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Abstract: In the context of long-term infectious disease epidemics, guaranteeing the dispatch of
materials is important to emergency management. The epidemic situation is constantly changing;
it is necessary to build a reasonable mechanism to dispatch emergency resources and materials to
meet demand. First, to evaluate the unpredictability of demand during an epidemic, gray prediction
is inserted into the proposed model, named the Multi-catalog Schedule Considering Costs and
Requirements Under Uncertainty, to meet the material scheduling target. The model uses the gray
prediction method based on pre-epidemic data to forecast the possible material demand when the
disease appears. With the help of the forecast results, the model is able to achieve cross-regional
material scheduling. The key objective of material scheduling is, of course, to reach a balance between
the cost and the material support rate. In order to fulfil this important requirement, a multi-objective
function, which aims to minimize costs and maximize the material support rate, is constructed. Then,
an ant colony algorithm, suitable for time and region problems, is employed to provide a solution to
the constructed function. Finally, the validity of the model is verified via a case study. The results
show that the model can coordinate and deploy a variety of materials from multiple sources according
to changes in an epidemic situation and provide reliable support in decisions regarding the dynamic
dispatch of emergency materials during an epidemic period.

Keywords: emergency material scheduling; gray prediction; ant colony algorithm; demand forecasting;
multi-objective optimization

1. Introduction

COVID-19 is a severe global public health emergency that has had a profound impact
on medical systems and social economies [1]. During the outbreak of large-scale infectious
diseases, the scheduling of emergency supplies is necessary to ensure medical treatment
and the continuation of normal life. Thus, it is important to establish an emergency
resources supply system fully tailored to the epidemic process. Among the issues linked
with emergencies, methods of efficiently dispatching resources require attention. There are
many factors affecting dispatching, including external factors, such as region and time, and
internal factors, such as material supply and demand. A state of uncertainty and emergency
increases the difficulty of dispatching materials. Therefore, the first factor that must be
considered is the prediction of the possible demand through scientific methods. A two-
stage location-routing model has been proposed for guiding resource allocation when the
requirements and infrastructure are unknown [2]. The model has a lower computational
cost because of its simple calculation process. Then, case-based reasoning (CBR) and
the Dempster–Shafer theory have been employed to improve the accuracy in forecasting
emergency material demand [3]. A good method is necessary not only for estimating
demand but also for the organization of the supply chain and the coordination of the
relationship between the parties in order to enhance the effectiveness of the material
distribution. A two-stage MADA-B mechanism was designed to research the supply and
demand of multi-attribute emergency materials, which combines a multi-attribute double
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auction (MADA) with bargaining and can perfectly match buyers with sellers through
the game playing of the transaction price and quantity [4]. After demand matching is
completed, the subsequent production plan becomes the new focus. Then, a fuzzy linear
programming model was provided to solve the aggregate production planning problem. Its
advantage is the incorporation of uncertainty of the customer demands, and unit holding
and backordering costs of the production plan [5]. In one work, a method based on
the timed-colored Petri net (TCPN) model was proposed to model the cooperation of
actions with time analysis [6]. After the production of materials, timeliness needs to be
considered in the selection of transportation methods. After an in-depth discussion of
the cold chain model selection problem, taking into account economic and environmental
objectives from both business and financial aspects, a value-based management method
is provided as a new shipping approach [7]. The method effectively solves material
planning by cutting out unnecessary actions. Other methods focus on the quick construction
of the supply chain according to the criterion of reaction speed. Based on this idea, a
hybrid algorithm combining artificial immunity with ant colony optimization has been
developed, the transportation scheme of which has a shorter response time and covers
more demand points [8]. With the hierarchical timed color Petri net (HTCPN) model and
the skyline operator, a multi-objective optimization (MOO) model for a fire emergency
response was established, which not only shortened the response time but also reduced
resource consumption [9]. It must be noted that the above methods assume that materials
are directly transported from the supply side to the demand side. They do not take
into account cross-regional transportation, which is more likely in epidemic situations.
To overcome this disadvantage, an inter-regional emergency cooperation network that
includes system construction, organization and coordination, and mechanism design is
proposed to offer an optimal countermeasure for city cooperation [10]. Transit points
need to be considered when cross-regional issues are involved. The location of transit
points will affect transportation efficiency. Considering this, a multi-objective optimization
model for the selection of rescue stations has been established to improve efficiency [11]. In
the research into transit points for cross-regional issues, the requirement for warehouses
becomes obvious because it is nearly impossible to match the rate of supply with the
rate of consumption. A mixed-integer programming model for uncertain requirements
controlled by time and cost provides a helpful solution for emergency warehouse location
and distribution [12]. Additionally, when stocks are available, a simulation–optimization
approach based on the stochastic counterpart or sample path has been shown to optimize
the pharmaceutical supply chain by managing the records of the stocks [13]. Due to the
uncertainty of epidemics and the timeliness of drugs, medical demand is difficult to predict
and handle. For that, a deterministic MILP model and a robust optimization model are
used to deal with the demand uncertainty while integrating warehouse selection, inventory
strategy and delivery route optimization of the VMI [14].

The above examples from the literature show different solutions for emergency events.
However, all of them ignore the fact that the degrees of urgency of different requirements
play a role in the response, especially when the emergency supplies are not enough to meet
all of the requirements. In this situation, the distribution of materials has to consider the
degree of urgency. An optimization model combines the location hazard index (LHI) with
the response time; the LHI measures the potential hazard of a location, while the response
time provides resource allocation in response to an emergency situation [15]. From the
observation of multiple independent emergency events, a deep ensemble multitask model
integrating four subnetworks has been proposed. It can improve the medical dispatch
process by classifying the degree of emergency based on clinical data, environmental
data and other factors [16]. In the case of an epidemic outbreak, a hybrid multi-verse
optimizer algorithm based on the multi-verse optimization algorithm and the differential
evolution algorithm can effectively reduce the distribution cost by considering the urgency
of the demand for emergency supplies [17]. Numerous studies have comprehensively
discussed good solutions for dispatching materials by recreating the scene of the emergency.
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The pre-emergency warning process has become another research hotspot. A study has
formulated a multi-objective mixed-integer non-linear programming model to determine
the location and number of relief centers, with their prepositioned inventory level, in
the pre-emergency stage. The decision provided by the model can minimize costs and
transportation distances [18].

The above literature examples discuss the various factors that support a reasonable
resource-scheduling solution to advance the development of emergency management.
However, most of the studies concentrate on static analysis to optimize resource scheduling,
which means that the variations in the requirements and degrees of emergency are totally
ignored in the process. In addition, the works mainly focus on the post-stage response,
and the pre-stage early warning mechanism is rarely involved. In order to offer a solution
incorporating all factors, a coordinated allocation model of multiple materials based on the
gray prediction model is proposed in this work and is named the Multi-catalog Schedule
Considering Costs and Requirements Under Uncertainty. If the number of infectious
members of the population can be forecast, then the materials that will subsequently be
required can be prepared. Thus, by collecting information on historical infectious diseases,
the model uses a gray prediction algorithm to predict the number of infectious diseases in
the future. According to the prediction results, the demand relative to infectious disease
is determined, and this includes both medical materials and general goods. At the same
time, the cost is also considered. With the goal of reducing the cost and meeting demand, a
multi-object function is defined and takes into consideration the type of relief material, the
time difference, and trans-regional coordination. This model contains numerous variables
from different angles, meaning it is difficult to set the initial solutions. The ant colony
model does not require much for the initial solutions and has few parameters, meaning that
it is suitable for combinational optimization problems such as material dispatch. Therefore,
an ant colony model is designed to solve our problem. The contributions of this work are
as follows:

(1) The gray prediction algorithm is used to predict the number of confirmed cases at
various times. Then, the degree of emergency can be estimated, and the predicted data can
be used to guide material scheduling. The application of this prediction module means
that our model can play a certain role in early warning systems.

(2) Both external and internal factors are considered in order to expand the scope
of the model’s application and improve the satisfaction of the solution provided by the
proposed model. External factors include distances and the time of transportation. The
internal factor comprises the maximum level of production. Then, an objective function for
cross-regional scheduling is defined, in which the uncertainty of requirements and different
types of goods in a period of time are taken into account.

(3) In order to obtain the final schedule, the model uses the ant colony algorithm to
solve the objective function. There are numerous integer variables in the function, and the
initial solution is a three-dimensional matrix. Thus, the model records the directions of
each ant’s action in each dimension in the matrix and defines a utility function, which is
used to calculate the effect of the ant’s every choice. Unlike the pheromone, the calculated
results will help shorten the time required to obtain the result of the model by adjusting the
probability of picking the direction in the course of each ant’s actions.

This paper consists of five sections. Section 1 mainly describes the latest achievements
regarding the research issues in this paper and discusses their advantages and disadvan-
tages. Then, the model and the research value proposed in this paper are briefly introduced.
Section 2 provides a detailed introduction to the theories used in the model. Section 3
consists of the building and solving processes of the model. The results of the model are
verified and presented using examples in Section 4. Finally, the conclusions are discussed
in Section 5.
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2. Preliminaries
2.1. Gray Prediction

The gray prediction method GM(1,1) is a prediction system that can contain both
known and unknown information. Based on the rule of data change, it generates a sequence
with strong regularity and then the corresponding differential equation is built to predict
the developed values of the data. Compared with other prediction methods, the gray
prediction model only needs a few samples to drive, which is suitable to deal with the
emergency because emergency always happens in a short time, and it is hard to gather
enough observations during it. Therefore, in this paper, the gray prediction model is used
to complete the prediction job [19]. The model is defined as follows [20].

We assume that the reference data column is x0 =
(

x0(1), x0(2), . . . , x0(n)
)
, whose

1-AGO is as follows:
x(1) =

(
x(1)(1), x(1)(2), . . . , x(1)(n)

)
(1)

x(1) =

(
x(0)(1),

2

∑
i=1

x(0)(i) . . . ,
n

∑
i=1

x(0)(i)

)
(2)

Formula (1) is the accumulating generation operator (1-AGO) of the reference data col-
umn, and it is obtained via Formula (2). In Formula (2), x(1)(k) = ∑k

i=1 x(0)(i), k = 1, 2, . . . , n.
n is the number of observations. The mean generated sequence of x(1) is z(1), where
k = 2, 3, . . . , n:

z(1) =
(

z(1)(2), z(1)(3), . . . , z(1)(n)
)

(3)

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k− 1) (4)

The gray differential equation is established:

x(0)(k) + az(1)(k) = b, k = 2, 3, . . . n (5)

In Formula (5), a, b are the parameters of the equation. The values of a, b are calculated
by the immediate mean of the original data series. It is worth noting that when performing
the immediate mean calculation, since the first data point does not have the previous
data point, it needs to be averaged with the second data point. The whitening differential
equation corresponding to Formula (5) is as follows:

dx(1)

dt
+ ax(1)(t) = b (6)

u = [a, b]T (7)

Y =
[

x(0)(2), x(0)(3), . . . , x(0)(n)
]T

(8)

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 (9)
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According to least squares, the estimated value of u for minimizing J(u) = (Y− Bu)T

(Y− Bu) is obtained as û =
[

â, b̂
]T

=
(
BTB

)−1BTY. To solve the whitening differential
equation, the formula is as follows:

x̂(1)(k + 1) =

(
x(0)(1)− b̂

â

)
e−âk +

b̂
â

(10)

k = 0, 1, . . . , n− 1

The model accuracy is mainly verified using three items: a residual test, a correlation
test, and a posterior error test. The residual test refers to the point-by-point comparison
of the residual difference between the calculated value and the actual value. First, we
calculate x̂(1)(k + 1) according to the method. Then, the predicted value of the original
sequence is calculated according to Formula (11).

x̂(0)(k) = x̂(1)(k)− x̂(1)(k− 1) (11)

∆(0)(k) =
∣∣∣x(0)(k)− x̂(0)(k)

∣∣∣ (12)

ϕk =
∆(0)(k)
x(0)(k)

(13)

Φ = n−1
n

∑
k=1

ϕk (14)

k = 1, 2, . . . , n

The absolute residual sequence ∆(0) is formed from the results of Formulas (11) and (12).
The relative residual sequence Φ is formed from the results of Formula (13). Then, the
average relative residual is shown in Formula (14). For the given α, the model can be
regarded as qualified when Φ < α and ϕn < α are both true.

The correlation degree test refers to the comparison of the similarities between the
computed sequence curves and real sequence curves. The correlation coefficient is defined
as Formula (17):

X̂ = {x̂(1), x̂(2), . . . , x̂(n)} (15)

Xi = {xi(1), xi(2), . . . , xi(n)} (16)

ηi(k) =
minmin|x̂(k)− xi(k)|+ρmaxmax|x̂(k)− xi(k)|
|x̂(k)− xi(k)|+ ρmaxmax|x̂(k)− xi(k)|

(17)

i = 1, 2, . . . , m; k = 1, 2, . . . , n

|x̂(k)− xi(k)| is the absolute error of sequence X̂ and Xi at k point. min|x̂(k)− xi(k)|
represents the minimum distance between the corresponding points in sequence X̂ and
X when i remains the same. minmin|x̂(k)− xi(k)| aims to traverse i to find the minimum
value in the result of min|x̂(k)− xi(k)|. The calculation process of maxmax|x̂(k)− xi(k)|
is the same as minmin|x̂(k)− xi(k)|, except that maxmax|x̂(k)− xi(k)| is looking for the
maximum. ρ(0 < ρ < 1) is the resolution. Usually, when ρ = 0.5 and ηi(k) > 0.6 where
i = 1, 2, . . . , m, the model is considered as qualified.

The posteriori error test refers to testing the statistical characteristics of the resid-
ual distribution. A series of statistical indicators needs to be calculated. The following
Formula (18) is the average of the original sequence. Formula (19) is the standard deviation
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of the original sequence. Formula (20) is the mean of the residual. Formula (21) is the
standard deviation of the residual:

x(0) = n−1
n

∑
i=1

x(0)(i) (18)

S1 =

√√√√√√
∑n

i=1

[
x(0)(i)− x(0)

]2

n− 1

 (19)

∆(0) = n−1
n

∑
i=1

∆(0)(i) (20)

S2 =

√√√√√√
∑n

i=1

[
∆(0)(i)− ∆(0)

]2

n− 1

 (21)

Calculate the variance ratio: C = S2 × S1
−1. S1 is the variance calculated from

the original sequence x0. S2 is the variance calculated from the residual sequence ∆(0).

Calculate the small residual probability: p = P
{∣∣∣∆(0)(i)− ∆(0)

∣∣∣ < 0.6745S1

}
. Generally,

when C < 0.65 and p > 0.7, the model is acceptable.

2.2. Ant Colony Algorithm

The ant colony algorithm is an intelligent optimization algorithm. The basic ACO
model is described by the following three formulas [21]:

Pij(t) =


[
τij(t)

]α
η

β
ij

∑l∈Ak
[τil(t)]

αη
β
il

, i f sj ∈ Ak

0, otherwise

(22)

τij(t + 1) = ρτij(t) +
m

∑
k=1

∆τk
ij(t) (23)

∆τk
ij(t) =

{
1
Lk

, i f ant k moves f rom si to sj at step t

0, otherwise
(24)

In the ant colony algorithm, an ant chooses the next destination at each iteration until
it has completed its journey. For example, at iteration t, the ant k moves from si to sj. sj
belongs to the set Ak for the feasible location. Pij(t) is the probability that the ant will go
from si to sj at time t. The heuristic values ηij = 1/dij, where dij is the distance between
si and sj. The amount of pheromone trail τij(t) maintained at the connection between si
and sj represents the learned desirability of choosing sj when at si point. τij(t + 1) is the
pheromone concentration on the si to sj route in the next time period. It is calculated via the
addition of the heuristic values and the experience acquired by the ants. The possibility of
this step follows Formula (22), where α and β are positive constants. The pheromone trail
on the path from si to sj is updated as Formula (23) where ρ is the pheromone evaporation
coefficient expressed by a constant within interval (0, 1) and m is the total number of ants.
∆τk

ij(t) is the pheromone trail deposited by ant k as in Formula (24). Lk is the length of the
tour taken by ant k at step t. If ant k does not go from si to sj at time t, then the pheromone
left by ant k along this path is 0.
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3. Problem Description and Optimal Model
3.1. Problem Description

Due to the large number of viruses and the constant emergence of new variants,
epidemic outbreaks have the characteristic of being sudden and uncertain. According to
the scale of the epidemic, it can be divided into two stages: a stable period and an outbreak
period [22]. As shown in Figure 1, the number of cases increased significantly in April 2022;
the data for this period are about nine times higher than those for March 2022 and about
fourteen times higher than those for April 2021. Then, the number of cases fall back to the
normal range in May 2022. Therefore, April 2022 can be classified as the outbreak period.
The remaining months are classified as stable.
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Figure 1. The report of legal infectious diseases in Shanghai.

The difference in the data in April between the two years is very large in Figure 1,
which verifies the uncertainty feature of the outbreak. Because of the uncertainty of the
outbreak, the additional demand for resources with an outbreak is difficult to estimate.
For example, in order to solve the problem of material distribution during the peak in
April 2022, an e-commerce platform first added 3246 couriers to Shanghai. However, it was
found that the increase in staff was not enough. Then, another 1754 staff members were
reassigned to Shanghai. It can be seen that the uncertain requirements and the dynamic
situation of the epidemic are the main difficulties in resource allocation.

This paper focuses on solving the problem by coordinating the dispatch of various
anti-epidemic materials in multiple regions and multiple periods, considering the changes
in the emergency situation and the premise of uncertain demand.

3.2. Model Building

The following assumptions are made for the model: (1) There are three parties involved
in the emergency supply system, including responsible organizations in the epidemic
areas, suppliers of class A resources and suppliers of class B resources. (2) Three types of
supplies—daily necessities, medical supplies and testing materials—are needed. Class A
suppliers can provide daily necessities and testing materials; class B suppliers can provide
medical supplies and daily necessities. (3) The threshold of requirements is set as per%,
which means that at least per% of materials on the demand list must be met. (4) The
production cycle of the suppliers is a unit time t, and the entire epidemic period is T.
The process from producing goods to delivering them is shown in Figure 2, and the time
difference between the production of a resource and its delivery is shown in Figure 3. The
model parameters are shown in Table 1.
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Table 1. Model parameters’ definition.

Variables Introduction Variable Types

n n ∈ N, N is the set of the epidemic areas

Index variables
m m ∈ M, M is the set of suppliers in class A
k k ∈ K, K is the set of suppliers in class B
t Time t, t = 0, 1, 2, . . . , T

pn(t) The number of confirmed cases in area n at time t

Parameter variables

lqmn(t) The transportation volume of testing materials provided by the suppliers in class A
cqmn(t) The transportation volume of daily necessities provided by the suppliers in class A
mqkn(t) The transportation volume of medical supplies provided by the suppliers in class B
tqkn(t) The transportation volume of daily necessities provided by the suppliers in class B

alm The unit price of testing materials for class A
acm The unit price of daily necessities for class A
bck The unit price of daily necessities for class B
bmk The unit price of medical supplies for class B
apm The shipment price of one item provided by class A for one kilometer
bpk The shipment price of one item provided by class B for one kilometer
sin Distance, i = m, k

ldn(t) The requirement for testing materials in epidemic areas
mdn(t) The requirement for medical supplies in affected areas
cdn(t) The requirement for daily necessities in affected areas
maxjm The maximum production capacity provided by suppliers in class A.
maxjk The maximum production capacity provided by suppliers in class B.

ε j The penalty factor dependent on the difference between the requirement and real provision of goods.

Decision variables
αm When Class A suppliers produce test materials, αm = 1; otherwise, αm = 0.
βk When Class B suppliers produce medical supplies, βk = 1; otherwise, βk = 0.

j j = 1, 2, 3 where j represents three kinds of materials. This is set as: 1 indicating testing materials, 2
indicating medical supplies, and 3 indicating daily necessities.
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The responsible organizations in the epidemic areas issue detailed information to the
suppliers cataloged into A and B in stages according to the material demand according to
type and quantity. The suppliers produce and transport the materials based on the orders,
and the organizations pay the bill when the materials are delivered. The costs are computed
as follows:

CA1 = ∑m∈M lqmn(t)αm(alm + smnapm) (25)

CA3 = ∑m∈M cqmn(t)(1− αm)(acm + smnapm) (26)

CB2 = ∑k∈K mqkn(t)βk(bmk + sknbpk) (27)

CB3 = ∑k∈K tqkn(t)(1− βk)(bck + sknbpk) (28)

There are two situations that can arise in the process of material supply, namely
material shortage and material oversupply. The shortage of materials is not conducive
to the implementation of emergency measures, while the oversupply of materials will
generate carrying costs. The penalty cost is employed to describe the impact of these two
scenarios and is calculated as follows:

CF1 =
∣∣∣ldn(t)−∑m∈M lqmn(t)

∣∣∣ε1 (29)

CF2 =
∣∣∣mdn(t)−∑k∈K mqkn(t)

∣∣∣ε2 (30)

CF3 =
∣∣∣cdn(t)−∑m∈M cqmn(t)−∑k∈K tqkn(t)

∣∣∣ε3 (31)

A good solution should be generated via the selection of suitable suppliers to meet
requirements at a low cost. Based on this idea, the objective functions are defined as follows:

min f cost = ∑T
t CA1 + CA2 + CB2 + CB3 (32)

min f punish = ∑T
t ∑n∈N CF1 + CF2 + CF3 (33)

s.t.

lqmn(t) ≤ max1m (34)

mqkn(t) ≤ max2k (35)

cqmn(t) ≤ max3m (36)

tqkn(t) ≤ max3k (37)

per%× ldn(t + 1) ≤ lqmn(t) (38)

per%×mdn(t + 1) ≤ mqkn(t) (39)

per%× cdn(t + 1) ≤ cqmn(t) + tqkn(t) (40)
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αm, βk ∈ {0, 1} (41)

t = 0, 1, 2, . . . , T − 1, ∀m ∈ M, n ∈ N, k ∈ K

Formulas (34)–(37) indicate the amount of materials transported by category A and B
suppliers. They suggest that the amount of all the materials should not exceed their own
production capacity. Formulas (38)–(40) indicate that all the materials transported by the
suppliers in category A and B should meet at least per% of the needs of the epidemic area.
Formula (41) indicates the decision variables by which materials are produced by class A
and B suppliers.

3.3. Model Analysis

First, the model is built to achieve the goal of reducing costs while meeting material
requirements. The cost is represented by money, an entity whose value as a commodity
is equal to its value as money. Thus, the numerical value of currency can represent the
value of goods [23]. However, this is a very complex problem that needs to consider
both economic factors and living security. With a limited budget, it is helpful to consider
economic factors, and living security is crucial. Therefore, two objective functions min fcost
and min fpunish are respectively defined to minimize the cost and the difference between
of supply quantity and the required quantity. To sum up, the problem studied in this
paper is still an optimization problem in essence. In order to solve it, there are two main
ways to build the framework of the model: one is called predict-then-optimize, and the
other is called Smart “Predict, then Optimize” (SPO) [24]. These two modes have different
focuses on prediction. Predict-then-Optimize attaches great importance to the accuracy of
prediction, while SPO pays more attention to the bias cost of decisions in similar situations.
Considering that the prediction part of the paper aims at material demand, the accurate
matching of material demand and supply is one of the most important requirements in
the rescue process, so this paper chose the predict-then-optimize framework to establish
the model.

Second, the number of confirmed cases, denoted as pn(t), is a dynamic variable af-
fected by time; as a sequenced result, the amount of various emergency materials expressed
as ldn(t), mdn(t), cdn(t) are also changed. This improves the uncertainty and increases the
difficulty of this problem. In this work, the number of confirmed cases at time t is set as
the first parameter affecting others because the requirement for supplies at a given time in
the epidemic area is mainly affected by the number of infected people [25]. Formula (42) is
the prediction formula where pn(t) is the result of the gray prediction model. To obtain
the value of pn(t), the number of confirmed patients in θ periods before time t is taken as
the input for the gray prediction method, which is used to predict the possible number of
confirmed patients at the following times. Adjusting θ can change the input number of
variables in the gray prediction model so as to adjust the prediction results. The specific
adjustment analysis is discussed in the subsequent experiment. Then, the material require-
ment is obtained by converting the predicted results through Formulas (43)–(45). ldn(t),
mdn(t) and cdn(t) are determined by pn(t). xd, yd, and zd are respectively the demand
coefficients of the three types of materials.

pn(t) = fGM(1,1)(pn(t− θ)) (42)

ldn(t) = xd·pn(t) (43)

mdn(t) = yd·pn(t) (44)

cdn(t) = zd·pn(t) (45)
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The model randomly generates several groups of feasible solutions and uses the ant
colony algorithm to optimize each group of feasible solutions. Finally, we compare the
optimization results to obtain the resource procurement allocation scheme. The original
ant colony algorithm mentioned above relies on the experience of all ants to drive. This
method is limited to high-dimensional problems because the large solution space weak-
ens the effect of the rule of thumb of ants. Therefore, for high-dimensional problems,
randomness is added to help expand the search scope of the solution while consider-
ing the experience accumulation of ants [26]. Inspired by this, this paper proposes an
alternative treatment to help ants explore the solution space. The process of optimizing
feasible solutions is as follows. In the optimization process, the model aims to achieve
lower costs by changing the transportation schedule at time t. So, at time t, the model sets
LQ(t) =

{
lqij(t)

∣∣∣i ∈ M, K; j ∈ N
}

as the transport matrix, and lqij(t) represents the amount
of materials transported by supplier i to responsible organization j, which is also the num-
ber of orders issued by responsible organization j to supplier i. The difference between the
transportation volume before adjustment and the volume after is ∆lqij(t). The adjustment
directions are divided into three categories: increase, decrease and unchanged. lqij

′(t) is
set as the transportation volume at time t after adjustment, and its relationship with lqij(t)
is shown in Formula (46).

lqij
′(t) = lqij(t) + dij × ∆lqij(t) (46)

Dt =
{

dij
∣∣i ∈ M, K; j ∈ N

}
(47)

dij denotes the direction of adjustment, which belongs to {1, 0,−1}. Dt is the set of dij
at time t. If we assume TD = {td} is the set of all the directions that the ant can choose,
then Dt belongs to TD. The initial solution should be able to explain the origin and the
end of the transportation and the transportation volumes at any moment, meaning that it
should be a three-dimensional matrix. In the original ant colony algorithm, each iteration
indicates that each ant has finished its journey. For this model, it signifies that every lqij(t)
in the solution has changed, where t ∈ T, i ∈ M, K, j ∈ N. However, there are so many
variables that it is hard for the model to obtain the final scheme, even with the help of
the remaining pheromone trail. Therefore, this paper sets another utility function to lead
an ant to reach its destination faster. Formulas (48)–(55) explain the mechanism of the
utility function.

fant

(
lqij(t)

)
= γ fcost(t) + ω fpunish(t) (48)

∆ fant = fant

(
lqij
′(t)
)
− fant

(
lqij(t)

)
(49)

gant =

{
1, ∆ fant > 0
0, ∆ fant ≤ 0

(50)

P
(

Dt+1 = td
)
= Ptd(c) + gant × ∆ fant × fant

(
lqij(t)

)−1
(51)

Ptd′ 6=td

(
Dt+1 = td′

)
= Ptd(c)− gant × ∆ fant ×

(
fant

(
lqij(t)

)
× (|TD| − 1)

)−1
(52)

∆τant
td (c) =

{
∑t,Dt=td ∆ fant, i f ant choose td at time t during step c

0, otherwise
(53)

τtd(c + 1) = ρτtd(c) +
∑ant ∆τant

td (c)
∑td∈TD ∑ant ∆τant

td (c)
(54)
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Ptd(c) =
τtd(c)

αη
β
td

∑td∈TD τtd(c)
αη

β
td

(55)

If the ant chooses the direction td at time t, then Dt = td. fant

(
lqij(t)

)
is the util-

ity function that consists of fcost(t) and fpunish(t). γ, ω are used to adjust the weight.
∆ fant is the difference in the transportation volume before and after the change at time
t. gant represents the effect of ant making this change. P

(
Dt+1 = td

)
is the probability of

choosing direction td at time t + 1. At the same time, the probability of picking the other
directions decrease equally as Formula (52). c represents the number of iterations of the
optimization process. Then, as in Formulas (53)–(55), after all ants have finished their
journey, they exchange experiences and then move on to the next iteration. The solution
process for the algorithm is shown in Figure 4.
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Now, the complete model named the Multi-catalog Schedule Considering Costs and
Requirements Under Uncertainty (MS-CR-U) has been introduced. First, the uncertainty
caused by the dynamic characteristics of epidemics is measured through the gray prediction
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method. A multi-catalog model means that the types of materials and catalogs of suppliers
are both partitioned because most of the suppliers focus on fixed goods. The production
ability, cost and requirements are taken into the objective functions defined by the model
to improve the application. Finally, the ant colony algorithm is employed to provide the
solution for the model. The details of the model designed based on the ant colony algorithm
are as follows:

Step 1: Enter the number of infectious disease cases from t0 to tk.
Step 2: After the gray prediction method predicts the number of cases from tk+1 to tk+n, the
requirement based on the prediction results is generated according to Formulas (42)–(45).
Step 3: Initialize parameters, including the maximum iterations, stopping conditions
and the number of ants. Randomly generate initial feasible solutions based on resource
constraints according to Formulas (34)–(41).
Step 4: Establish the direction set based on the full array combination between the suppliers
and the epidemic areas and the mentioned directions of the adjustment. Choose a set of
adjustable directions for all feasible solutions.
Step 5: Randomly assign ants to the positions and ensure that there is one ant in
each position.
Step 6: Each ant randomly selects the direction from the set.
Step 7: Each ant chooses the adjustment direction of the next delivery time according to the
Formulas (50)–(52), until t = T.
Step 8: All ants finish their journey and update the pheromone according to the Formulas (53)–(55).
Step 9: Check the stopping criterion. If yes, go to Step 11; otherwise, go to Step 10.
Step 10: Check whether the upper limit is reached. If yes, continue; otherwise, go to Step 5.
Step 11: Output the result.

4. Data Analysis and Prediction Results

The problem solved using the MS-CR-U is to build a complete method for coordinating
and dispatching multiple anti-epidemic materials under the condition of varied require-
ments during the epidemic period. In order to foresee possible situations, the number of
historical infectious disease cases is used to sum up past experience. Additionally, it should
be noted that climate is an important factor affecting the occurrence and spread of infectious
diseases [27]. Thus, the mean temperature and precipitation data from 2020 to 2022 for
34 cities are shown in Figure 5. After observing the data, three types of characteristic
climate items can be described, which are called the south type, north type and north–south
junction. As the spread of infectious diseases is also related to the population size, in order
to control the variables, this paper selects three cities with similar population sizes from
the three climate types to collect statistics for infectious diseases. The data came from the
websites of the health commissions of the three cities. As the date of the earliest data in
the three cities is not consistent, the data from January 2018 to August 2022 are uniformly
utilized for collation.
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4.1. Data Analysis

As shown in Figure 6a, in January 2019, there was a peak in the outbreak of infectious
diseases in City 3. Within one month, the growth rate of infectious disease was as high as
425.5%. According to a public report, from December 2018 to January 2019, the temperatures
of City 3 dropped significantly. In early December 2018, the temperature in City 3 remained
around 10 to 20 degrees, but in early January 2019, the temperature dropped to −1 to
5 degrees. Within a month, the average temperature dropped by 52.25% and the Air
Quality Index (AQI) increased by 19.15%. Based on the situation that climate change is
predicted to increase the frequency and intensity of extreme weather events, amplifying
air pollution levels and exacerbating respiratory diseases [28], and many people were
infected with influence because they could not adapt to the temperature change. That is
why the number of cases in City 3 soared within a month. Between the end of 2019 and
the beginning of 2020, there was a small peak in Cities 2 and 3. Due to a series of epidemic
prevention measures taken after the outbreak, the total number of infectious diseases in the
three cities decreased by 57.7% in 2020. People adopted the habit of wearing masks, which
effectively limited the spread of infectious diseases. During 2022, the number of cases in
Cities 2 and 3 increased slightly at different time points. On account of the continuous
mutations in the novel coronavirus in the process of transmission, the spread of new strains
led to repeated outbreaks.

As shown in Figure 6b, various indicators in the data for the three cities are discussed.
From 2018 to 2021, the mean, median and standard deviation for City 1 were significantly
lower than those for Cities 2 and 3, indicating that the epidemic scale in City 1 was smaller
than in the others, on the whole. Vertically, the three indexes for City 1 are close, meaning
that the distribution of the number of cases in each month is relatively average and the
outbreak scale is relatively stable. The annual mean and median for Cities 2 and 3 are
similar, and the difference between them and the standard deviation is large. This means
that the number of cases in each month fluctuates within a similar amplitude and the scale
of outbreaks is highly variable.
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4.2. Demand Forecasting

After the analysis of infectious disease data in these three cities, the gray prediction
method is used to predict the number of cases in the three cities from August 2021 to
August 2022. The model and prediction results are evaluated. The results are reached
in two ways. (1) In order to compare the results, gray prediction, SVM [29], the random
forest model [30] and LSTM [31] are used to predict the data. The three criteria of the mean
absolute error (MAE), mean absolute percentage error (MAPE), and root-mean-square
percentage error (RMSPE) is set to measure the performance. (2) The gray prediction model
is also evaluated via its own three test methods. The test results are shown in Table 2.

Table 2. Comparison of the test indexes among the prediction methods.

Methods
City 1 City 2 City 3

MAE MAPE RMSPE MAE MAPE RMSPE MAE MAPE RMSPE

SVM 5520 1.66 0.95 15,261 1.60 0.87 11,642 0.41 0.17
RF 2660 0.86 0.49 5069 0.67 0.39 11,992 0.52 0.29

LSTM 1152 0.43 0.27 6705 0.95 0.46 8235 0.29 0.13
GM(1,1) 618 0.18 0.08 4040 0.40 0.18 5936 0.24 0.16

For City 1 and City 2, the three indicators of the gray prediction are superior to the
other three methods. For City 3, the root-mean-square of the gray prediction is slightly
inferior to that of LSTM, but other indicators are also superior to those of other models.
Because the gray prediction model relies on the analysis of the change rule in the short
term to realize the prediction of the next stage, further analysis is conducted on the data
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for the three cities. It is found that the growth rate of the number of cases in City 3 from
October 2018 to January 2019 is not only higher than the average growth rate of City 1 and
City 2 but is also higher than the average growth rate of City 3 from January to September
2018. The change rule of data is broken in a short period of time, which means that the
root-mean-square percentage of the gray prediction was slightly higher than that of the
LSTM model. However, LSTM requires a large number of samples in the training process
to improve its accuracy, while the gray prediction method only needs a small number of
samples to complete the prediction. In addition, the gray prediction model outperforms
LSTM in two of the three indexes. Given that the sample size is small, gray prediction has
more advantages in dealing with this paper.

In addition to the above three indicators, gray prediction has three special testing
methods. The results of the three testing methods are shown in Table 3. For the posterior
difference test, when C < 0.65, p > 0.7, the method is qualified; for the residual test, when
α = 0.05 and the residual test value is less than α, the method is tested. For the correlation
degree test, when ρ = 0.5 and η(k) is greater than 0.6, it is qualified. With the results in
Table 3, the values of the three indicators all meet the standards, proving that the model
is suitable for this topic. The predicted results given by the gray prediction model of the
number of cases in the three cities from August 2021 to August 2022 are shown in Figure 7.

Table 3. The results of the three test criteria for gray prediction.

City 1 City 2 City 3

posterior-variance-test C = 0.46, p = 0.81 C = 0.40, p = 0.73 C = 0.42, p = 0.76
residual test ( α = 0.05) Φ = 0.034 Φ = 0.045 Φ = 0.049

correlation test ( ρ = 0.5) η(k) = 0.71 η(k) = 0.88 η(k) = 0.81
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Compared with the above indicators, this paper uses the gray prediction model to
complete the prediction job in the model. Considering that there are two parameters in the
gray prediction model, the paper studied their influence on the gray prediction model by
adjusting them, and the results are shown in Figure 8.
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Figure 8. The difference between the true and predicted values when y = 1.

The two parameters of the gray prediction model are the number of input variables
x and the number of outputs y. As shown in Figure 8, we changed the value of x and fix
y. The results generally indicate that when y is fixed, the larger x is, the larger the gap is
between the true and predicted values. It is concluded that for every unit increase in x,
MAE will increase by 25.52% on average. Since the degree of dispersion is more obvious
when x = 6 and 7, the remaining three cases are chosen for further analysis. Figure 9 shows
that a change in y also causes a change in prediction accuracy. Increasing y will decrease
the accuracy of gray prediction model. For every additional unit of y, MAPE increases by
0.55 on average. By comparing the MAE and MAPE of each group x and y, x = 4 and y = 1
are finally selected.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 22 
 

 

  

Figure 8. The difference between the true and predicted values when 𝑦 =  1. 

The two parameters of the gray prediction model are the number of input variables 

𝑥 and the number of outputs 𝑦. As shown in Figure 8, we changed the value of 𝑥 and 

fix 𝑦. The results generally indicate that when 𝑦 is fixed, the larger 𝑥 is, the larger the 

gap is between the true and predicted values. It is concluded that for every unit increase 

in 𝑥, MAE will increase by 25.52% on average. Since the degree of dispersion is more 

obvious when 𝑥 = 6 and 7, the remaining three cases are chosen for further analysis. 

Figure 9 shows that a change in 𝑦 also causes a change in prediction accuracy. Increasing 

y will decrease the accuracy of gray prediction model. For every additional unit of 𝑦 , 

MAPE increases by 0.55 on average. By comparing the MAE and MAPE of each group 𝑥 

and 𝑦, 𝑥 = 4 and 𝑦 = 1 are finally selected. 

 

Figure 9. (a) It shows the effect of changing 𝑥 on the error when 𝑦 = 1; (b–d) show the effect of 

changing 𝑦 on prediction accuracy when 𝑥 is fixed. 

  

 
 
  
 
 

  
 
  
 
 

 
  
 
  
 
 

(a) (b)

(c) (d)

         

         

                  

Figure 9. (a) It shows the effect of changing x on the error when y = 1; (b–d) show the effect of
changing y on prediction accuracy when x is fixed.
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4.3. Experimental Design

As shown in Figure 7, the number of cases in City 2 increased significantly from
November 2021 to December 2021 and reached 232.76% within a month. After four months,
the number of infectious diseases fell back into the original range, which implies the
epidemic broke out suddenly, in a short period of time. This situation is consistent with
the problems discussed in this paper. Therefore, we chose City 2 as the discussed site. The
period T of the epidemic is set from September 2021 to April 2022, for which the unit of
time t denotes one month. The period from September 2021 to November 2021 is treated as
the pre-stage, and the period from December 2021 to April 2022 is treated as the post-stage.
Nine cities are randomly selected as the locations of suppliers, among which five are the
locations of suppliers in class A and four are the locations of class B suppliers. Table 4
shows the monthly demand for materials in the epidemic area. Tables 5 and 6 show class
A and class B suppliers’ production capacity, material pricing and the distance between
epidemic area and them. The gray prediction model is used to predict the number of cases
from October 2021 to April 2022. According to the predicted results, the monthly demand
for daily essential materials, testing materials and medical materials in epidemic areas
is obtained.

Table 4. The demand for materials per unit of time in the epidemic areas.

T
Type of Materials

Daily Necessities Test Materials Medical Supplies

t1 11,221 748 3740
t2 13,264 884 4421
t3 48,769 3251 16,256
t4 81,906 5460 27,302
t5 77,244 5149 25,748
t6 40,638 2709 13,546
t7 9033 602 3011

Table 5. Class A suppliers’ production capacity, material pricing and transportation distance.

Daily Necessities Test Materials Transportation Cost

Productive
Capacity

Material
Pricing

Productive
Capacity

Material
Pricing

Transport
Distance

Shipping
Unit Price

A1 25,000 34 2400 6.5 1171 18
A2 25,000 40 2500 8 1293 12
A3 26,000 45 2800 7 1021 17
A4 22,000 35 2500 5.5 1090 16
A5 28,000 43 2600 6 1397 19

Table 6. Class B suppliers’ production capacity, material pricing and transportation distance.

Daily Necessities Medical Materials Transportation Cost

Productive
Capacity

Material
Pricing

Productive
Capacity

Material
Pricing

Transport
Distance

Shipping
Unit Price

B1 24,000 33 12,000 148 695 13
B2 27,000 37 18,000 128 692 12
B3 26,000 37 16,000 185 821 14
B4 25,000 30 14,000 160 721 15

The penalty function in the objective function contains the weight coefficients. Sen-
sitivity analysis of parameters was performed before weights were determined and the
result is presented as Figure 10. ST values of ε1, ε2, ε3 are 0.36, 0.33 and 0.31, and the S1
values are the same as ST. It is concluded that ε1, ε2, ε3 generally has the same influence on
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the penalty value. In order to ensure that each material is of similar importance, we set
per = 80 and ε1 = ε2 = ε3 = γ = ω = 1. Then, the solution for the model is compared
with the solution for the random configuration model.
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Figure 10. Sensitivity analysis of weight parameters of penalty function.

Heuristic algorithms should find a balance between intensification and diversifica-
tion [32]. Therefore, extensive parameter tuning and sensitivity analysis are needed for
algorithmic design. In ACO, the number of ants affect the performance of the algorithm
to some extent. This paper adjusts the number of ants to compare the optimization per-
formance and optimization time of the algorithm. Figure 11 shows the results of the
comparison. Generally, as the ant population increases, the cost of the emergency plan
decreases but the algorithm takes longer. The optimization results and optimization time
increase by an average of 6.8% and 21.19% for each increase of 10 ants. Finally, this paper
determine that the number of ants is 50. In total, 50 groups of solutions satisfying the
constraint conditions are randomly generated, and these 50 groups of feasible solutions
are taken as the solutions for the stochastic resource allocation model. The costs of these
50 schemes are calculated. The resource procurement allocation scheme provided by the
MS-CR-U is compared with the original random scheme. At the same time, we calculate the
demand satisfaction rate of the MS-CR-U to further verify the feasibility of the solution. The
results are shown in Table 7. The optimization process is shown in Figure 12. Compared
with the random resource allocation model, the cost of the procurement allocation scheme
provided by the MS-CR-U decrease by 55.59% on average.
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Figure 11. The optimization performance and optimization time of the algorithm. (a) The cost of
different solutions obtained by adjusting the ant population. (b) The time taken to solve the model
under different ant population.
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Table 7. Comparison of the cost results of the different models.

Unit:×108 CNY
Random Resource
Allocation Model MS-CR-U

Maximum cost 139.75 67.46
Minimum cost 72.85 41.75
Average cost 108.60 48.23
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αM = {αm|m = 1, 2, 3, 4, 5} is the set of decision variables for class A suppliers.
When class A suppliers produce test materials, αm = 1; otherwise, αm = 0. βK =
{βk|k = 1, 2, 3, 4}. When class B suppliers produce medical supplies, βk = 1; otherwise,
βk = 0. Formula (56) shows the production arrangements reached by the suppliers in class
A and B and the responsible organizations. Formula (57) is the cost of the solution given by
the model. Formula (58) is the penalty cost calculated using the model. The final solution
given by the MS-CR-U is shown in Table 8. At this time, the required cost of the solution is
CNY 4.175 billion. The penalty cost means that the solution is short of 4124 items, including
41 testing material items, 1321 medical material items, and 2762 daily essential items.

αM = [1, 1, 1, 0, 1], βM = [1, 0, 0, 1] (56)

min f cost = 41.75× 108 (57)

min f punish = 4124 (58)

Table 8. A and B supplier emergency materials transportation plans during the epidemic period.

Time A1 A2 A3 A4 A5 B1 B2 B3 B4

t0 0 742 0 0 0 3738 11,218 0 0
t1 0 856 0 0 0 4415 13,256 0 0
t2 0 2472 776 0 0 11,984 26,982 21,781 4272
t3 158 2489 2782 22,000 35 12,000 27,000 26,000 14,000
t4 63 2479 2600 22,000 10 11,976 27,000 26,000 13,772
t5 0 2482 223 0 0 12,000 27,000 13,644 1554
t6 0 561 34 0 0 2992 9017 0 0
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To summarize, the MS-CR-U in this paper can be used to predict the number of cases
in the future based on historical epidemic information and can convert the prediction
results in order to obtain the demand for different materials. The requirements for various
materials are taken as the input for the proposed model to generate a reasonable schedule.
Thus, it is helpful in the procurement and allocation plan of emergency supplies before and
after the outbreak of an epidemic. The results show that the MS-CR-U is superior to the
random resource allocation model in terms of cost. Furthermore, the demand satisfaction
rate of three types of emergency materials is calculated, with the guaranteed rate of living
essentials being about 99.26%, the guaranteed rate of testing materials being approximately
99.27%, and the guaranteed rate of medical materials being about 99.27%. The total results
prove that the scheme given by the MS-CR-U is feasible.

5. Conclusions

This paper mainly studies the method of coordinating suppliers to complete the
scheduling of multiple materials in a period of time under the circumstances of uncertain
demand and a dynamic epidemic situation. This paper considers the two stages, the
stable period and the outbreak period, aiming to minimize the cost and meet material
demand, and proposes a coordinated allocation model of multiple materials based on
the gray prediction model. In view of uncertain demand, the gray prediction method
is used to predict the number of confirmed cases in the following time period, and this
number is utilized to estimate the possible emergency demand. Then, the Multi-catalog
Schedule Considering Costs and Requirements Under Uncertainty is completed to find
the final solution, which is based on the ant colony algorithm. In the proposed model, the
optimization direction is represented by the adjacency matrix. The effect of selection by a
single ant each time is calculated via the establishment of a utility function to adjust the
probability of each direction and screen out the optimal direction. Finally, examples and
related indicators demonstrate the qualifications of the model. We found that the cost of the
material scheduling model is superior to other models when material demand is guaranteed.
Thus, the model can provide support in decisions regarding material scheduling during an
epidemic. The main consideration of this paper is the problem of demand uncertainty in
emergencies. Considering the impact of emergency events on the market, the future work
plan will be further discussed and studied on the influence of material price changes on
decision-making based on the paper.
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