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Abstract: Among recent state-of-the-art realistic image super-resolution (SR) intelligent algorithms,
generative adversarial networks (GANs) have achieved impressive visual performance. However,
there has been the problem of unsatisfactory perception of super-scored pictures with unpleasant
artifacts. To address this issue and further improve visual quality, we proposed a perception-design-
oriented PSRGAN with double perception turbos for real-world SR. The first-perception turbo in
the generator network has a three-level perception structure with different convolution kernel sizes,
which can extract multi-scale features from four 1

4 size sub-images sliced by original LR image.
The slice operation expands adversarial samples to four and could alleviate artifacts during GAN
training. The extracted features will be eventually concatenated in later 3 × 2 upsampling processes
through pixel shuffle to restore SR image with diversified delicate textures. The second-perception
turbo in discriminators has cascaded perception turbo blocks (PTBs), which could further perceive
multi-scale features at various spatial relationships and promote the generator to restore subtle
textures driven by GAN. Compared with recent SR methods (BSRGAN, real-ESRGAN, PDM_SR,
SwinIR, LDL, etc.), we conducted an extensive test with a ×4 upscaling factor on various datasets
(OST300, 2020track1, RealSR-Canon, RealSR-Nikon, etc.). We conducted a series of experiments that
show that our proposed PSRGAN based on generative adversarial networks outperforms current
state-of-the-art intelligent algorithms on several evaluation metrics, including NIQE, NRQM and
PI. In terms of visualization, PSRGAN generates finer and more natural textures while suppressing
unpleasant artifacts and achieves significant improvements in perceptual quality.

Keywords: perception design; image super resolution; generative adversarial network; artifact
suppression; intelligent computing

1. Introduction

Single-image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image
from a low-resolution (LR) one. The traditional methods for solving the SR problems
are mainly interpolation-based methods [1–4] and reconstruction-based methods [5–7].
Intelligent computing has also been applied in the field of image super-resolution. Super-
resolution methods based on genetic algorithms, guided by imaging models, utilize opti-
mization techniques to seek the optimal estimation of the original image. At its core, this
approach transforms the problem of reconstructing multiple super-resolved images into a
linear system of equations. The convolutional neural network (CNN) has greatly promoted
the vigorous development of SR field and demonstrates vast superiority over traditional
methods. The main reason it achieves good results is due to its strong capability of learning
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rich features from big data in an end-to-end manner [8]. CNN-based SR methods often use
PSNR as the evaluation metric; although some SR methods achieve good results for PSNR,
it is still not completely satisfactory in terms of perception.

The generative adversarial network (GAN) [9] has achieved impressive visual perfor-
mance in the field of super-resolution (SR) since the pioneering work of SRGAN [10]. GANs
have proven their capability to generate more realistic images with high perceptual quality.
In pursuit of further enhancing visual quality, Wang et al. proposed ESRGAN [11]. Given
the challenges of collecting well-paired datasets in real-world scenarios, unsupervised
GANs have been introduced [12,13]. BSRGAN [14] and real-ESRGAN [15] are dedicated to
simulating the practical degradation process to obtain better visual results on real datasets.

However, perceptual dissatisfaction accompanied by unpleasant artifacts still exists in
GAN-based SR models because of insufficient design in either generators or discriminators.
In GAN-based SR methods, it is obvious that the decisive capability to recover naturally
finer textures in generators is dependent largely on the guidance of discriminators through
GAN training, but discriminators are usually cloned from well-known networks (U-net [16],
VGG [17], etc.) suitable for image segmentation or classification, which might not fully lead
generators to restore subtle textures in SR. Moreover, the design of generators should be
perceptive enough to extract multi-scale image features from low-resolution (LR) images
and mitigate artifacts.

Research hypotheses and questions: Perceived quality improvement: How can we
design a network structure of PSRGAN to suppress artifact generation in images, and how
can we achieve the effect of suppressing artifacts? Generative adversarial network image
quality assessment: Which evaluation metrics are used to assess the generated images to
ensure their perceived quality is enhanced? Adversarial training stability: How can we
ensure the stability and convergence of our PSRGAN training? To address these issues
and further improve the visual quality of the restored SR images, we redesigned both
generators and discriminators; the contributions of this paper are mainly in four aspects:

• We present a novel perception-design-oriented PSRGAN with double perception
turbos, which can generate real-world SR images with naturally finer textures while
suppressing unpleasant artifacts by ×4 upscaling factors (see Figure 1).

• We design the first-perception turbo in the generator network, characterized by slice
operation and a three-level perception structure, which can extract multi-scale features
from sliced sub-images and mitigate artifacts.

• We propose the second-perception turbo in the discriminator network with cas-
caded perception turbo blocks, which can further promote the generator to restore
subtle textures.

• We demonstrate that the proposed PSRGAN has achieved state-of-the-art perceptual
capabilities calculated by NIQE, NRQM, and PI.

LR Image BSRGAN Real-ESRGAN+ PSRGAN

Figure 1. Comparisons of visual quality among BSRGAN [14], real-ESRGAN+ [1], and PSRGAN on
real-life images by ×4 upscaling. The PSRGAN can generate naturally finer textures and remove or
alleviate annoying artifacts for real-world images. Zoom in for best view.
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2. Related Work

Single-image super-resolution: SRCNN [18] is the first method to apply deep learning
to SR reconstruction, and a series of learning-based works are subsequently proposed [19–23].
ESPCN [24] introduces an efficient sub-pixel convolution layer to perform the feature
extraction stages in the LR space instead of HR space. VDSR [19] uses a very deep con-
volutional network. EDSR [25] removes the batch normalization layers from the network.
SRGAN [10] first uses the GAN network for the SR problem and proposes perceptual loss,
including adversarial loss and content loss. Based on human perceptual characteristics,
the residual in the residual dense block strategy (RRDB) is exploited to implement various
depths in network architectures [11,26]. ESRGAN [11] introduces the residual-in-residual
dense block (RRDB) into the generator. RealSR [27] estimates various blur kernels and real
noise distributions to synthesize different LR images. CDC [28] proposes a divide-and-
conquer SR network. Luo et al., in [29], propose a probabilistic degradation model (PDM).
Shao et al., in [30], propose a sub-pixel convolutional neural network (SPCNN) for image
SR reconstruction.

Perceptual-driven approaches: The PSNR-oriented approaches lead to overly smooth
results and a lack of high-frequency details, and the results sometimes do not agree with the
subjective human perception. In order to improve the perceptual quality of SR results, the
perceptual-driven approach is proposed. Based on the idea of perceptual similarity [31], Li
Feifei et al. propose perceptual loss in [32]. Then, textures matching loss [33] and contextual
loss [34] are introduced. ESRGAN [11] improves the perceptual loss by using the features
before activation and wins the PIRM perceptual super-resolution challenge [35]. Christian
Szegedy et al. propose inception [36], which can extract more features with the same
amount of computation, thus improving the training results. For the purpose of extracting
multi-scale information and enhance the feature discriminability, RFB-ESRGAN [8] applies
the receptive field block (RFB) [37] to super resolution and wins the NTIRE 2020 perceptual
extreme super-resolution challenge. There is still plenty of room for perceptual quality
improvement [38].

The design of discriminator networks: The discriminator in SRGAN is VGG-style,
which is trained to distinguish between SR images and GT images [10]. ESRGAN borrows
ideas from relativistic GAN to improve the discriminator in SRGAN [11]. Real-ESRGAN
improves the VGG-style discriminator in ESRGAN to an U-Net design [15]. In [39], Alejan-
dro et al. propose a novel convolutional network architecture named “stacked hourglass”,
which captures and consolidates information across all scales of the image. Inspired by [39],
we propose a new discriminator structure, which can guide the generator to recover
finer textures. All the related work as Table 1 shows.

Table 1. Related work on design of discriminator networks.

Different Methods Design of Discriminator Networks

SRGAN VGG-style, which is trained to distinguish between SR images

ESRGAN borrows ideas from relativistic GAN to improve the discriminator in SRGAN

Real-ESRGAN proposed an U-Net design

RFB-ESRGAN proposed stacked hourglass network which captures and consolidates information across all scales of the image

Artifact suppression: The instability of the training of GANs often leads to the introduc-
tion of many perceptually unpleasant artifacts while generating details in the GAN-based
SR networks [40]. There have been several SR models focusing on solving the problem.
Zhang et al. propose a supervised pixel-wise generative adversarial network (SPGAN) to
obtain higher-quality face images [41]. Gong et al., in [42], overcome the effect of artifacts
in the super-resolution of remote sensing images using self-supervised hierarchical per-
ceptual loss. Real-ESRGAN uses spectral normalization (SN) regularization to stabilize
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the training dynamics [15]. We propose a algorithm named “image slice and multi-scale
feature extraction”, which can generate more delicate textures and suppress artifacts.

The evaluation metrics: The DCNN-based SR approaches have two main optimization
objectives: the distortion metric (e.g., PSNR, SSIM, IFC, and VIF [43–45]) and percep-
tual quality (e.g., the human opinion score; no-reference quality measures such as Ma’s
score [46], NIQE [47], BRISQUE [48], and PI [49]) [50]. Yochai et al. in [49] have revealed
that distortion and perceptual quality are contradictory and there is always a trade-off be-
tween the two. Algorithms that are superior in terms of perceptual quality tend to be poorer
in terms of, e.g., PSNR and SSIM. However, sometimes there is also inconsistency between
the results observed by human eyes and these perceptual quality metrics. Because the
no-reference metrics do not always match perceptual visual quality [51], some SR models
such as SRGAN perform mean-opinion-score (MOS) tests to quantify the perceptual ability
of different methods [10]. We use NIQE, NRQM, and PI as our image quality metrics, which
do not depend on the GT image to measure the perceptual quality of the reconstructed
image [52]. The related work on evaluation metrics as Table 2 shows.

Table 2. Related work on evaluation metrics.

Evaluation Metrics Advantage Disadvantage

Distortion metrics Simple calculation Greater inconsistency with perceived quality

Human opinion score Consistent with visual perception High labor costs

No-reference quality
measures

Balancing consistency with perceived quality and
computational cost There is some inconsistency with visual perception

The transformer: Vaswani et al. in [36] propose a new simple network architecture,
transformer, based solely on attention mechanisms, dispensing with recurrence and convo-
lutions entirely. Transformer continues to show amazing capabilities in the NLP domain.
Many researches have started to try to apply the powerful modeling ability of transformer
to the field of computer vision [53]. In [54], Yang et al. propose TTSR, in which LR and
HR images are formulated as queries and keys in transformer, respectively, to encourage
joint feature learning across LR and HR images. Swin transformer [55] combines the ad-
vantages of convolution and transformer. Liang et al. in [56] propose SwinIR based on
Swin transformer. Vision transformer is computationally expensive and consumes high
GPU memory, so Lu et al. in [57] propose ESRT, which uses efficient transformers (ET), a
lightweight version of the transformer structure.

3. Proposed Methods

To further improve perceptual quality as well as mitigate artifacts in SISR, we pro-
posed a novel perception-design-oriented super resolution generative adversarial network
(PSRGAN) with double perception turbos. In this section, we first introduce the generator
network-containing first-perception turbo (GPT) and then describe the construction of the
discriminator network with the second-perception turbo (DPT). At last, we discuss the
perceptual loss function used.

3.1. Generator Network

The generator network consists of two components: first-perception turbo, and the
feature blending and upsampling component (FBUC) as shown in Figure 2.
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Figure 2. Architecture of generator network with corresponding kernel size (k), number of feature
maps (n), and stride (s) indicated for each convolutional layer, where F1, F2, and F3 are multi-scale
features extracted by MFEB described in Figure 3.
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Figure 3. Design of MFEB in first-perception turbo.

The first perception turbo has two major blocks: the image slice block (ISB) and the
multi-scale feature-extraction block (MFEB). The image slice block (ISB) produces four
1
4 size sub-images (I1

sub, I2
sub, I3

sub, and I4
sub) from the low-resolution image ILR via pixel

reassembly. Specifically, suppose ILR has the resolution of 2m · 2n pixels or padding to
2m · 2n pixels; the sliced sub-images are m · n pixels. If the upper left pixel is denoted as
(0, 0), and the lower right pixel is denoted as (2m− 1, 2n− 1), the relationship of the pixels
between ILR and the sub-images can be formulated as below.

ILR = {(k, t) | 0 ≤ k < 2m, 0 ≤ t < 2n, k, t ∈ N ∪ 0}
I1
sub = {(2p, 2q) | 0 ≤ p < m, 0 ≤ q < n, p, q ∈ N ∪ 0}

I2
sub = {(2p + 1, 2q) | 0 ≤ p < m, 0 ≤ q < n}

I3
sub = {(2p, 2q + 1) | 0 ≤ p < m, 0 ≤ q < n}

I4
sub = {(2p + 1, 2q + 1)|0 ≤ p < m, 0 ≤ q < n}

(1)

The slice method above has the following characteristics:

• The slice splits the LR image to multiple detail adversarial sub-images while preserving
the pixel integrity of the LR image.

• The subsequent MFEB could extract multi-scale features from smaller adversarial
samples; thus, the generator is capable of generating diverse and delicate textures.

• The slice weakens the correlations among noisy pixels in ILR, which can effectively
reduce noises and further alleviate artifacts in the restored SR image. Although the
correlations among adjacent pixels might be also impaired, the meaningful semantic
features will be eventually recovered in the SR image through GAN training.
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The multi-scale feature extraction block (MFEB, Figure 3): It has been proven that each
learned filter has its specific functionality and that a reasonably larger filter size could grasp
richer structural information, which in turn could lead to better results [18]. The MFEB is
perceptually designed to extract diverse image features from the LR image by three groups
of convolutional layers inspired by inception networks [36], as depicted in Figure 3. Please
refer to Appendix B for more detail.

The first convolution group has a tiny receptive field, used to retain micro subtle
features, denoted as k1-n64-s1.

The second convolution group has a medium receptive field, used to capture moderate
features, denoted as k1-n32-s1, k3-n64-s1.

The third convolution group has a large receptive field, used to seize macro features,
denoted as k1-n32-s1, k3-n48-s1, k3-n64-s1.

The outputs of the three convolution groups are activated using the Sigmoid weighted
liner unit (SiLU) and then ×2 upsampled via pixel-shuffle to obtain multi-scale features
F1, F2, F3. The process can be formulated as:

Fi = [SiLU(Convsi(xsub))] ↑s, i ∈ {1, 2, 3}. (2)

where Convsi(xsub), i ∈ {1, 2, 3} denote the three convolution groups, SiLU is the activation
function, ↑ denotes upsampling, s denotes the scale factor and s = 2 in this block, and
Fi, i ∈ {1, 2, 3} indicate the 3-scale feature maps extracted. Subsequently, the obtained
feature maps F1, F2, F3 are added in the channel dimension as input, residual in residual
dense block (RRDB) [11] is adopted to further capture semantic information and improve
the recovered textures, and the output is denoted as F. The formal processing in the
first-perception turbo is described in Algorithm 1.

Algorithm 1 Image slice and multi-scale feature extraction

Input: LR images set X .
Output: Multi-scale features F1, F2, F3, deeper features F.

1: for all ILR such that ILR ∈ X do
2: generate I1

sub,I2
sub,I3

sub,I4
sub through slice operation from ILR.

3: Get xsub by merging the four sub-images I1
sub,I2

sub,I3
sub,I4

sub in color channel dimen-
sion.

4: for all i such that 1 ≤ i ≤ 3 do
5: input xsub to Convsi,SiLU,2UP obtain Fi,
6: end for
7: generate F = RRDB(F1 + F2 + F3),
8: end forreturn F1, F2, F3, F.

Feature blending and upsampling component (FBUC, Figure 2): The FBUC reassembles
the obtained multi-scale features to generate the corresponding ISR counterpart of ILR. In
the upsampling phase, the FBUC upsamples ILR with diversfied features F as the input via
pixel shuffle and gradually blends the features extracted by the MFEB. The upsampling
process can be formulated as follows:

Ff inal = fConv−SiLU( fConv−SiLU( fConv−SiLU((F + F3) ↑s +(F2) ↑s) + (F1) ↑s) ↑s) (3)

where ‘+’ denotes concatenation operation, ↑ denotes upsampling, s denotes the scale
factor, and s = 2. fConv−SiLU denotes one convolutional kernel, SiLU is the activation
function, and Ff inal denotes the final features obtained from the FBUC. Ff inal is passed
through a triple convolutional layer with the kernel size of 3× 3 and finally outputs ISR,
which is ×4 upscaling according to the original ILR.
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3.2. Discriminator Network

We proposed a novel discriminator containing the pre-processing block, cascaded
perception turbo blocks (PTBs), and the post-processing block. The structure of the discrim-
inator is depicted in Figure 4.
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Figure 4. Discriminator network structure with second-perception turbo. The structure of CSR, Res1,
and Res2 are shown in Figure 5.
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Figure 5. (Left): Differences between BRC and CSR; (right): structure of Res1 and Res2 in PTBs.

The pre-processing block is utilized for the initial feature perception of ISR and IHR.
As shown in Figure 4, it includes a CSR block, two residual blocks, and a downsampling
layer. The CSR block consists of a convolution layer, an SN layer, and a ReLU activation
function. The specific structure of the two residual blocks Res1 and Res2 is shown in the
Figure 5.

The second-perception turbo is the core structure of this discriminator, which consists
of cascaded PTBs. In order to further promote the generator to restore subtle textures, we
proposed the PTB structure and made the following four improvements on the basis of
hour-glass module [39]:

• As shown in the Figure 5, we adopt the CSR structure instead of BRC, which consists
of the BN layer, the ReLU activation function, and the convolutional layer. It has been
proven that removing the BN layers can prevent BN artifacts of SR images, improve the
performance, and reduce the computational complexity in the SR task [25]. In addition,
we improve the perceptual loss by using the features before activation, which could
provide stronger supervision for brightness consistency and texture recovery [11].

• In the upsampling procedure, we use pixel-shuffle instead of nearest neighbor inter-
polation, which may lose pixel information.

• In the downsampling layer, we use convolution instead of Maxpool2d operation,
which may lose the integrity of feature map.

• We enlarge the input channels of PTB to 128, which improves the perceptive capabili-
ties of the discriminator.

The post-processing block consists of three convolutional layers to further learn fea-
tures and output a feature map that benefits the computation of adversarial loss.

Based on the above improvements, the discriminator could further perceive multi-scale
features at various spatial relationships and promote the generator to restore subtle textures
driven by GAN.

3.3. Perception Loss

We introduced the loss function similar to ESRGAN, which is a hybrid weighted loss
function that takes into account pixel-level recovery and visual perception effects and is
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able to achieve better super-resolution quality. Therefore, the total loss function of the
generator LG is a weighted combination of several losses: the adversarial loss LGAN , pixel
loss LPixel , and perceptual loss LPercep. The loss function of the discriminator LD is the
adversarial loss LGAN . The LG is described as follows:

LG = αLGAN + βLPixel + γLPercep (4)

where LPixel = Exi ‖ G(xi)− y ‖1 is the one-norm distance between the recovered image
G(xi) and HR image y; it thus evaluates the average degree of approximation of ISR and
IHR over pixels. α, β, γ are coefficients to balance different loss terms. Moreover, LPercep
is gained by introducing a fine-tuned VGG19 network to calculate the one-norm distance
between the recovered image G(xi) and high-level features of y. It is used to evaluate
the approximation of ISR and IHR in human perception. The perceptual loss is calculated
as follows:

LPercep = Exi ‖ VGG(G(xi))−VGG(y) ‖1 (5)

LGAN aims to distinguish the SR image from the HR image by the superior perceptive
capability of the discriminator, which could help to learn sharper edges and more detailed
textures; it can be formulated as follows:

LGAN = −Exhr [log(1− D(xhr, xsr))]−Exsr [log(D(xsr, xhr))] (6)

4. Experiments

In this section, we will discuss our PSRGAN model trained in RGB three channels.

4.1. Training Details

The experiments are performed with a scaling factor of×4 between LR and HR images;
we obtain corresponding four-times smaller LR images by degrading the HR pictures, which
are cropped to size 400× 400 using the high-order [15] algorithm. Meanwhile, the patch
size of cropped HR is 256× 256, and the patch size of LR is 64× 64. When training, the
batch size is set to 12× 2, which means that we use two GPUs and the batch size per GPU
is 12.

The training process is divided into two stages. One is the pre-training generator,
and the other is conducting GAN training combined with the generator and discriminator.
First, in the pre-training process, we purely train the generator with the L1 loss. The
learning rate is 2× 10−4, and the sum of the iteration is 0.4 million. Then, we employ the
pre-training generator model as an initialization for the generator. The GAN is trained
with a combination of L1 loss, perception loss, and GAN loss, with weights of 1, 1, and 0.1,
respectively. The learning rate is set to 1× 10−4 for both the generator and discriminator,
and the sum of iteration is 0.28 million. Pre-training with L1 loss is beneficial to obtain more
visually pleasing results by avoiding undesired local optima for the generator. Moreover, it
can help the discriminator to distinguish more on the textures part so that the discriminator
can receive relatively better super-resolved images during GAN training.

For optimization, we use Adam [58] with β1 = 0.9, β2 = 0.99. We alternately
update the generator and discriminator network until the model converges. We implement
our models with the PyTorch framework and train them using NVIDIA GeForce RTX
3090 GPUs.

4.2. Data

For training, we use the DIV2K dataset [59], the Flickr2K dataset [21], and the Out-
doorSceneTraining(OST) dataset [60] as training datasets. We employ these large datasets with
rich textures, which help to generate SR pictures with more natural and subtle textures [11].

We evaluate our models on widely used benchmark datasets, including OST300 [60],
PIRM Self val [35], 2020track1 [51], RealSR-Canon [61], DRealSR Test x4 [28], and RealSR-
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Nikon [61]. In particular, the images from RealSR-Canon and RealSR-Nikon are the center
subimages of original images, and those larger than 1K× 1K are cropped to 1K× 1K.

4.3. Qualitative Results

Due to the accessibility of SR methods, we compare our PSRGAN with several state-
of-the-art methods, including BSRGAN, PDM SR, SwinIR [56], LDL [40], ESRGAN, and
real-ESRGAN+. We have shown some representative qualitative results with NIQE in
Figure 6 and Table 3. More detailed results calculated by NRQM and PI are presented in
Tables 4–6. It can be observed from the figure that the results of our proposed PSRGAN
outperforms previous approaches in both details and clearness, with fewer artifacts. For
instance, PSRGAN can produce clearer, more natural lion fur (see 0901) and more detailed
wall structures (see OST 278) than BSRGAN and LDL, whose textures are unnatural,
skewed, and contain unpleasing noise. Compared with PSRGAN, ESRGAN and real-
ESRGAN+ fail to produce enough details. Moreover, PSRGAN is capable of boosting
visual sharpness (see DSC 1454 x1), while other methods either produce blurry structures
(ESRGAN, PDM SR, and SwinIR) or do not generate enough details (BSRGAN). In addition,
previous GAN-based methods sometimes introduced unpleasant artifacts such as BSRGAN
and real-ESRGAN+. Our PSRGAN eliminates these artifacts and obtains cleaner results
(see Canon 40 x1).

Table 3. NIQE scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate
the best first, second, and third NIQE results among models on each dataset row. The calculation
method of NIQE is derived from the basic SR package of PyTorch 1.11.0 + cu113.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.600 3.309 4.319 2.921 2.817 3.501 2.806 2.735
DRealSR Test x4 9.772 4.803 7.667 4.698 5.250 8.644 4.846 4.533
RealSR-Canon 13.480 5.998 10.015 4.956 5.637 13.096 5.352 4.499
RealSR-Nikon 13.017 6.377 9.544 4.819 5.712 12.443 5.180 5.164
PIRM Self val 7.747 3.808 5.132 3.683 3.539 3.516 3.350 3.330
2020track1 7.596 3.783 4.101 3.618 3.958 7.440 3.820 3.411

Table 4. NIQE scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate
the best first, second, and third NIQE results among models on each dataset row. The calculation
method of NIQE is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed
on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.612 3.414 4.308 3.034 4.56 3.551 2.929 2.826
DRealSR Test x4 9.766 4.818 7.635 9.765 8.372 8.632 4.848 4.543
RealSR-Canon 13.442 6.046 10.008 4.985 13.187 13.101 5.346 4.512
RealSR-Nikon 13.006 6.435 9.537 4.834 12.39 12.446 5.176 5.169
PIRM Self val 7.746 3.838 5.195 3.716 2.986 3.511 3.363 3.311
2020track1 7.606 3.813 4.096 7.606 3.249 7.217 3.835 3.423

Table 5. NRQM scores on diverse testing datasets—the higher, the better. Colors R, G, and B indicate
the best first, second, and third NRQM results among models on each dataset row. The calculation
method of NRQM is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed
on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 3.266 6.319 5.737 6.58 5.683 6.236 6.576 6.714
DRealSR Test x4 2.576 5.264 3.536 2.576 3.317 3.244 5.295 5.551
RealSR-Canon 2.337 4.571 2.484 4.861 2.548 2.476 5.743 6.131
RealSR-Nikon 2.366 4.635 2.597 5.249 2.866 2.681 5.69 5.839
PIRM Self val 3.76 8.091 6.096 8.191 8.393 8.401 8.347 8.524
2020track1 3.307 6.219 5.99 3.307 6.493 6.591 6.133 6.504

https://github.com/roimehrez/PIRM2018
https://github.com/roimehrez/PIRM2018
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Table 6. PI scores on diverse testing datasets—the lower, the better. Colors R, G, and B indicate the
best first, second, and third PI results among models on each dataset row. The calculation method of
PI is in PIRM2018 derived from https://github.com/roimehrez/PIRM2018 (accessed on 1 June 2023).

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-
ESRGAN+ PSRGAN

OST300 7.173 3.548 4.286 3.227 4.438 3.658 3.176 3.056
DRealSR Test x4 8.595 4.777 7.05 8.595 7.527 7.694 4.777 4.495
RealSR-Canon 10.552 5.738 8.762 5.062 10.319 10.313 4.802 4.191
RealSR-Nikon 10.32 5.9 8.47 4.793 9.762 9.883 4.743 4.665
PIRM Self val 6.994 2.874 4.549 2.763 2.297 2.555 2.509 2.394
2020track1 7.15 3.797 4.053 7.15 3.378 5.313 3.851 3.459

Bicubic(9.77)

DSC_1454_x1 from DRealSR_test_x4(NIQE) PSRGAN(3.11)

BSRGAN(4.71) LDL(8.46) Real-ESRGAN+(3.80)

PDM_SR(7.39) SwinIR(4.98) ESRGAN(8.64)

Bicubic(9.79)

Canon_40_x1 from DRealSR_test_x4(NIQE) PSRGAN(3.84)

BSRGAN(3.85) LDL(8.41) Real-ESRGAN+(3.95)

PDM_SR(7.44) SwinIR(3.92) ESRGAN(8.32)

Bicubic(7.87)

0901 from 2020track1(NIQE) PSRGAN(3.56)

BSRGAN(3.60) LDL(3.56) Real-ESRGAN+(3.96)

PDM_SR(3.60) SwinIR(3.44) ESRGAN(10.04)

Bicubic(7.52)

OST_278 from OST300(NIQE) PSRGAN(2.52)

BSRGAN(2.91) LDL(5.08) Real-ESRGAN+(2.69)

PDM_SR(4.33) SwinIR(2.83) ESRGAN(3.34)

Figure 6. Qualitative results of PSRGAN. PSRGAN produces more subtle textures and clearer
structures, e.g., animal texture and building structure, as well as fewer unpleasant artifacts, e.g.,
artifacts in fonts. Zoom in for best view.

https://github.com/roimehrez/PIRM2018
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Although the NIQE score of PSRGAN is not always best, we still believe that exploring
the effect of focusing on the human visual perception of real pictures is crucial for SR;
after all, the existing perception indexes do not reflect all the problems. Please refer to
Appendix C for more qualitative results.

4.4. Ablation Study

In order to study the effects of each component in the proposed PSRGAN, we grad-
ually modify the discriminators of PSRGAN and compare their differences. The overall
visual comparison is illustrated in Figure 7. Each column represents a model with its
configurations shown at the top. The red sign indicates the best performance. A detailed
discussion is provided as Table 7 follows.

Table 7. Model with different configurations.

Second Third Fourth Fifth

PTBs 3 5 5 7
Channels 128 128 256 128

OST_049 from OST300

OST_198 from OST300

92 from PIRM_Self_Val

OST_278 from OST300

Figure 7. Visual comparisons of different configurations in PSRGAN. The red sign indicates the
best performance.
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Number of PTBs: The discriminator with the optimal number of cascaded PTBs has a
strong representation capacity to capture semantic information, which can further improve
the recovered textures, especially for regular structures like the wall of image OST 278
in Figure 6. We set the order of the number to 2, 3, 4, 5, 6, and 7 for experimentation,
respectively. For simplisity, we only demonstrate the results of 3, 5, and 7 numbers; the
experimental results are depicted in Figure 7. As shown, when the number is 5, the
results are relatively sharper with richer textures than others. For some cases, a prominent
difference can be observed from the second, third and fifth column in Figure 7.

Channel size of PTB: The different channel sizes of PTB influence the perceptive
capabilities of the discriminator. We have tested on 3, 128, and 256 channels. For simplisity,
we only demonstrate the results of 128 and 256 channels, as shown in Figure 7. When the
channel size is 128, the results are clearer and have fewer artifacts.

Cross verification between PTBs and U-net: Please refer to Appendix A for details.

4.5. Running Times

Our method achieves moderate GPU run times for both training and testing, thanks to
its design characteristics. Our model achieves outstanding super-resolution performance,
reaching a superior level of quality after a rigorous training regimen of 490 k iterations.
Our model exhibits test times on multiple datasets that are comparable to existing state-of-
the-art models. Notably, when compared to SwinIR and LDL, our model demonstrates a
significant advantage in test time efficiency. The algorithms were trained and tested on a
server with NVIDIA GeForce RTX 3090 GPUs. Tables 8 and 9 compare the running times of
different state-of-the-art models.

Table 8. The GPU run times for training of different networks. The unit is the number of iterators,
and k represents thousands. Since Bicubic is not an adversarial neural network, there is no number
of iterators.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-ESRGAN+ PSRGAN

GAN Training Times (iters) None 1000 k 200 k 500 k 400 k 400 k 400 k 490 k

Table 9. The GPU run times of different networks on diverse datasets. The unit is time, where m
stands for minutes and s stands for seconds.

Bicubic BSRGAN PDM SR SwinIR LDL ESRGAN real-ESRGAN+ PSRGAN

OST300 54 s 5 m 4 s 5 m 13 s 23 m 54 s 7 m 15 s 5 m 36 s 5 m 16 s 5 m 29 s
DRealSR Test x4 1 m 2 s 5 m 47 s 5 m 46 s 21 m 56 s 8 m 34 s 6 m 21 s 5 m 58 s 6 m 20 s
RealSR-Canon 17 s 2 m 2 m 1 s 9 m 6 s 2 m 20 s 2 m 2 m 3 s 2 m 9 s
RealSR-Nikon 22 s 2 m 31 s 2 m 30 s 9 m 26 s 3 m 12 s 2 m 31 s 2 m 34 s 2 m 42 s
PIRM Self val 1 s 6 s 6 s 17 s 19 s 5 s 7 s 7 s

2020track1 10 s 53 s 54 s 2 m 56 s 1 m 18 s 55 s 56 s 58 s

5. Discussion

In this study, we present the perception-design-oriented image super resolution gen-
erative adversarial network (PSRGAN), an innovative approach that fuses generative
adversarial networks (GANs) and human perceptual insights. Through extensive experi-
ments and analysis of the model, we have achieved the following major achievement.

Perceptually guided super-resolution enhancement: We successfully combined human
perceptual insights and used them to guide super-resolution processes. This resulted in
sharper, more realistic, and more human-perceivable high-resolution image generation,
as illustrated by Figure 6, where our PSRGAN generates more detailed textures of animal
hairs, fewer artifacts, and a sharper edge in text-related images.

The experimental results: Our extensive experiments show that PSRGAN achieves
significant performance gains on multiple datasets and tasks. Quantitative evaluations
show that PSRGAN outperforms traditional super-resolution methods (real-ESRGAN+,
ESRGAN, and BSRGAN) on multiple standard image quality metrics such as NIQE, NRQM,
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and PI. More encouragingly, the images generated by PSRGAN are closer to the high-
resolution original images in terms of human perception.

Limitations: Despite our satisfactory achievements, we have to recognize some limita-
tions of PSRGAN. Computational requirements: the training and inference of PSRGAN
requires a large number of computational resources, which may be a challenge for some
applications. Data diversity: while our model performs well on multiple datasets, perfor-
mance may be degraded in specific domains or with uneven data distribution.

In my opinion, the SR network will definitely develop in the direction of breaking
through its current limitations in the future, and the trend of super-resolution application
is to reduce the computational burden and to apply it to diversified datasets.

6. Conclusions

We have presented a PSRGAN model that achieves superior perceptual quality both
in terms of evaluation metrics and visual effects. According to the experimental results,
our proposed PSRGAN based on generative adversarial networks outperforms current
state-of-the-art intelligent algorithms (BSRGAN, real-ESRGAN, PDM_SR, SwinIR, LDL,
etc.) on several evaluation metrics (NIQE, NRQM and PI), with a ×4 upscaling factor on
various datasets (OST300, DRealSR_Test_x4, RealSR-Canon, etc.). The PSRGAN model
mainly consists of two kinds of perception turbo (PT), GPT in the generator network, and
DPT in the discriminator network. In terms of visual effects, the proposed image slice
block mitigates the artifacts and noise in the reconstructed image, the three-level perception
structure in GPT which could extract diversified textures. The cascaded PTBs in DPT could
further promote the generator to restore subtle textures.
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Appendix A. Cross Verification between PTBs and U-Net

In PSRGAN, we now call its generator network PSRNet and its discriminator network
PTBs. In this section, we further compare the differences between two kinds of GANs,
PSRNet+PTBs, and PSRNet+U-net on diverse testing datasets. From the results in Table A1,
we can conclude that using PTBs can promote the generator to restore more perceptive SR
images driven by GAN; more qualitative comparisons are shown in Figure A1.

OST_99 from OST300(NIQE) Bicubic(7.52) PSRNet+U-net(2.69) PSRGAN(2.48)

OST_164 from OST300(NIQE) Bicubic(7.87) PSRNet+U-net(3.35) PSRGAN(3.01)

Figure A1. Qualitative comparisons on representative real-world samples with ×4 upscaling factors.
PSRNet+PTBs outperforms PSRNet+U-net in terms of both restoring texture details (See OST 99) and
producing clearer results (See OST 164).

Table A1. NIQE scores on several diverse testing datasets. The lower, the better.

PIRM self val OST300 RealSR-Nikon RealSR-Canon

PSRNet+U-net 3.527 2.830 5.673 5.896
PSRGAN (PSRNet+PTBs) 3.330 2.735 5.164 4.499

Appendix B. Structure of Multi-Scale Feature Extraction Block

We conducted experiments on the number of convolutional groups for multi-scale
feature-extraction block (MFEB) in the generator network. As the experimental results in
Table A2 show, the SR results show better performance when the number of convolutional
groups is three.

Table A2. NIQE scores of feature extraction block at different scales on diverse testing datasets; the
lower, the better. The calculation method of NIQE is derived from the basic SR package of PyTorch
1.11.0+cu113.

Groups 1 2 3 4 5

OST300 6.650362 6.635382 6.520303 6.626211 6.61622
DRealSR Test x4 7.892549 7.932709 7.818715 7.993731 7.821493
RealSR-Canon 10.179904 10.313314 10.208351 10.32831 10.3463
RealSR-Nikon 10.445691 10.491598 10.409443 10.582925 10.378877
PIRM Self val 6.717716 6.717983 6.653905 6.699813 6.694974

2020track1 6.596391 6.583975 6.46227 6.60103 6.526587
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Appendix C. More Qualitative Results

Bicubic(7.97)

OST_298 from OST300(NIQE) PSRGAN(2.56)

BSRGAN(3.22) ESRGAN(3.34) Real-ESRGAN+(2.63)

PDM_SR(3.93) DAN(7.21) RealSR(3.76)

Bicubic(8.20)

OST_189 from OST300(NIQE) PSRGAN(2.92)

BSRGAN(3.92) ESRGAN(5.69) Real-ESRGAN+(3.68)

PDM_SR(5.83) DAN(7.33) RealSR(3.72)

Bicubic(7.91)

0968 from 2020track1(NIQE) PSRGAN(2.29)

BSRGAN(3.43) ESRGAN(5.89) Real-ESRGAN+(2.35)

PDM_SR(4.13) DAN(6.55) RealSR(4.20)

Bicubic(7.42)

OST_032 from OST300(NIQE) PSRGAN(3.53)

BSRGAN(4.06) ESRGAN(3.82) Real-ESRGAN+(3.85)

PDM_SR(4.19) DAN(5.70) RealSR(3.75)

Figure A2. More qualitative results of PSRGAN and NIQE are provided for reference. [×4 upscaling].
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