and analyze the transmissions and adaptively adjust
their jamming strategies to achieve a better jamming effect.

As shown in Figure 1, the jammers are denoted as Jn, n ∈ {1, 2, · · · , N}, the dis-
tance between S and D is dS and the distance between Jn and D is dJn . There are M
channels that S can use to communicate with D. The set of all usable channels is de-
noted by F ∈ { f1, f2, · · · , fM}. The set of usable transmission powers at S is repre-
sented by P = {P1, P2, · · · , PLS}, and the set of usable jamming powers can be written as
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Φ = {φ1, φ2, · · · , φLJ}, where LS and LJ are the number of the transmission power levels
and the interference power levels, respectively. During the electronic countermeasures pro-
cess, S and the jammers can adjust their strategies including the communication/jamming
channel and the transmit/jamming power.

Figure 1. System model with multiple smart jammers.

2.2. Game Formulation

The competition between S and the jammers can be modeled as a game. In the game,
S tries to optimize its transmit strategies in the frequency domain and the power domain to
maximize the transmission utility, while the jammers try to adjust their jamming strategies
in the frequency domain and the power domain adaptively to degrade the transmission
utility. The signal to interference plus noise ratio (SINR) is usually used as the performance
metric when formulating the utility functions [22,28] since SINR directly reflects the com-
munication performance such as error rate and transmission rate. Considering the power
cost of the transmitter, the utility function of S denoted by µS can be defined as

µS =
PihS

σ2 + ∑N
n=1 φiJn

hJn f ( fm = f jJn
)
− cSPi, (1)

where Pi ∈ P is the transmit power of S and i ∈ [1, LS], fm ∈ F is the transmission channel
of S and m ∈ [1, M], φiJn

∈ Φ is the jamming power of Jn and iJn ∈ [1, LJ ] and f jJk
∈ F is

the jamming channel of Jn and jJn ∈ [1, M]. f (ξ) is an indicator function, which equals 1 if
ξ is true and 0 otherwise. hS and hJn are the channel gains of the S−D link and Jn −D link,
respectively, and σ2 is the noise power. cS denotes the transmission cost per unit power of
S.

Given the transmit channel set F and the transmit power set P , the optimization
problem at S can be written as:

max
fm∈F ,Pi∈P

µS. (2)

The goal of the jammers is to damage the normal communication between S and D.
In order to obtain a better jamming effect, the jammers cooperate with each other to make
jamming decisions. Therefore, the jammers share a common utility function µJ . When the SINR
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information and the channel gain information can be available at the jammers, considering the
jamming power cost, we can model the utility function of the jammers as follows

µJ = −
PihS

σ2 + ∑N
n=1 φiJn

hJn f ( fm = f jJn
)
−

N

∑
n=1

cJφiJn
, (3)

where cJ represents the jamming cost per unit power of the jammers. From the perspective
of the jammer Jn, n ∈ {1, N}, given the jamming channel set F and the jamming power set
Φ, the optimization problem at the jammers can be written as:

max
f jJn
∈F ,φiJn

∈Φ
µJ . (4)

The interaction of S and the jammers is now modeled as a non-zero-sum game. If S
and the jammers can obtain perfect information about each other, the mixed strategy Nash
equilibrium can be achieved. However, in real electronic countermeasures scenarios, it is
difficult for S and the jammers to obtain each other’s information.

3. Anti-Jamming Communication Scheme without Opponents’ Information

When it is challenging for the transmitter to acquire the jamming information such
as the jammers’ strategies, the DQN algorithm has been used recently to solve the anti-
jamming problem without being aware of the jamming strategies [28,29]. Based on the DQN
algorithm, a two-dimensional anti-jamming communication scheme that combines the
frequency domain and the spatial domain has been proposed in [28]. In [29], a frequency–
power domain anti-jamming communication scheme for fixed jamming patterns is pro-
posed based on the deep double-Q learning algorithm.

Inspired by the aforementioned methods, to deal with the smart jammers, we propose
a decision-making network scheme based on the DQN algorithm. Based on the non-zero-
sum game model, we design a DQN decision-making network for S and each jammer, and
the anti-jamming decision is made through learning the environment and the historical
information.

3.1. The DQN-Based Scheme for Multi-Domain Anti-Jamming Strategies
3.1.1. The Process of the Proposed Scheme

The proposed scheme based on the DQN algorithm includes the agents for S and each
smart jammer. Each agent independently trains its DQN decision-making network and
makes decisions based on the local information, which means S and the jammers do not
share any information about each other’s strategies. Without loss of generality, we only
describe the network of S here, since the agent at S and each jammer is similar. Specifically,
we define sk

S as the state of the agent of S in the k-th time slot, which is used to describe the
local environment of S. The agent of S utilizes the ε-greedy policy to take an action ak

S only
based on its own information, sk

S. The ε-greedy policy is a trade-off between exploration
and exploiting, employed to balance between exploring new actions and exploiting the
existing knowledge. The actions of S and each jammer are executed in parallel.

To calculate the reward, D feeds the received SINR to S by broadcasting. The agent
of S obtains the SINR and the transmit power and calculates the reward rk

S, which will be
given later. The SINR broadcast by D can also be heard by the jammers, so the agent of each
jammer can calculate its reward rn

J , ∀n ∈ {1, · · · , N}. It should be noted that the jammers
cooperate with each other to degrade the transmission utility. Due to the cooperation
between the agents of the jammers, all jamming agents share a common reward rJ .

When the agent of S moves to the next state sk+1
S , it obtains an experience of

es = (sk
S, ak

S, rk
S, sk+1

S ). The agent of S stores its experiences in its own experience pool
MS, and after the experience pool is full, a mini-batch is sampled from it to update the
neural network, which is known as experience replay [30] and used to reduce the data
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correlation. In the process of learning, the Q-function Q(sk
S, ak

S, θk
S) represents the long-term

reward after the action ak
S is executed under the state sk

S and θk
S is the weight vector of the

DQN. It is known that the structure of a double neural network has a better and stable
performance on the training process [30]. In the proposed scheme, the agent of S has both
the train DQN and the target DQN with the weight vectors θk

S and θ̂k
S, respectively. In the

k-th time slot, the agent of S randomly selects a mini-batch Mk
S with B experiences from the

experience pool Mk and uses the stochastic gradient algorithm to minimize the prediction
error between the train DQN and the target DQN. As a loss function, the prediction error is
given as

L(θk
S) =

1
2B ∑

eS∈Mk
S

(rk
S + δ max

ak+1
S

Q(sk+1
S , ak+1

S , θ̂k
S)−Q(sk

S, ak
S, θk

S))
2, (5)

where δ is the discount factor.
Finally, by using the gradient descent optimizer to minimize the loss function, the

gradients to update the weights of the train DQN are given as

∂L(θk
S)

∂θk
S

=
1
B ∑

eS∈Mk
S

(rk
S + δ max

ak+1
S

Q(sk+1
S , ak+1

S , θ̂k
S)−Q(sk

S, ak
S, θk

S))∇Q(sk
S, ak

S, θk
S), (6)

where θ̂k
S is updated by θ̂k

S = θk
S per Tstep. The structure of the proposed DQN algorithm is

shown in Figure 2.
A similar DQN algorithm is also performed at Jn, ∀n ∈ {1, · · · , N}. In the k-th time

slot, the agent of Jn(∀n ∈ {1, · · · , N}) obtains its state, which is responsible for describing
the local environment. Then, each jamming agent individually chooses an action according
to the local information, known as state, and they execute in parallel. The only difference is
that all the jamming agents calculate a common reward by using the feedback SINR of D
as well as the jamming powers shared among the jammers. The DQN algorithm of each
jamming agent is the same as shown in Figure 2, and we will not describe it again. The
process of the proposed DQN-based scheme is shown in Algorithm 1.

Algorithm 1 The pseudocode of the proposed DQN-Based Scheme
Without loss of generality, the DQNs of S and Jn, ∀n ∈ {1, · · · , N} are illustrated in the following:
Set up DQNs for both S and Jn, set empty experience pools MS and MJn

Initialize the train DQN with random weights for S and Jn
Initialize the target DQN with weights θ̂k

S = θk
S and θ̂k

Jn
= θk

Jn
for S and Jn, respectively

Agent of S/Jn chooses an action randomly
Agent of S/Jn stores its experience eS/eJn into MS/MJn , respectively, until full
Repeat

Agent of S/Jn observes its states sk
S/sk

Jn
, respectively, in the k-th time slot

Agent of S/Jn chooses an action ak
S/ak

Jn
, respectively

Agent of S calculates reward rk
S according to the feedback of D

Agent of Jn calculates reward rk
J according to the feedback of D and the jamming powers

shared among the jammers
Agent of S/Jn obtains the next state sk+1

S /sk+1
Jn

, respectively
Agent of S/Jn stores its experience eS/eJn into MS/MJn , respectively
Agent of S/Jn samples a mini-batch Mk

S/Mk
Jn

from MS/MJn , respectively
Agent of S/Jn updates the weights of the train DQN θk

S/θk
Jn

, respectively
Agent of S/Jn updates the weights of the target DQN θ̂k

S/θ̂k
Jn

with θk
S/θk

Jn
per Tstep, respectively

Until convergence

In Algorithm1, the notation A/B means A or B, the actions ak
S, ak

J , the rewards rk
S, rk

J
and the states sk

S, sk
J of S and the jammer Jn, ∀n ∈ {1, · · · , N} will be given in detail in the

following subsection.
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Figure 2. Illustration of the proposed DQN-based scheme.

3.1.2. The Definition of the Action, Reward and State

As described in Section 2, S expects to obtain the transmission channel and transmis-
sion power, which can be denoted as ( fm, Pi) ∈ F ×P according to the decision-making
network’s output, where × represents the Cartesian product. Therefore, the action of the
agent of S needs to indicate the channel and power selection. Denote an action of S in the
k-th time slot as ak

S, which represents a certain choice of ( fm, Pi). The size of the action space
F × P is MLS, thus an action has MLS possible choices, and ak

S ∈ [1, 2, · · · , MLS]. If the
action of the agent of S is ak

S = i, it indicates that S needs to select the transmission channel
and power according to the i-th element in F ×P . Similarly, the action of Jn denoted as
ak

Jn
∈ [1, 2, · · · , MLJ ] can be defined in a similar way.

To solve the anti-jamming game in Section 2.2 without requiring the opponents’
information, the DQN algorithm is designed to find the optimal transmission strategy,
which maximizes the long-term reward of S. Therefore, we utilize the game utility of S as
the reward of the agent, that is

rk
S = SINRk

D − cSPi (7)

where SINRk
D is the SINR feedback from D at the k-th time slot. cS denotes the transmission

cost per unit power of S, and Pi is the transmission power chosen by the action ak
S. The

reward of the jammers, rk
J , is similar to S.

Referring to [28], the state of S is composed of the previous SINR at D and previous
actions of S, which is denoted as

sk
S = {SINRk−w

D , ak−w
S , SINRk−w+1

D , ak−w+1
S , · · · , SINRk−1

D , ak−1
S }, (8)

where SINRk
D represents the SINR feedback from D during the k-th time slot and w is the

number of previous SINRs or actions.
Similarly, we use the game utility as the reward rk

J of the agent of Jn, which can be
calculated as

rk
J = −SINRk

D −
N

∑
n=1

cJφiJn
, (9)

where cJ denotes the cost per unit power of the jammers and φiJn
is the jamming power

chosen by Jn’s action ak
Jn

. The jammers share the jamming powers to calculate the reward
rk

j . In the same way, the state of Jn is defined as

sk
Jn
= {SINRk−w

D , ak−w
Jn

, SINRk−w+1
D , ak−w+1

Jn
, · · · , SINRk−1

D , ak−1
Jn
}. (10)
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3.2. Hierarchical Learning-Based Scheme for Mixed Strategies

When the information of the opponent is available, it has been proved that the mixed
strategy for a Nash equilibrium can be obtained for a game with finite players and a
finite-size strategy set [31]. The mixed strategy of S denoted by q is given as

q = (q1, q2, · · · , qMLS), (11)

where qi represents the probability that S selects the action ak
S = i, which is defined in

Section 3.1. Similarly, the mixed strategy of Jn is defined as

ρn = (ρn,1, ρn,2, · · · , ρn,MLJ ), (12)

where ρn,i is the probability that Jn chooses the i-th action from the action space F × P .
The N jammers cooperate with each other to attack the communication between S and D
as much as possible, so we define the mixed strategies for the jamming attack as

ρ = (ρ1, · · · , ρn, · · · , ρN), (13)

which consists of the mixed strategies of the N jammers.
If a pair of mixed strategies (q∗, ρ∗) constitutes a Nash equilibrium, the mathematical

expression for the Nash equilibrium is as follows

µS(q∗, ρ∗) ≥ µS(q, ρ∗), (14)

µJ(q∗, ρ∗) ≥ µJ(q∗, ρ). (15)

However, it is impossible to derive the optimal mixed strategies of S when the infor-
mation of the jammers is unavailable. For this case, we can use learning methods to find
the mixed strategies of S to maximize the utility without being aware of the opponent’s
action spaces.

A hierarchical learning method has been proposed in [22] to obtain the mixed strategies
on the power control for a legitimate transmitter and a single jammer. Inspired by the
aforementioned work, we proposed an HL-based scheme to obtain the mixed strategies of
the players by learning a Q-function for each action and exploiting the participant’s own
utility feedback.

An agent is designed at S to learn a Q-function for each action and then obtain the
mixed strategy q. For the jammers, an agent can be designed to learn the strategy ρ and
instruct all jammers to cooperate in the electronic countermeasures. However, a centralized
learning algorithm in this case results in a large action space and much information over-
head, which is challenging and complicated in the real wireless environment. Therefore,
we set up a local agent for each jammer to have their own strategy ρn by using a common
feedback to achieve the cooperation among the jammers.

In the proposed HL-based scheme, we firstly use the Q-learning algorithm to obtain
the Q-function of the agent’s actions, which is used to evaluate the importance of each
action and then obtain the mixed strategy through the acquired Q-function. The following
is the detailed procedure of the algorithm.

We create agents for S and each jammer. In order to learn the Q-functions of S and
the jammer Jn,∀n ∈ {1, · · · , N}, denoted by QS and QJn , respectively, every agent has
a Q-function table to record the Q-value of all possible actions. Meanwhile, the agent
of S has a mixed strategy q and agents of all jammers also have their own strategies ρn,
n = 1, · · · , N. In the k-th time slot, the strategies for S and Jn can be denoted as qk and
ρk

n, while the Q-functions are denoted as Qk
S and Qk

Jn
. In the k-th time slot, S chooses its

action ak
S according to the strategy qk, i.e., the probability distribution for the actions of

S. Jn also chooses an action ak
Jn

according to its strategy ρk
n. Then, D feeds the received
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SINR by broadcasting to help S in calculating the reward rk
S in this time slot. Meanwhile,

the jammers can also obtain the SINR from the broadcasting. They share their powers with
each other so that they can obtain a common reward rk

J . By using the SINR and the shared
information about jamming powers, each jammer can calculate its reward independently. The
definition and calculation of the rewards are the same as mentioned in Section 3.1.

After this, the agent of S updates its Q-function Qk
S to Qk+1

S by the following equation

Qk+1
S (ak

S) = (1− αk)Qk+1
S (ak

S) + αkrk
S, (16)

where αk ∈ [0, 1) is the learning rate.
Subsequently, S updates its mixed strategy to qk+1 for the next time slot by the equation

as follows

qk
i =

e
Qk

S(i)
τS

∑MnS
m=1 e

Qk
S(m)

τS

, (17)

where τS is a parameter to balance exploration and exploitation.
Similarly, the agents of jammers update their Q-function as follows

Qk+1
Jn

(ak
Jn
) = (1− αk)Qk+1

Jn
(ak

Jn
) + αkrk

J , n = 1, 2, · · · , N, (18)

and the mixed strategies of jammers are updated by the equation as follows

ρk
n,i =

e
Qk

Jn
(i)

τJ

∑
MnJ
m=1 e

Qk
Jn

(m)

τJ

, n = 1, 2, · · · , N, i = 1, · · · , MLJ , (19)

where τJ is a parameter to balance exploration and exploitation. The parameters τS and τJ
are important and can influence the performance of the HL-based scheme. Therefore, we
will discuss the influence of them in detail in the simulation section.

The process of the proposed HL-based scheme is shown in Algorithm 2.

Algorithm 2 The pseudocode of the HL-Based Scheme

Set up Q-functions Qk
S(aS) and Qk

Jn
(aJn ) for S and Jn, ∀n ∈ {1, 2, · · · , N}

Set up mixed strategies qk and ρk
n for S and Jn, respectively

Initialize Qk
S(aS) = 0 and Qk

S(aS) = 0 for all actions of S and Jn
Initialize qk and ρk

n so that every action can be chosen with equal probability
Repeat

S chooses action ak
S by qk in the k-th time slot

Jn chooses action ak
Jn

by ρk
n in the k-th time slot

S calculates the reward rk
S according to the feedback SINR of D

Jn calculates the reward rk
J according to the feedback SINR of D as well as the jamming powers

shared among the jammers
S and Jn update their Q-functions via (16) and (18), respectively
S and Jn update their mixed strategies via (17) and (19), respectively

Until convergence

4. Simulation Results

In the following simulations, the channel gains are modeled by the path-loss model,
which has been widely used in wireless communications, and the channel gains hS and hJ
can be written as [32]

hl = (
c

4π f0d0
)2 · (d0

dl
)γ, (20)
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where l ∈ {S, J1, · · · , JN}, c is the speed of light, f0 is the central frequency of the wireless
signal, d0 is the far-field reference distance of the antenna, γ is the path-loss exponent,
dl is the distance of the S − D link for l = S and the distance of the jammers link for
l = Jn, ∀n ∈ {1, · · · , N}.

There are M = 5 available channels that can be used by S. The set of transmit powers
at S is P = {1 W, 2 W, 3 W}, while the set of jamming powers is Φ = {3 W, 5 W}. To make
as successful of an attack as possible, the jammers usually have a larger jamming power.
Here, we consider the case that the jammers do not cherish the power as the transmitter
and set the transmission cost of S as cS = 1 and the the jamming cost of Jn as cJ = 0.1. The
details of other simulation parameters can be found in Table 1.

Table 1. The main parameters in the simulation.

Parameter Value

the distance between S and D, dS 1000 m
the distance between J1 and D, dJ1 300 m
the distance between J2 and D, dJ2 500 m
the distance between J3 and D, dJ3 500 m
the distance between J4 and D, dJ4 600 m
the number of usable channels, M 5

the set of usable transmission power, P {1 W, 2 W, 3 W}
the set of jamming power for jammer, Φ {3 W, 5 W}

the noise power, σ2 −114 dBw
the number of transmission power levels, LS 3

the number of jamming power levels, LJ 2
the discount of long-term reward, δ 0.5

the far-field reference distance in (20), d0 20 m
the path-loss exponent in (20), γ 3
the central frequency in (20), f0 900 MHz

The software and hyperparameters adopted in the DQNs are as follows. The proposed
DQN-based scheme was implemented using Python (Version 3.8) and Keras (Version 3.6.0).
The number of the neurons of the input layer is 2w, where the value of w will be discussed
later. The numbers of the neurons of the output layer for S and Jn ∀n ∈ {1, · · · , N} are,
respectively, Ls M and LJ M. The DQNs of S and Jn have two hidden layers, which have
128 and 64 neurons, respectively. The ReLU activation function is applied to each hidden
layer. The sizes of experience pool and mini-batch are 500 and 32, and we use the RMSprop
optimizer with a learning rate of 0.01. The learning rate decreases during the training
process with a learning rate decay of 1

1+e−4 . The parameter that balances the exploration
and exploiting in the ε-greedy policy of the DQN-based scheme is 0.6, and it decreases with
a decay rate of 1

1+e−4 during the network training until it reaches the minimum value of
0.01. The hard update interval is Tstep = 100.

4.1. Comparison Schemes

In order to verify the performance of the proposed schemes based on the DQN
algorithm and the HL algorithm, the effectiveness of the proposed schemes in learning to
maximize their utilities and make decisions on transmit channels and power selecting is
validated by comparing it with some other benchmark schemes.

• Q-learning scheme: in addition to the DQN algorithm, Q-learning is another common
method used to estimate the value of each action and make a decision by recording
the Q-values of all actions in a local table.

• random strategy: randomly choosing all actions with the same probability is a classic
and commonly used method to defend against jamming.

• no-jamming: the transmitter and receiver work in the environment without mali-
cious interference from the jammer. This scheme works as the upper bound of the
transmitter’s utility.
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4.2. Discussion on the Parameters of the HL-Based Scheme

In the HL-based scheme, the parameters τS and τJ are utilized to make a balance
between exploration and exploitation for S and the jammers to update their mixed strategies.
Thus, it is crucial to select an appropriate value for τS and τJ . In the following, we will
discuss the influence of the parameters τS and τJ on the performance of the HL-based
scheme. We set N = 1 and perform extensive simulations for different values of τS and τJ .

Table 2 presents the results of the average utility of the transmitter and the jammers in the
scheme based on the HL algorithm with different values of τS and τJ . The results show, when
the values are small, such as τS = 0.3 and τJ = 0.3, that the utility of both the transmitter and
the jammers fluctuates significantly, where uS fluctuates between 2.5 and 5 in ten experiments,
indicating that the performance of the HL-based scheme is not stable when the parameters
τS and τJ are small. When the values of τS and τJ are large, such as τS = 5 and τJ = 3, the
average utility of S and the jammers remains stable in ten experiments. Nonetheless, it is
questionable that the stable utility values of S and the jammers are good enough.

Table 2. The average utility of the transmitter with different values of τS and τJ .

(τS, τJ)
Experiment

1 2 3 4 5 6 7 8 9 10

µS
(0.3, 0.3) 5.03 2.52 2.52 5.03 2.51 2.52 2.52 5.03 5.03 2.52

(5, 3) 4.11 4.08 4.07 4.05 4.09 4.04 4.04 4.02 4.04 3.99

µJ
(0.3,0.3) −7.37 −3.89 −4.02 −7.37 −4.02 −3.92 −3.82 −7.40 −7.53 −3.86

(5, 3) −6.76 −6.72 −6.70 −6.68 −6.73 −6.67 −6.67 −6.64 −6.67 −6.62

Figure 3 gives more insights on the influence of the parameters τS and τJ . The mixed
strategies of S and the jammers with different values of τS and τJ are shown in the figure.
The results show that when τS and τJ are small, for example, τS = 0.3 and τJ = 0.3, the
HL-based scheme tends to favor deterministic strategies, indicating that the probability
of a certain action is equal to or close to 1 while probabilities of other actions are close to
0. However, when the parameters are larger, such as τS = 5 and τJ = 3, the probability
distribution of actions tends to become a uniform distribution, indicating that the mixed
strategies obtained by the HL-based scheme become similar to the random strategy. These
observations of the HL-based scheme can be explained as follows. When τS and τJ are
small, the effect of feedback on the mixed strategies is amplified, leading the HL-based
scheme to exploit existing strategies more than exploration of the environment. When τS
and τJ are large, the effect of feedback on the strategies decreases and results in exploring
new action more than exploiting the known information.

Based on the previous experimental results, it can be observed that when the pa-
rameters τS and τJ are small, the HL-based scheme tends to lean towards deterministic
strategies, which leads to a decrease in the stability of the utilities. Conversely, when the
parameters τS and τJ are large, the mixed strategies tend to follow uniform probability
distribution, approaching the random strategy. To select suitable values for τS and τJ , we
conduct a search within a certain range. Figure 4 illustrates the average utility values of the
transmitter in 20 experiments when τS ranges from 0.7 to 2.5 and τJ ranges from 0.3 to 2.5.
It can be observed that the transmitter achieves higher utility when τS ∈ [1.2, 1.4]. Taking
into account the previous analysis results, we ultimately choose τt = 1.2 and τj = 0.8 in the
following simulations.
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(a) The transmitter’s mixed strategies
τS = 0.3, τJ = 0.3

(b) The jammer’s mixed strategies
τS = 0.3, τJ = 0.3

(c) The transmitter’s mixed strategies
τS = 5, τJ = 3

(d) The jammer’s mixed strategies
τS = 5, τJ = 3

Figure 3. Mixed strategies of the transmitter and the jammer with different values of τS and τJ .

Figure 4. The effect of the parameters τS and τJ on the utility values.

4.3. Performance Comparisons of Different Schemes

In this section, the proposed DQN-based scheme and the HL-based scheme are com-
pared to the comparison schemes in Section 4.1 to validate the effectiveness of the proposed
anti-jamming communication schemes with different numbers of jammers. During the
simulations, we find out that when w > 3 in (8) and (10), the transmitter’s utility does not
increases apparently, but the complexity increases significantly as w increases. Therefore,
in the following simulations, we set w = 3.
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Figure 5 illustrates the transmitter’s utility of different anti-jamming schemes for
a single jammer case. The “no-jamming” line represents the maximum utility of the
communication system when there is no jamming. As shown in the figure, the DQN-based
scheme has the highest utility value among the anti-jamming communication schemes. The
utility of the HL-based scheme is higher than that of the commonly used random strategy.
Compared with the Q-learning scheme, the HL-based scheme achieves comparable utilities
as the Q-learning scheme but has a much faster convergence speed. The HL-based scheme
converges after 10, 000 time slots, while the Q-learning scheme does not reach convergence
until after the 20, 000th time slot. The reason is that the size of the Q-value table of the
HL-based scheme is only related to the number of the actions that can be used, while the
size of the Q-value table of the Q-learning scheme is not only related to the number of
possible actions but also related to the state space, which results in a much larger Q-value
table than the HL-based scheme and a slower convergence speed.

Figure 5. The transmitter’s utility comparison of different schemes with a single jammer.

The transmitter’s utilities of different anti-jamming communication schemes with two
and four jammers are shown in Figure 6. Similar to the case of a single jammer, among
the anti-jamming communication schemes, the random strategy has the smallest utility,
the DQN-based scheme has the largest utility and the HL-based scheme has the fastest
convergence. In addition, as the number of jammers increases, the transmitter’s utility
decreases for all the schemes. This is because more smart jammers have better jamming
capabilities to decrease the transmitter’s utility.

Figure 6. The transmitter’s utility comparison of different schemes with multiple jammers.
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Table 3 presents the average utility of these five schemes from the 25, 000th time slot to
the 35, 000th time slot. As shown in the table, the random strategy has the smallest average
utility. For the single jammer case, the DQN-based scheme achieves 80% of the utility of
the case without jamming attack, while the HL-based scheme achieves 63% of the utility
of the no-jamming case. Compared to the Q-learning scheme, the utility of the HL-based
scheme is slightly less and can achieve more than 97% of the utility of the Q-learning
scheme. For all the cases, the DQN-based scheme has the largest average utility among
the anti-jamming communication schemes, but the transmitter’s utility decreases as the
number of the jammers increases.

Table 3. The average utilities of different schemes.

No-Jamming DQN-Based
Scheme

HL-Based
Scheme

Q-Learning
Scheme

Random
Strategy

µS(1 jammer) 7.55 6.03 4.76 4.89 3.66

µS(2 jammers) 7.55 4.75 3.36 3.28 2.48

µS(4 jammers) 7.55 1.50 0.99 0.97 0.88

4.4. Complexity Analysis of Different Learning-Based Schemes

The structure of the DQN is important because too many neurons will lead to problems
such as excessive computational complexity, slow convergence and overfitting, and too few
neurons will result in the decrease of performance. We use a fully connected neural network
(FCN) for our DQN structure. The neuron numbers of the input and output layers of the
network are denoted as Ns and Na, i.e., the number of elements the DQN’s state contains
and the size of the action space. There are two hidden layers in the network, which contain
128 and 64 neurons, respectively, because of our focus on the situation with a small action
space. The numbers of the hidden layers are designed to avoid overfitting and optimize the
performance and the convergence speed. In each time slot, one forward propagation and one
backward propagation are required, and we analyze the complexity of the DQN-based scheme
by calculating the computational complexity of the forward propagation and the backward
propagation. The computational complexity of the forward propagation is mainly related to
the number and the size of the hidden layers, and the complexity of the backward propagation
is the same as the forward propagation. As mentioned above, the time complexity of the
DQN-based scheme is about O(27Ns + 26Na + 213). As for the HL-based scheme, in each
time slot, the HL-based scheme only needs to update the Q-value of the selected action and
the mixed strategy, thus the time complexity of the HL-based scheme can be represented as
O(2Na + 1).

For the compared schemes, the random strategy is a fixed strategy, which is the
simplest strategy. In each time slot, the Q-learning scheme needs to update the Q-value of
the selected state–action pair and transform the state into the index, which is used to look
up the Q-value table. Updating the Q-value in each time slot is a fixed procedure, and the
complexity is determined by transforming the state into the index related to the Q-value
table. Thus, the complexity of the Q-learning scheme is decided by the number of elements
of the state and can be represented as O(Ns + 1).

Although the complexity of the DQN-based scheme is relatively high, it has the best
performance on the transmitter’s utility. The HL-based scheme not only has an afford-
able complexity but also has a comparable performance to the Q-learning scheme and a
faster convergence.

5. Conclusions

In this paper, we considered the anti-jamming problem caused by smart jammers,
which can sense the legitimate transmission and adaptively adjust the jamming channel
and jamming power. The interaction between the smart jammers and the transmitter has
been modeled as a non-zero-sum game in this paper. Since the transmitter is unable to
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obtain any information about the smart jammers’ jamming strategies or jamming patterns,
two anti-jamming communication schemes have been proposed based on DQN and HL
algorithms to solve the game problem. The DQN-based scheme solved the anti-jamming
strategies in the frequency and power domain, while the HL-based scheme solved the
mixed strategy, which gives the probabilities for the actions in the frequency and power
domain. The performance of the proposed schemes are investigated carefully through
simulations. Compared to the random strategy and the Q-learning scheme, the DQN-based
scheme achieves the largest utility of the transmitter, while the HL-based scheme has the
fastest convergence among the learning-based schemes. When a single jammer exists,
compared to the case of no jamming, the DQN-based scheme achieves 80% of the utility
obtained by the no-jamming case.
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