
Citation: Yang, J.; Wu, Z.; Wu, R.

Micro‑Expression Spotting Based on

VoVNet, Driven by Multi‑Scale

Features. Electronics 2023, 12, 4459.

https://doi.org/10.3390/

electronics12214459

Academic Editor: Andrea Asperti

Received: 10 October 2023

Revised: 19 October 2023

Accepted: 26 October 2023

Published: 30 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Micro‑Expression Spotting Based on VoVNet, Driven by
Multi‑Scale Features
Jun Yang, Zilu Wu and Renbiao Wu *

Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China,
Tianjin 300300, China; junyang@cauc.edu.cn (J.Y.); 2021021098@cauc.edu.cn (Z.W.)
* Correspondence: rbwu@cauc.edu.cn; Tel.: +86‑22‑24092003

Abstract: Micro‑expressions are a type of real emotional expression, which are unconscious and dif‑
ficult to hide. Identifying these expressions has great potential applications in areas such as civil
aviation security, criminal interrogation, and clinical medicine. However, because of their charac‑
teristics such as short duration, low intensity, and sparse action units, this makes micro‑expression
spotting difficult. To address this problem and inspired by object detection methods, we propose a
VoVNet‑based micro‑expression spotting model, driven by multi‑scale features. Firstly, VoVNet is
used to achieve the extraction and reuse of different scale perceptual field features to improve the
feature extraction capability. Secondly, multi‑scale features are extracted and fused using the Fea‑
ture Pyramid Network module, incorporating optical flow features, and by realizing the interactive
fusion of fine‑grained feature information and semantic feature information. Finally, the model is
trained and optimized on CAS(ME)2 and SAMM Long Video. The experimental results show that
the F1 score of the proposed model is improved by 0.1963 and 0.2441 on the two datasets compared
with the baseline method, which outperforms the most popular spotting methods.

Keywords: micro‑expression spotting; multi‑scale; optical flow

1. Introduction
Facial expressions aremainlydivided intomicro‑expressions andmacro‑expressions [1].

Micro‑expressions are facial expressions that are unconsciously revealed byhumans. When
micro‑expressions occur, the changes to the facial features are insignificant, mainly char‑
acterized by short duration, low intensity, and sparse facial action units. However, com‑
pared with macro‑expressions, they can realistically reveal people’s emotions. Therefore,
micro‑expression research has a large application value in the fields of civil aviation secu‑
rity screening [2], criminal interrogation [3], and clinical medicine [4].

Research related tomicro‑expressions is divided into two categories: micro‑expression
spotting and micro‑expression recognition. Micro‑expression spotting refers to locating
the clips of micro‑expressions in a video. Micro‑expression recognition refers to the clas‑
sification of a detected micro‑expression slice, and then the classification results are ap‑
plied to different clips. Micro‑expression recognition research ismoremature, whilemicro‑
expression spotting is still in the preliminary research stage. In this paper, inspired by ob‑
ject detection methods, a multi‑scale feature fusion method is applied to micro‑expression
spotting to improve the accuracy of the micro‑expression spotting model.

The object detection method consists of three parts: backbone, neck, and head [5].
The backbone part serves to perform feature extraction, where high quality features retain
more information in the image and make subsequent detection more accurate. The neck
part serves to perform feature fusion, which aims to fuse different features and enrich the
feature connotation. The head part is used to predict the results, such as the location and
the classification of the result. Similar to object detection, in micro‑expression spotting,
facial features are extracted in the backbone part, the extracted features are fused in the
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neck part, and finally the location and category of the micro‑expressions are output in the
head part.

In feature extraction, a simple backbone network will ignore the detailed informa‑
tion of micro‑expressions, while a complex backbone network will slow down the model’s
speed. Therefore, we use VoVNet [6] for feature extraction and to concatenate the feature
maps of each layer in the end, which not only achieves feature reuse and improves feature
extraction capability, but also reduces the model parameters and improves the model’s
training speed. Different levels of feature maps have different focuses. The shallow fea‑
ture maps mainly reflect the content, such as the light and dark of an image; the deep
feature maps express the overall structural information. Therefore, in the neck part, the
Feature Pyramid Network (FPN) [7] is applied to fuse the deep‑level features with the
shallow‑level features, making the whole feature richer.

The optical flowmethod is widely used in the computer field, which can provide key
information for many vision tasks and help to improve performance. As an important
method in computer vision and image processing, optical flow can provide dynamic fea‑
tures about facial motion, combining temporal and spatial information to improve the ac‑
curacy of micro‑expression spotting. At the same time, the optical flowmethod is robust to
common factors such as facial occlusion, illumination change, and noise. It enables the net‑
work to be more able to deal with various interference factors in the actual scene. Optical
flow is incorporated into the features, and the motion information is extracted by analyz‑
ing the pixel changes between consecutive frames, which can better capture the change in
micro‑expressions.

The organizational structure of this paper is as follows: the first section introduces the
background and significance of this paper; the second section introduces the current sta‑
tus of micro‑expression spotting; the third section, the micro‑expression spotting based on
VoVNet, driven bymulti‑scale features is introduced in detail; the fourth section shows the
analysis of the experimental results; and the fifth section summarizes the work of this pa‑
per.

2. Related Work
In the early stage of micro‑expression spotting, the algorithms were mainly focused

on traditional methods. Shreve [8] calculated the optical flow from the onset frame to each
frame of the video sequence and determined themicro‑expression interval according to the
magnitude of the optical flow change. Moilanen [9] used a local binary pattern (LBP) to
analyze the feature difference between consecutive frames for micro‑expression spotting.
Patel [10] computed optical flowover local spatial regions and used a heuristic algorithm to
filter out non‑micro‑expressions. This could detect the onset frame, the vertex frame, and
the offset frame. Li [11] proposed using a local temporal pattern (LTP) and a local binary
pattern (LBP) formicro‑expression spotting and used them as the benchmark for theMicro‑
Expression Spotting Challenge, 2019. Later, He Y [12] proposed the MDMDmethod using
the maximum difference of optical flow features to detect micro‑expressions.

In recent years, deep learning methods have been widely used in various fields, and
more and more experts and scholars are exploring the use of deep learning methods for
micro‑expression spotting and recognition. Xia [13] applied machine learning to micro‑
expression spotting and considered the relationship between frames and used adaboost to
predict the probability of a certain frame as a micro‑expression. Hong [14] used a sliding
window to detect micro‑expressions in samples with a fixed number of frames and treated
micro‑expression spotting as a binary classification task. Nag [15] proposed a joint architec‑
ture of temporal and spatial information to detect the onset frame and offset frame ofmicro‑
expressions. Verburg M [16] applied the computed HOOF features into a recurrent neural
network (RNN) for micro‑expression localization, which combined deep learning and tra‑
ditional methods and applied them to micro‑expression spotting. Pan et al. [17] proposed
putting each frame of a video into the local bilinear convolutional neural network (LBCNN)
to judge whether each frame belonged to a micro‑expression, a macro‑expression, or a nat‑
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ural expression. Yap et al. [18] proposed a 3D‑CNN model that compared each frame
with a reference frame, which is a pure deep learning scheme. Liong et al. [19] proposed
a shallow optical flow three‑stream CNN (SOFTNet), which used different optical flow
components in three channels to capture different motion information. Fang Y [20] used
the phase calculated by the Riesz Pyramid to represent motion and used CNN to calcu‑
late the probability that each frame is a micro‑expression. Many of these micro‑expression
spotting methods draw on the idea of micro‑expression recognition to judge whether a
clip or a certain frame in a video is a micro‑expression. This is essentially a classification
problem and does not locate the clips in the video where the micro‑expression occurs. Li
J et al. [21] first introduced the self‑supervised learning method into the construction of
the micro‑expression spotting model. By using auxiliary tasks in a large number of un‑
supervised videos, a model with temporal and spatial features of micro‑expressions was
constructed. Cao [22] designed a micro‑expression spotting framework based on outlier
spotting. Song [23] proposed a BERT network‑based micro‑expression spotting algorithm
composed of candidate fragment generation, a spatio‑temporal feature extraction module,
and a grouping module.

Object detection methods based on deep learning are widely used in areas such as
facial detection [24], pedestrian detection [25], and license plate detection [26]. Inspired by
object detection, some scholars began to apply themethods of object detection in the spatial
dimension to micro‑expression spotting in the temporal dimension. For example, Yu et al.
proposed using the detection method for micro‑expression spotting and achieved good re‑
sults in the Facial Micro‑Expression (FME) Challenge. In this paper, we draw on the meth‑
ods and ideas of object detection to carry out micro‑expression spotting research and pro‑
pose a VoVNet‑based micro‑expression spotting method driven by multi‑scale features.

3. Proposed Method
3.1. Micro‑Expression Spotting Method Based on VoVNet

Although micro‑expressions are short in duration, there is still a process of facial
change. Here, we define the starting point where the micro‑expression occurs as the on‑
set frame, the frame where the micro‑expression changes most significantly as the apex
frame, and the offset frame of the micro‑expression as the offset frame. The main task
of micro‑expression spotting is to locate the apex frame and offset frame of the micro‑
expression. Figure 1 shows the structure of the micro‑expression spotting model. Firstly,
the micro‑expression samples and the corresponding optical flow are concatenated and in‑
put into the VoVNet for feature extraction. Secondly, the fusion of the extracted features
is performed by the FPN module. Finally, the micro‑expression spotting results are out‑
put. In the whole process, feature extraction and fusion play a key role in ensuring the
accuracy of the micro‑expression spotting. Figure 1 shows the network structure of the
micro‑expression spotting.
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Figure 1. Structure of the micro‑expression spotting model.
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3.2. Optical Flow
Optical flow is the displacement of pixels due to the motion of objects in a continuous

sequence of image frames. Calculating the optical flowbetweendifferent frames can obtain
the motion trajectory of the object in the image sequence because the micro‑expressions
occur as tiny details and are not easy to find; however, optical flow has good performance
for the estimation of motion in a small range. Tiny movements in specific areas of the
face can be detected by calculating optical flow. Micro‑expressions are continuous actions,
and optical flow can extract rich features from continuous image frames and capture the
temporal correlation of local areas in the image. Comparedwith static images, optical flow
can provide dynamic change information and capture the motion information of an image
sequence. By combining optical flow features with raw video, micro‑expressions can be
spotted more accurately.

The optical flow method is based on three assumptions: (1) that the illumination re‑
mains constant between two frames; (2) that the motion of the same pixel between two
frames is small; and (3) that the motion of adjacent pixels is similar. Let I(x,y,t) be the
brightness value at the position (x,y) at time t, and the distance the pixel moves in dt time
be (dx,dy). Because the brightness value between two frames is unchanged, we can achieve
Equation (1).

I(x, y, t) = I(x + dx, y + dy, t + dt), (1)

Equation (1) is expanded by the Taylor series, and Equation (2) is obtained by remov‑
ing the general terms and dividing by dt.

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0, (2)

If p,q are the horizontal and vertical directions of the pixel to obtain the velocity com‑
ponent then:

p =
dx
dt

, q =
dy
dt

(3)

By bringing p and q into Equation (2), the optical flow change of each pixel of the
picture can be obtained.

According to Liong S T et al. [27], the TVL1 optical flow method is more robust and
accurate than other methods in the study of micro‑expression. Therefore, this article also
uses the TVL1 method.

3.3. VoVNet Module
Related studies haveproven that featureswithmultiple receptivefields can capture richer

visual information [28–30]. Since the features are inconspicuous when micro‑expressions oc‑
cur, they are mainly manifested in the weak intensity of facial muscle changes and sparse
facial action units. Therefore, to improve the extraction capability of micro‑expression fea‑
tures, VOVNet is used. By fusing the features of different receptive fields, VoVNet can
extract the relevant features of the long‑range facial action unit and improve the perfor‑
mance of micro‑expression spotting. VoVNet is mainly composed of One‑Shot Aggrega‑
tion (OSA) modules, as shown in Figure 2. The OSA module consists of multiple convolu‑
tion layers, each of which is bi‑directionally connected. One is used to connect to the next
convolution layer to generate features with a larger receptive field, and the other is used to
connect to the last layer to achieve feature splicing and reuse. This structure is designed to
enhance the feature extraction capability of the network by fusing features with different
receptive fields. It does not cause redundancy of features and improves the efficiency of
the model.
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Memory Access Cost (MAC) is an important measure of model processing speed.
VoVNet is not only strong in feature extraction, but also fast in computation, mainly be‑
cause of the small MAC. The MAC is calculated as shown in Equation (4). Let the number
of input and output channels of one convolution layer of the OSA module be c1 and c2, re‑
spectively, and the size of the feature map is h × w; then, the FLOPs of 1 × 1 convolution
is B = h×w× c1 × c2. Equation (5) is derived from the mean inequality and the MAC is
minimized when c1 = c2. Therefore, when the number of input and output channels in the
middle layer of the OSAmodule is the same, the model MAC is minimized and the model
processing speed is fastest.

MAC = h×w× (c1 +c2) + c1 × c2 , (4)

MAC ≥ 2
√

h × w × B +
B

h × w,
(5)

VoVNet consists of three convolution layers and four OSA modules. Each OSA mod‑
ule consists of five convolution layerswith the same input and output channels tominimize
the value of the MAC. The number of feature channels is gradually increased by superim‑
posing multiple OSA modules, and the superposition of feature maps of different sizes
makes the features more abundant. Feature fusion is performed after feature extraction.
The specific network structure is shown in Table 1.

Table 1. VoVNet network architecture.

Type VoVNet

Inception 3 × 3conv, 64, stride = 2
3 × 3conv, 128, stride = 2

OSA 1 3 × 3conv, 64, ×5
concat: 1 × 1conv, 128

OSA 2 3 × 3conv, 80, ×5
concat: 1 × 1conv, 256

OSA 3 3×3conv, 96, ×5
concat: 1 × 1conv, 384

OSA 4 3 × 3conv, 112, ×5
concat: 1 × 1conv, 1

3.4. FPN Module
In object detection, feature fusion can effectively improve model performance and

generalization ability. FPN, as a common feature fusion module in object detection, im‑
proves detection accuracy by constructing a feature pyramid structure, extracting and fus‑
ing multi‑scale features from different levels.

The feature pyramid consists of multiple levels, each with a different resolution and
receptive field. This design enables the model to analyze and process micro‑expression
sequences at different scales. The bottom pyramid layers contain features at lower levels,
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while the features at higher levels are more abstract and semantic. Combining these fea‑
tures can obtainmore comprehensive and accurate features, which can help to improve the
accuracy of micro‑expression detection. Each level will extract the features of the micro‑
expression sequence, which can improve the ability to understand and analyze the micro‑
expression sequence by transferring information. Low‑level features can provide back‑
ground and global information for higher‑level features so that the model can better de‑
tect micro‑expressions. Because features at different levels obtain information at different
scales, they are robust in detection.

Thepyramidmodel canobtain featuremapsof different scales throughone‑dimensional
convolution, and rich multi‑scale and multi‑level feature representations can be obtained
throughmulti‑level feature extractionandcombination. Thus, the accuracyofmicro‑expression
spotting is improved. The specific network structure is shown in Table 2.

Table 2. FPN network architecture.

Type FPN

layer 1 3 × 1conv, 512 × 64, stride = 2

layer 2 3 × 1conv, 1024 × 32, stride = 2

layer3 3 × 1conv, 1024 × 16, stride = 2

layer4 3 × 1conv, 1024 × 8, stride = 2

layer5 3 × 1conv, 2048 × 4, stride = 2

3.5. Loss Function
The loss function can calculate the difference between the predicted result and the

true label. The lower the loss value, the stronger the ability of micro‑expression training.
Classification loss, boundary frame loss, and IOU loss are calculated, respectively, inmicro‑
expression spotting.

The first is classification loss, which is a measure of the ability to classify the target
species. Because there are more macro‑expressions than micro‑expressions in the video
sample, focal loss [31] is used to solve the category imbalance problem. Focal loss intro‑
duced w and pt to adjust the weights of samples to be unequal, reduce the emphasis on
easily identifiable samples, and increase the emphasis on samples that are difficult to clas‑
sify. The alph is a balancing parameter standing at 0.25 and w changes the weight of the
sample. The proportion of different samples in the equation is different, which makes
the model pay more attention to the small number of samples. Pt reduces the weight of
samples that are easy to classify and increases the weight of samples that are difficult to
classify by calculating probabilities. This makes the model pay more attention to those
samples that are difficult to classify, improving the model’s learning ability for difficult
samples. Equation (6) is the calculation equation for focal loss.

Focal_loss = −w(1 − pt)2 × log(pt), (6)

pt =
{

p positive sample
1 − p negative sample

, (7)

w =

{
alph positive sample

1 − alph negative sample
, (8)

In addition to classification losses, positioning losses are used to measure the differ‑
ence between the predicted bounding box and the true bounding box. This difference is
optimized to better regulate the location of the predicted bounding box. When the abso‑
lute difference between the predicted value and the target value is large, the smooth L1
loss function adopts the square function, and the loss growth rate slows down. It is more



Electronics 2023, 12, 4459 7 of 14

robust in the face of outliers and large error boundary boxes. The equation for the smooth
L1 loss function is as follows:

L1_loss =
{

1/2x2 t < 1
|x| − 0.5 t ≥ 1

, (9)

Finally, IOU loss is a simple and intuitive method to calculate the overlap between
the predicted bounding box and the real bounding box. It is not affected by the shape and
size of the target and only considers the overlap degree of the two bounding boxes, which
is suitable for different targets. By minimizing the IOU loss, the model parameters can be
optimized tomake the predicted bounding box closer to the real bounding box. Let the left
abscissa of the predicted and true bounding boxes be xp1 and xt1, and the right abscissa of
the bounding boxes be xp2 and xt2. Equation (10) is the equation of IOU loss function.

IOU_loss = inter/union,
Inter = min(xt2 , xp2)−max

(
xp1 , xt1,

Union =
(
xp2 −xp1) + (xt2 −xt1)− inter,

(10)

Loss = Focal_loss + L1_loss + IOU_loss, (11)

The combination of classification loss, positioning loss, and IOU loss can comprehen‑
sively evaluate the performance of object detection. Classification loss is used to evalu‑
ate the accuracy of the model for target classification. Positioning loss is used to assess
the accuracy of the model for the target position. IOU loss assesses the accuracy of the
boundary box matching. Equation (11) is the calculation equation of the final loss func‑
tion. Target spotting usually requires the accurate classification of targets and the accurate
location of targets. Combining these loss functions can simplify the model training pro‑
cess. It can improve the stability and convergence of training, and reduce the difficulty of
hyper‑parameter adjustment so that the model has the ability to perform classification and
positioning at the same time.

4. Experiment
4.1. Dataset

Currently, the available micro‑expression datasets are very limited and differ in res‑
olution, frame rate, and generation methods. Authoritative datasets that have been re‑
leasedmainly include CASME [32], SMIC [33], CASME II [34], SAMM [35], CAS(ME)2 [36],
SAMM Long Videos [37], MMEW [38], and CASME III [39]. The CASME, CASME II,
SMIC, and SAMM only contain micro‑expression samples, while the CAS(ME)2, CASME
III, SAMMLongVideos, andMMEWcontain not onlymicro‑expression video samples but
also macro‑expression video samples. CAS(ME)2 was released by the Chinese Academy
of Sciences in 2018. The subjects of CAS(ME)2 are 22 Asians, and the data are divided
into two parts: part A and part B. Part A includes 87 long videos of micro‑expressions and
macro‑expressions. Part B includes 300 croppedmacro‑expression samples and 57 cropped
micro‑expression samples. The average duration of each video is 148 s. CASME III manu‑
ally labeled 1030micro‑expressions and 2264macro‑expressions. The SAMMLong Videos
are extended from the SAMM and include a total of 147 long videos. Compared with
CAS(ME)2, SAMM Long Videos have a longer video duration with higher resolution and
frame rates. The MMEW was released in 2021 and contains 300 micro‑expression video
samples and 900 macro‑expression video samples. Table 3 shows the details of the com‑
monly used datasets of macro‑expressions and micro‑expressions.

CAS(ME)2 and SAMM Long Videos were used in the Facial Micro‑Expression (FME)
Challenge [40] to validate the micro‑expression spotting model. Therefore, in order to
ensure the comparability of the results, CAS(ME)2 and SAMM Long Videos were also se‑
lected as the micro‑expression spotting dataset in this paper.
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Table 3. Micro‑expression dataset details.

Dataset Time Resolution Frame Rate Number of
Participants

Number of
Samples

Number of
Emotions

CAS(ME)2 2018 640 × 480 30 22 300 (macro)
57 (micro) 4

SAMM Long Videos 2019 2040 × 1088 200 29 343 (macro)
159 (micro) /

MMEW 2021 1920 × 1080 90 36 900 (macro)
300 (micro) 7

CASME III
A

2022 1280 × 720 30
100 3364 (macro)

1030 (micro) 7B 116
C 31

The dataset is divided into two categories: micro‑expression and macro‑expression.
Micro‑expressions are extremely brief and tiny changes in human facial expressions, typ‑
ically lasting between 1/25 and 1/5 of a second. These small facial changes are often very
rapid and imperceptible and often occur when people are trying to mask or hide their true
feelings. Macro‑expression is relative to micro‑expression, which refers to the expression
changes that are more significant and last longer. Whether micro‑expression or macro‑
expression, both are expressions of the human face in different emotional or psychological
states, and all involve the movement and change of the facial muscles. Figure 3 shows
micro‑expression and macro‑expression samples in the SAMM Long Videos dataset. The
human eye is difficult to distinguish, and a computer is needed for recognition.
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4.2. Experimental Environment and Hyper‑Parameters
The configurations of the computer used for training and validation of the micro‑

expression spotting model are as follows:
(1) Operating system: 64‑bit Ubuntu16.04.1.;
(2) Development environment: PyTorch1.2.0.;
(3) CPU: Intel® Xeon(R) Gold 5218R CPU @ 2.10 GHz × 46;
(4) GPU: Quadro RTX5000;
(5) Memory: 128 GB.
The hyper‑parameters of the micro‑expression spotting model are as follows:
(1) Optimizer: Adam;
(2) Learning rate: 0.005;
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(3) Batch size: the batch size of CAS(ME)2 is 32, and the batch size of SAMM Long
Videos is 2.

4.3. Evaluation Metrics
Intersection over Union (IOU) [41] is used in object detection. IOU is the intersection

of the predicted box and the real box divided by their union. When the value of IOU
is greater than a certain threshold, it proves that the target is correctly boxed. Equation
12 shows the equation for micro‑expression spotting IOU. Where, Wspotted is the micro‑
expression clips obtained by the micro‑expression spotting model, WgroundTrut is the clips
of the real micro‑expression, k is the threshold of IOU, which is generally set to a constant.
When the intersection of Wspotted and WgroundTrut divided by their union is greater than k,
it proves that the micro‑expression clips are detected correctly.

Wspotted ∩ WgroundTrut

Wspotted ∪ WgroundTrut
≥ k, (12)

As shown in Figure 4, AC are the clips where a micro‑expression occurs and BD are
the clips detected by the micro‑expression model. BC is the intersection of Wspotted and
WgroundTrut, AD is the union of Wspotted and WgroundTrut.
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The micro‑expression spotting performance is evaluated with an F1 score. The equa‑
tion of the F1 score is shown in Figure 4. TP is the number of positive samples correctly
identified. FP is the number of negative samples predicted as positive samples, i.e., the
number of false detections. TN is the number of negative samples correctly identified. FN
is the number of positive samples detected as negative samples, i.e., the number of missed
detections. There are two main reasons for using the F1 score as the evaluation metric of
the micro‑expression spotting model:

(1) If there is no micro‑expression in a single video or no micro‑expression is detected
in the video, the denominator of recall or precision will be 0. Using the F1 score as the
evaluation metric will avoid this situation;

(2) Since the databases are apparently unbalanced, the sample size ofmicro‑expressions
is smaller than that of the macro‑expressions. An F1 score will give us a fair evaluation
of how well the model performs on all the classes rather than biasing only a few certain
classes [36].

F1‑score = 2 × recall × precision
recallprecision

=
2TP

2TPFPFN,
(13)

Recall =
TP

TPFN,
(14)

Precision =
TP

TPFP
(15)
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4.4. Results and Discussion
Following [1], we use Leave‑One‑Subject‑Out (LOSO) cross‑validation to report the

performance on micro‑expression spotting. One micro‑expression video sample is taken
as the test set and the remaining samples are used as the training set.

The loss value of a model training can intuitively measure the quality of model train‑
ing. Figure 5 shows the change of loss value when the model is trained on two datasets,
respectively. From Figure 5, it can be seen that the loss value of the model decreases and
converges as the number of iterations increases, and finally converges to a smooth state.
This indicates that the model can reach a smooth convergence state.
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To evaluate the model performance, the proposed method is compared with the base‑
line method of the Facial Micro‑Expression (FME) Challenge, traditional methods, and
deep learning methods. Table 4 provides a detailed comparison of the models. With the
SAMMLong Video, comparedwith the baselinemethod, the performance of the proposed
method is significantly improved for both macro‑ and micro‑expression spotting, with an
improvement of 0.1986 and 0.1217 in the F1 score, respectively. With the CAS(ME)2, com‑
paredwith the baselinemethod, the proposedmethod improves the F1 score ofmacro‑ and
micro‑expression spotting by 0.2597 and 0.0571. In the overall performance of both macro‑
and micro‑expression spotting, the method proposed in this paper outperforms the most
popular spotting methods, such as MDMD, STCAN, and SOFTNet.

Table 4. Experimental results.

Model
SAMM Long Video CAS(ME)2

MaE ME Overall MaE ME Overall

Baseline [11] 0.1863 0.0409 0.1193 0.0401 0.0118 0.0304

MDMD [12] 0.0629 0.0364 0.445 0.1196 0.0082 0.0376

STCAN [42] 0.1469 0.0125 0.1257 0.1250 0.0250 0.1168

SOFTNet [19] 0.2169 0.1520 0.1881 0.2410 0.1173 0.2022

Article 0.3849 0.1626 0.3156 0.2998 0.0689 0.2745

4.5. Ablation Experiment
The ablation experiment in this experiment verifies the influence of different mod‑

ules on the model and reflects the superiority of the network. We perform replacement
experiments on the optical flow module and feature extraction separately.
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Optical flow features provide temporal dimension information for micro‑expression
detection. We compare the results of only the video featureswith the results of adding opti‑
cal flow features. In the SAMMLong Video dataset, the F1 score of the method with an op‑
tical flow module increased by 0.1986 for macro‑expression spotting and 0.2597 for micro‑
expression spotting. In the CAS(ME)2 dataset, the F1 score of the method with the opti‑
cal flow module increased by 0.0115 for macro‑expression spotting and 0.0345 for micro‑
expression spotting. The results show that optical flow improves the micro‑expression
detection ability. Table 5 shows the effect of the optical flow module.

Table 5. Optical flow module ablation experiment.

Type
SAMM Long Video CAS(ME)2

MaE ME Overall MaE ME Overall

No optical flow 0.2500 0.0696 0.2162 0.2883 0.0344 0.2620

Optical flow 0.3849 0.1626 0.3156 0.2998 0.0689 0.2745

The second stage is feature extraction, which is compared with the feature extraction
network with better performance in target detection. ResNet shows good performance in
target detection [43]. Residual links help train deeper networks in object detection. They
also help solve degradation problems and are more stable in model performance. Dense
connectivity in DenseNet enables features from each layer to interact directly with subse‑
quent layers, enabling feature reuse. It can improve the detection performance. ResNet
and DenseNet can extract richer and more meaningful features, and their structure is sim‑
ilar to VoVNet. Therefore, VoVNet is compared with ResNet and DenseNet.

A SAMM Long Video sample occupies a large storage space, and DenseNet training
requires a large number of parameters. Due to the limitation of server GPU memory, we
only used the CAS(ME)2 dataset for progressive ablation experiments. Table 6 shows the
results of VoVNet compared with other models in detail. The results show that VoVNet
has the best feature extraction ability in micro‑expression detection.

Table 6. Feature extraction module ablation experiment.

Model
CAS(ME)2

MaE ME Overall

ResNet 0.2495 0.0421 0.2253

DenseNet 0.3026 0.0459 0.2596

VoVNet 0.2998 0.0689 0.2745

5. Discussion
To address the problem thatmicro‑expressions are difficult to detect, a VoVNet‑based

micro‑expression spotting model driven by multi‑scale features is proposed in this paper.
VoVNet is used for feature extraction; it integrates the features of different receptive fields
to improve the model’s performance. The FPN model is used in feature fusion to fuse
features of different sizes and achieve deep fusion of fine‑grained and semantic features,
which reduces the loss of feature information and improves model robustness. Finally, the
LOSO cross‑validation is used to evaluate the performance of themodel. The experimental
results show that compared with other popular methods, the micro‑expression spotting
method proposed in this paper can improve the performance of micro‑expression spotting
to a certain extent. In addition to micro‑expression spotting, the method proposed in this
paper can also be applied to video behavior recognition tasks, such as abnormal behavior
detection, action recognition, and gesture recognition in surveillance videos. It can also be
applied to medical image processing, such as lesion detection, disease classification, and
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diagnosis. By extracting and analyzing the features in medical images, it can assist doctors
in the diagnosis and treatment of diseases.

Since micro‑expression and macro‑expression samples are not balanced, we used at‑
tentionmechanisms and other methods to compensate for this deficiency. Due to the large
dataset and many model parameters, our next step will explore the use of a lighter model
for feature extraction. What is more, the importance of the three loss functions will be con‑
sidered. These losses can beweighted, and theweights can be optimized to take advantage
of the results.
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