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Abstract: In the context of smart city development, video surveillance serves as a critical component
for maintaining public safety and operational efficiency. However, traditional surveillance systems
are often constrained by a limited dynamic range, leading to the loss of essential image details. To
address this limitation, this paper introduces HDRFormer, an innovative framework designed to
enhance high dynamic range (HDR) image quality in edge-cloud-based video surveillance systems.
Leveraging advanced deep learning algorithms and Internet of Things (IoT) technology, HDRFormer
employs a unique architecture comprising a feature extraction module (FEM) and a weighted attention
module (WAM). The FEM leverages a transformer-based hierarchical structure to adeptly capture
multi-scale image information. In addition, the guided filters are utilized to steer the network,
thereby enhancing the structural integrity of the images. On the other hand, the WAM focuses
on reconstructing saturated areas, improving the perceptual quality of the images, and rendering
the reconstructed HDR images with naturalness and color saturation. Extensive experiments on
multiple HDR image reconstruction datasets demonstrate HDRFormer’s substantial improvements,
achieving up to a 2.7 dB increase in the peak signal-to-noise ratio (PSNR) and an enhancement of
0.09 in the structural similarity (SSIM) compared to existing methods. In addition, the framework
exhibits outstanding performance in multi-scale structural similarity (MS-SSIM) and HDR visual
difference predictor (HDR-VDP2.2). The proposed method not only outperforms the existing HDR
reconstruction techniques but also offers better generalization capabilities, laying a robust foundation
for future applications in smart cities.

Keywords: smart city; surveillance system; high dynamic range; vision transformer; attention
mechanism; guided filter; image reconstruction

1. Introduction

In our technologically advanced society, innovations are rapidly reshaping urban
environments, transitioning from foundational elements such as smart homes and factories
into comprehensive smart cities. These cities, equipped with advanced surveillance, health-
care, and intelligent transportation systems, enhance daily life quality [1]. By leveraging
soft computing, deep learning, and computer vision, artificial intelligence (Al) efficiently
processes the vast amounts of data generated by IoT devices, bringing the once abstract
idea of a “smart city” to life [2]. A pivotal component of this intelligent ecosystem is video
surveillance [3]. Traditional surveillance systems, while proficient in autonomous search-
ing, detection, and tracking, grapple with challenges arising from atmospheric visibility
and sensor limitations [4]. In the real world, images span a broad luminance spectrum,
often surpassing human visual capabilities. Many camera systems, bound by their limited
luminance range, produce subpar image quality [5]. Standard cameras with low dynamic
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range (LDR) sensors frequently falter under fluctuating lighting scenarios, resulting in the
loss of crucial image details in underexposed and overexposed regions, undermining the
system’s detection and recognition abilities [6].

Edge computing has arisen as a powerful alternative to cloud computing. By pro-
cessing data directly at its source, edge computing mitigates latency and congestion is-
sues [7,8]. When integrated with cloud computing, a robust edge—cloud computing frame-
work emerges. Within this framework, data from scattered edge devices are amalgamated
in the cloud, which then provides global insights back to these devices, enhancing real-time
video surveillance capabilities [9]. The integration of high dynamic range (HDR) technology
can further enhance this system, ensuring surveillance tasks benefit from superior image
quality, even in challenging lighting conditions. The architecture of the edge—cloud-based
HDR surveillance system is depicted in Figure 1. This collaborative approach between edge
and cloud computing, bolstered by HDR technology, is poised to redefine next-generation
video surveillance, emphasizing the importance of data security and privacy protection in
smart homes, industries, and cities.
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Figure 1. The architecture of the edge—cloud-based HDR surveillance system. By deploying HDR for
a priori processing at the edge node, the reliability of subsequent video surveillance technology is
enhanced, thereby providing a robust foundation for applications in smart cities.

In the realm of imaging, high dynamic range (HDR) stands out for its ability to
vividly capture the richness of real-world scenes. However, a significant challenge arises
when using consumer-grade camera sensors. These sensors often grapple with capturing
the luminance and contrast of real-world scenes, leading to information loss in either
overexposed or underexposed areas. To address this, researchers have explored hardware
and software solutions, leading to the development of HDR imaging techniques. There
are two primary methods to achieve HDR images. The first involves direct capture using
specialized hardware. The second method, on the other hand, leans towards artificial
reconstruction from LDR images, which are typically captured with standard cameras. This
reconstruction can be achieved through both handcrafted and data-driven techniques. It is
worth noting that while HDR-specific cameras have seen significant advancements, their
high costs often act as a barrier to mass adoption.

Given these constraints, the focus has shifted towards HDR image reconstruction
as a more viable alternative. The most common method involves capturing a series of
LDR images at different exposures and then merging them using multi-exposure fusion
techniques [10,11]. In this method, one image, typically the one with median exposure, is
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used as a reference. The other images serve to fill in the details for areas that are either
overexposed or underexposed. The crux of this method lies in the perfect alignment of
LDR images at the pixel level, which, when achieved, results in high-quality HDR images.
However, challenges arise when there is object movement, causing misalignment and
leading to artifacts like blurring and ghosting in the resultant HDR image. An alternative to
this is the single-image HDR reconstruction technique [12,13]. This method aims to expand
the dynamic range derived from just one LDR image, eliminating issues such as ghosting
and making it suitable for static and dynamic scenes. However, this task is challenging.
Using only a single LDR image, it is difficult to compensate for the extensive exposure
information that multi-exposure methods offer. In addition, LDR images, especially in
saturated regions, often undergo significant content loss, making the reconstruction of
authentic real-world information a daunting task.

Traditional single-image HDR reconstruction methods [14,15] primarily enhance
brightness or contrast directly through linear or nonlinear functions or employ local
analysis methods combined with expansion maps. However, a significant limitation of
these handcrafted methods is their reliance on fixed parameters, which are often deter-
mined by environmental variables, thereby restricting their adaptability. Recently, deep
learning-based single-image HDR reconstruction methods have gained popularity, pro-
ducing convincing HDR reconstruction results [12,13]. These methods typically utilize
one or multiple encoder-decoder architectures to model the transformation from LDR to
HDR images. However, they face several challenges. For instance, while these models are
adept at capturing multi-scale information, up-sampling and down-sampling often lead to
a loss of spatial information. Furthermore, convolution operations in CNNs inherently face
difficulties in modeling long-range dependencies, which can result in outputs exhibiting
unnatural tones and contrasts. Recently, the transformer [16] model for natural language
processing (NLP) has been adapted to the computer vision domain. The transformer’s
multi-head self-attention (MSA) module excels at learning non-local similarities and long-
range dependencies, presenting a potential solution to the shortcomings of CNN-based
methods [17,18]. However, it is worth noting that while deep learning offers multiple
solutions, most HDR reconstructions rely on mean squared error (MSE) solutions. The
inherent nature of MSE, which tends to average out many solutions, renders it less reliable,
especially when restoring details in areas with sparse saturation.

To address these challenges, we present the HDRFormer, an loT-based HDR frame-
work. The HDRFormer comprises two main components: the feature extraction module
(FEM) and the weighted attention module (WAM). The FEM, designed with a hierarchical
structure, is adept at extracting multi-scale information. Recognizing the importance of the
structural information of the reconstructed image, we adopt an edge-guided strategy to
reinforce edge structures. By preserving image edge information through guided filters
and enhancing structural performance through convolution operations, we found that di-
rectly replacing convolution layers with transformer components is not optimal. Although
transformers can capture global dependencies, edge pixels cannot utilize adjacent pixels
outside the patch for restoration during computation, potentially leading to artifacts and
compromising reconstruction quality. Therefore, we introduce the LASwin transformer
module, which employs self-attention based on non-overlapping windows, significantly
reducing computational demands. This module also incorporates convolution operations
to capture the local context of images better, thereby enhancing HDR reconstruction capabil-
ities. Furthermore, research [19] indicates that the perceptual quality of images deteriorates
significantly when details in saturation areas are lacking. Recognizing the importance of
these areas for visual quality, we designed the WAM to accentuate information in saturation
areas. The WAM utilizes a supervised mechanism with a weight map, prioritizing the
reconstruction of saturation areas. This is further complemented by an attention map,
which helps refine details in these critical regions.

The main contributions of this study are as follows:
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(1) A novel HDR reconstruction framework designed specifically for enhancing image
quality in edge—cloud-based video surveillance systems. This model integrates a
unique FEM and a WAM to produce HDR images of exceptional quality across
diverse scenarios.

(2) Within the FEM, this study introduces a hybrid architecture that melds the strengths
of self-attention mechanisms with convolution operations. This approach adeptly
captures global image dependencies while retaining essential local image contexts,
ensuring optimal HDR image reconstruction.

(38) Acknowledging the significance of saturated areas in HDR images, the WAM is
equipped with a supervised weight map and attention map. This design emphasizes
the reconstruction of these pivotal areas, refining intricate details and boosting the
perceptual quality of the resultant images, even under challenging lighting conditions.

(4) We conducted an extensive series of experiments on multiple publicly available HDR
image reconstruction datasets. The quantitative and qualitative results emphatically
underscore the superior performance and robustness of the proposed method.

The remainder of this paper is organized as follows: Section 2 reviews related works.
Section 3 details the proposed model structure and loss functions. Section 4 describes
the datasets used and presents the qualitative and quantitative comparisons between the
proposed and existing methods. Finally, Section 5 concludes our work and discusses
potential avenues for future research.

2. Related Studies
2.1. Single-Image HDR Reconstruction

Single-image HDR reconstruction, commonly referred to as inverse tone mapping
(ITM) [14], has undergone extensive research over the past decades. While multi-image
HDR reconstruction techniques might introduce ghosting and blurring artifacts, deriving
details from a single-exposure LDR image in single-image HDR remains a formidable
challenge. Early ITM approaches can be categorized into global and local techniques. Global
methods, such as those proposed by Landis et al. [15] and Bist et al. [20], employ power and
gamma functions for content expansion, respectively. However, these methods demand
accurate parameter configurations. On the other hand, local techniques, as demonstrated
by Banterle et al. [14] and Didyk et al. [21], employ analytical methods combined with
expansion maps to enhance the luminance range of highlighted regions. Rempel et al. [22]
apply Gaussian filtering and image pyramids to retrieve information from saturated regions.
Traditional ITM techniques face the challenge of identifying a universal function applicable
to all images, prompting the introduction of deep CNN-based solutions. Eilertsen et al. [13]
and Wu et al. [23] adopt the U-Net and MobileNetV2 architectures, respectively, to estimate
the content in overexposed regions and integrate it with underexposed regions to produce
HDR images. Liu et al. [12] present a novel approach that learns to reverse the camera
pipeline to generate HDR images. Marnerides et al. [24] advocate for a multi-branch CNN
architecture, while Khan et al. [25] implement a recursive neural network. However, these
methods sometimes fall short in restoring pixels in saturated regions. In contrast, the
proposed method leverages a WAM to precisely enhance these saturated regions.

2.2. Attention Mechanism

Attention mechanisms have emerged as a crucial component in the advancement of
deep learning and have been widely applied in various computer vision tasks. Lu et al. [26]
introduced an adaptive attention model with a visual sentinel tailored for image captioning.
Fan et al. [27] utilized stacked latent attention layers to bolster multimodal reasoning capa-
bilities. Yan et al. [28] developed a spatial attention mechanism within a modified convolu-
tion network to suppress irrelevant features during frame fusion. Similarly, Tel et al. [29]
combined spatial attention with a semantic-consistent cross-frame attention block, enhanc-
ing the understanding of dynamic and static image content. In addition, Tao et al. [30]
applied an adaptive interference removal framework in video person re-identification, with
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Free Detection (3.2)
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attention-guided modules to selectively remove frame and pixel interferences. Abdusa-
lomov et al. [31] employed spatial and channel attention synergistically to improve the
accuracy of detection of brain tumors from MRI scans. Tao et al. [32] made strides in forest
smoke detection by developing an attention-steered, pixel-level supervision model that
differentiates subtle features effectively. Liu et al. [33] introduced an innovative pyramid
cross-attention alignment module, which efficiently aggregates features from LDR frames,
achieving both denoising and HDR reconstruction. Moving beyond traditional spatial
attention, several fusion network architectures with expansive receptive fields, such as non-
local networks [34] and the transformative transformer networks [18], have been proposed.
By focusing on pertinent information, these networks set new performance standards,
demonstrating increased adaptability. The proposed method uniquely integrates attention
guidance to accentuate this capability.

2.3. Vison Transformer

The vision transformer [16] (ViT) model, initially designed for NLP tasks, has been
adapted for visual tasks. Dosovitskiy et al. [35] were at the forefront of introducing
the ViT for image recognition, segmenting images into input tokens and analyzing their
interrelationships. However, ViT’s performance aligns with CNNs only when subjected
to extensive dataset training. Touvron et al. [36] refined ViT using knowledge distillation,
emulating the output of a CNN model teacher. To mitigate the self-attention computational
overhead in high-resolution images, Liu et al. [37] proposed a hierarchical transformer
structure with an integrated moving window. However, this method might curtail the
contextual information within local regions, rendering it potentially unsuitable for HDR
reconstruction. To address this, we reshape the image patches within the transformer and
incorporate convolution operations, ensuring the comprehensive capture of both local and
global information. The proposed method is benchmarked against leading-edge CNN
methods, underscoring its effectiveness and feasibility.

3. Proposed Single-Image HDR Reconstruction Framework

The comprehensive structure of the HDRFormer framework is depicted in Figure 2. An
encoder—decoder model, serving as the foundational architecture, is detailed in Section 3.1.
This architecture leverages hierarchical multi-scale features, amalgamating low-level and
high-level features. In Section 3.2, the pivotal roles of the weighted attention mechanism
(WAM) and the modified specular-free (MSF) are introduced, both of which are paramount
in accentuating saturated regions. Section 3.3 provides a detailed explanation of the loss
functions employed for training the HDR model.

Attention
Fusion

Feature extraction
module (3.1)

Figure 2. Overview of the proposed HDRFormer. The model begins with the input LDR image,
which is processed through the FEM, aiming to reconstruct the information of the HDR. Subsequently,
the MSF is employed to identify regions of interest, while the WAM is invoked to further refine these
regions, ensuring optimal enhancement. Ultimately, the model is trained and the final HDR images
are obtained through the calculation of loss.
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3.1. Feature Extraction Module

The proposed feature extraction module is founded on a U-net-based encoder-decoder
architecture.

Encoder. Initially, we extract shallow features, Fy € RHAXWXC from an input image
I € REXWx3 ysing 3 x 3 convolutional layers, where H, W, and C represent the image
height, width, and the number of feature channels, respectively. For this module, we set the
feature channels to 32 based on the experimental findings. The feature map F is extracted
via three encoder stages, each consisting of two LASwin transformer blocks, one edge-
guided reinforcement block (applied only to stages 1 and 2), and a downsampling layer.
The LASwin transformer block captures global context using a self-attention mechanism,
while a feedforward network focuses on local details. The edge-guided reinforcement block
utilizes guided filters to preserve edge nuances, subsequently enhancing the feature map’s
structural information via convolution operations. Downsampling is performed using a
4 x 4 convolutional layer with a stride of 2, reducing the image size by half while doubling
the number of channels. Thus, the feature of the i-th stage in the encoder is defined as

F e R “2C Wherei € {1,2,3} represents the three stages of the encoder. Concluding
the encoder, we append two LASwin transformer blocks, forming a bottleneck stage, and
produce the feature map Fj.

Decoder. We have a symmetric three-stage design mirroring the encoder. Each stage
is equipped with two LASwin transformer blocks, an edge-guided reinforcement block,

and an upsampling layer. The feature of the i-th stage in the decoder is expressed as
H W i
F/ e R “2%C where i € {0,1,2} represents the decoder’s three stages. Upsampling is

performed by merging bilinear interpolation with a 3 x 3 convolutional layer, reducing
the channel count by half, and expanding the feature map dimensions. The resulting
feature map is then merged with the corresponding encoder features. Skip connections are
used to channel these features to the LASwin transformer block, facilitating HDR image
reconstruction. The edge-guided reinforcement blocks ensure that the texture details of
the HDR image are accurately rendered. Finally, the feature map F}, is passed through the
WAM to emphasize saturated regions. The following sections will provide a more in-depth
understanding of the LASwin transformer block and the edge-guided reinforcement block.

LASwin transformer block. The transformer architecture has emerged as a potential
solution to the challenges encountered by CNN-based methods, especially in capturing
long-range dependencies. However, experiments have indicated that the direct integra-
tion of the transformer into HDR reconstruction is fraught with challenges. While the
transformer is renowned for its robust learning capabilities, achieving convergence re-
mains a hurdle. Consequently, we employ handcrafted and masking techniques to guide
feature orientations, enhancing convergence and performance. Moreover, transformers
face two primary challenges. Firstly, while segmenting images into uniform patches and
computing global self-attention across them is feasible, the computational demands of the
transformer increase quadratically with the number of patches [37]. This can be taxing
on hardware resources, sometimes to the point of being prohibitive. Therefore, applying
global self-attention to high-resolution feature maps is not always practical. Secondly, as
indicated by prior research [38,39], transformers tend to be less proficient in capturing local
information, often overlooking the internal structural details, especially when compared to
CNNis. To overcome these limitations, we introduce the local-attention shifted windows
(LASwin) transformer block, depicted in Figure 3a. This block leverages the transformer’s
self-attention mechanism to capture global dependencies and incorporates a feedforward
network to capture salient local feature nuances. Specifically, the LASwin transformer
block comprises two main modules: (1) window-based multi-head self-attention (W-MSA)
and (2) local attention feedforward network (LAFF). The computational dynamics of the
LASwin transformer block are detailed as follows:

Fr=W- MSA(LN(Fin )) + Fin, 1)
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Fout = LAFE(LN(F')) + F/, @)

where F;, represents the input feature map of W-MSA, and LN (-) denotes the layer normal-
ization. F’ and F,,; are the output features of W-MSA and LAFF, respectively. We adopt
the window-based multi-head self-attention [37], in contrast to the global multi-head self-
attention (MSA) typical of the standard transformer. By performing self-attention within
distinct, non-overlapping local windows, the computational complexity scales linearly with
the spatial size, leading to a significant reduction in the computational cost. Specifically,
for an input feature map F;, of size H x W x C, the LASwin transformer block divides
the input into non-overlapping M x M local windows, where M = 4. These windows
are subsequently flattened and transposed, resulting in IX/IVZV x M? x C features, where ?A—Vg

represents the total number of windows. Following this, each local window’s self-attention

is computed. For the i-th window feature input Fl-in € RM**C, the query Q', key Ki and
value V' are derived as follows:

Q'=FPy, K =FPy, Vi=FPpy, (3)
where i € {1, 2,..., }]{TV! }, and Pg, Pk, and Py are learnable parameters. We divide Qi, Ki,
and V' into n heads across the channel dimension, with each head having a size defined by
Agize = % The self-attention of the j-th head is expressed as

igil
. I iyl — ] ] i
Attention (Q s K]-, V] ) = SoftMax T V] , 4)

where j € {1,2,...,n}, and Q;:, K;:, and V]-i represent the query, key, and value of the j-th
head of the i-th window feature, respectively. The output for the i-th window feature,
Fi e RM*XC_ can be formulated as

Fi=Cl, (Attention( LK, V;') ) Po+ B, ®)

where C(-) denotes the concatenation operation, Pp € R is a learnable parameter, and

B € RM*XC js a learnable relative position embedding. Subsequently, all window features
are reshaped to derive the output feature map F’. However, since the segmented local
windows do not overlap, this might result in a lack of information interaction between
windows. To address this, we alternate between standard windows and shifted windows,
ensuring cross-window connections [37]. Specifically, shifted windows involve moving the
original feature data upwards and to the left by half the window size before implementing
the standard self-attention mechanism.

On the other hand, the feedforward network (FFN) in the standard transformer
processes each pixel location independently and uniformly for feature transformation.
Specifically, FFN employs two 1 x 1 convolutional layers: the first expands the feature
channels, while the second reverts the channels to their original input dimensions. In
addition, a non-linear function, GeLU, is applied within the hidden layer. However, as
prior research [38] pointed out, FFNs exhibit limitations in handling local features. The
contribution of adjacent pixels is important for image reconstruction [40]. To address
this, we have adapted the FFN within the transformer-based framework by integrating
a depthwise convolution block and a squeeze-and-excitation (SE) block [41]. As shown
in Figure 3b, the proposed approach begins with applying a linear projection layer (1 x 1
convolution) to each input token, enhancing the feature dimension and reshaping it into
a 2D feature map. Subsequently, a 3 x 3 depthwise convolutional layer is employed to
extract the image’s local nuances, which is crucial for image reconstruction. The SE block is
then utilized for channel weighting, with the GeLU function activated in the hidden layer.
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This channel weighting strategy facilitates the transmission of relevant information while
filtering unnecessary data, mirroring the attention mechanism’s functionality. Finally, we
flatten the feature map and apply another linear layer (1 x 1 convolution) to reduce the
channels and align them with the input channel dimensions, followed by a residual output.

1
1
T I
1
! , Spatial
LAFF : Restoration
[ ' — Vi ... [
I N Llnear WEHTY ) s EL %
LN 1 Projection B g | o
: (1x1) Depth-wise - o
| VN 3x3
— : Convolution ﬁﬁ
1 Input Ercit
1 ! Tokens
1
1
MSA 1
1
I S |GeL
T ' v ¥
I Y
LN :
! Linear Flatten
: Projection
! (1x1)
1
: Output
1 Tokens
@ (b)

Figure 3. (a) Illustrates the detailed structure of the LASwin transformer block, utilizing a window-
based multi-head self-attention mechanism to capture distant dependencies and employing a local
attention feedforward network (LAFF) to learn local information. (b) showcases the LAFF. Initially,
input patch tokens are projected into a higher dimension and subsequently restored to a 2D image in
the spatial dimension, adhering to the original position. A deep convolution, indicated by the green
area, is then performed on the restored image. Finally, channel weighting is applied to the image,
which is then flattened and projected to the initial dimension for residual output.

Edge-guided reinforcement block. The encoder—decoder’s upsampling operation can
often compromise edge details during image compression and reconstruction. Although
U-net can improve the image’s edge information via skip connections, there is an inevitable
loss of some edge structural details. Drawing inspiration from [42], we employ guided
filters after downsampling and before upsampling to retain and amplify the image’s
edge structural details. Recognized for their edge-preserving capabilities, guided filters
have been widely adopted in traditional handcrafted methods for tasks such as image
enhancement, dehazing, and HDR compression. In the context of deep learning, the linear
nature of the guided filter’s computational process allows it to serve as a layer, facilitating
gradient computation and subsequent backpropagation.

Algorithm 1 outlines the procedure for edge-guided reinforcement blocks (ERBs). The
ERB integrates a guided filter and a 3 x 3 convolutional layer, with the feature map F and
the guided image G as inputs. We employ a gray-scale image as the guide image, aiming
to retain the guide image’s edge structural details through guided filtering applied to the
feature map. The process begins with a mean filter fimean With a radius of 2 to compute
the correlation coefficient. This coefficient encompasses the mean of the feature map pr,
the mean of the guide image i, the variance of the feature map 02, and the covariance
between the feature map and guidance image o r. Using the derived variance ¢ and
covariance og r, these coefficients collectively discern the linear relationship between the
feature map and the guide image. Subsequently, the linear transformation parameters
a and b are deduced using the least squares method. To prevent the parameter a from
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becoming excessively large, we introduce the parameter ¢, set to ¢ = 10* based on our
experiments. The final step involves calculating the mean of parameters a and b, using the
derived mean parameter to linearly generate the output feature map O for the fine structure.
However, while the guided filter can extract the guided image’s fine structural details, its
application to the feature map might inadvertently smooth out certain flat feature details.
Therefore, we concatenate the output map O with the original feature map F, using a
3 x 3 convolutional layer to further extract and preserve essential edge structural details,
enhancing the model’s performance.

Algorithm 1: Edge-guided reinforcement block

Input: Feature map F, guidance image G, radius 7, regularization term &
Output: Feature map F’
Step 1: Utilize box filter fmean () to compute the correlation coefficient, which includes i, g,
oé, and oG r.

HF = fmean (F/ 7’)

#G = fmean (G, 7)

0 = fmean (G*7) = g
0G,F = fmean(G-F,7) — ug-pr

Step 2: Determine the optimal linear transformation parameter coefficients a and b based on the

given formulas.
— 9GF
T ok+e
b=pr—apc
Step 3: Compute the mean values of parameters 2 and b using the provided formulas and derive
the output image O using guided filtering.
Ha = fmean (a,7), hp = S mean (b,7)
0= Ma-F+pyp
Step 4: Concatenate F with O and perform a convolution to fuse the feature and modify the
channel size of the feature.

F' = Cov(Concat(F, O))

3.2. Weight Attention Module

One of the most significant challenges in HDR image reconstruction is the restoration
of details in saturated regions. The lack of these details can significantly compromise the
visual quality of the image. The learning efficacy of a neural network model is substantially
influenced by the appropriate selection of architecture and loss functions. As observed in
previous studies [43,44], many existing approaches focus solely on minimizing the differ-
ence between the reconstructed and target images, often neglecting the crucial aspect of
restoring saturated regions. To address this issue, we introduce a weight attention mod-
ule (WAM) designed to enhance the information in saturated regions, thereby improving
model performance. As illustrated in Figure 4, the WAM offers two main contributions.
First, it provides precise guidance for the saturated regions. Second, it employs saturation
supervision to generate attention maps, which are pivotal in enhancing the details within
the saturated regions while concurrently minimizing errors in other areas. To precisely
target saturated regions, we first identify these areas within the image and generate a
corresponding weight map. While traditional methods detect saturated regions quickly,
employing fixed thresholds may not be universally applicable. In contrast, we use the
modified specular free (MSF) method [45] for the adaptive detection of saturated regions,
thereby achieving self-supervised learning for these regions. The MSF method determines
saturated regions based on the difference between the original input image I and the MSF
image. Given the high-intensity variance in overexposed regions, we primarily focus on
their restoration. Upon identifying saturated regions using MSF and generating the weight
map, the weight map is calculated as follows:

max (0,max (3R (i,7), 6¢ (i,j) 08 (i,))—th) . ..
W(i,j) e 55— , if 0x(i,j) > th for all x ) ©)
0 ,  others
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where W(i, j) represents the weight map, dx(i,j) = I(i,j) — MSFx(i, ), and th is the thresh-
old calculated using the Otsu algorithm. We then feed the feature maps generated by the
base network into a 3 x 3 convolution layer to produce the predicted HDR image. For
this predicted HDR image, we compute a weighted loss using the weight map W. This
allows us to focus on the saturated regions, generating an attention mask M through a
1 x 1 convolution layer followed by a sigmoid activation function. On the other hand, we
employ three 3 x 3 convolution layers for dense connections to learn the image features
and utilize a 1 x 1 convolution layer and two 3 x 3 convolution layers for the attention
mechanism. The attention mechanism is primarily achieved through residual learning and
the attention mask M, ultimately outputting higher-quality HDR images. The underlying
rationale for this design is to provide additional guidance to the model in saturated regions
through the self-training of attention.

Attention Fusion\‘|

........................

........................

M Attention i Weight Loss Ed—
Map T

\ 4

Tan
Modified Specular
Free Detection

Figure 4. Detailed architecture of the WAM. Initially, to accurately enhance the information in the

Generate
Weight Map
(Equation (6))

Mask Weight Map

saturated regions, we employ the MSF detection method to identify the locations of the saturated
areas and generate a weight map accordingly. Subsequently, the feature map anticipates HDR
reconstruction information through convolution operations and integrates the preceding weight map
to focus on the restoration of saturated areas, subsequently transforming this information into an
attention map. Thirdly, the feature map undergoes dense convolution operations to learn the HDR
reconstruction information and merges with the generated attention map for attentive fusion output.
Finally, loss calculation is performed on the output image.

3.3. Loss Function

In various image tasks, researchers typically design suitable loss functions according to
actual needs to ensure that the model converges in the desired direction. For deep learning-
based HDR image reconstruction methods, considering that HDR images are commonly
displayed post-tone mapping, we compute the loss function between the tone-mapped
generated HDR image and the tone-mapped ground truth HDR image. We adopt the p-law
for tone mapping, with the calculation formula as follows:

_ log(1+uH)
T(H) = log(1+pu) ’

where T(H) denotes the operation of HDR image H with pi-law, and y defines the amount
of compression. Following the settings in reference [10], we set y = 5000 and keep the

@)
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image range within [0, 1]. Next, we calculate all loss functions between the tone-mapped
generated HDR image and the tone-mapped HDR image of ground truth. Specifically, we
utilize a combination of three loss functions to train the model. Equation (8) describes our
final loss function, which is the weighted sum of reconstruction loss Lre., weight loss Ly,
and perceptual loss Lp. In this work, we set A = 10.

Liotar = LRec"‘Lw‘i‘)\Lp- (8)

Reconstruction loss. The objective of model training is to generate output HDR images that
closely resemble the HDR image of the ground truth. Therefore, we adopt the pixel-level
Li-norm loss function as our HDR reconstruction loss. Compared to Ly-norm, Li-norm
yields fewer blurry results and is robust to outlier pixel values. However, the range of
linear HDR brightness values can span from very low (shadow areas) to very high (bright
areas). The direct application of the reconstruction loss function on linear HDR images may
not produce optimal results. From experience, we found that calculating the loss on images
generated using tone mapping results in more stable training and better performance.
Therefore, we use the tone mapping operator to map the generated HDR image and
the HDR image of ground truth separately and calculate their reconstruction loss. The
reconstruction loss function calculation formula is as follows:

Lree = Y, Yo Y0 (1 (H5)) — 7(H3))). ©)

where H and W are the image height and width, respectively, Hgen represents the generated
HDR image, and Hg represents the HDR image of the ground truth. T(-) is the p-law tone
mapping operator.

Perceptual loss. To generate more reasonable and realistic details in the output HDR image,
we use perceptual loss [46]. This loss function attempts to evaluate the match degree of the
reconstructed image features with the features extracted from the ground truth, enabling
the model to produce a feature representation akin to the ground truth. The perceptual loss
function calculation formula is as follows:

Ly = ZFI;I:l zuvyzl 23:1 (4’1 (Hg;-gul(:)) — ¢ (Héf’w’c))), (10)

where ¢ (-) represents the feature map output extracted from the /th layer of the VGG-19
network. Here, the L1-norm loss between the feature maps of the tone-mapped generated
HDR image and the tone-mapped HDR image of the ground truth is calculated.

Weight loss. To generate higher quality HDR images in the output saturation areas, we
designed a weight loss, as detailed in Section 3.2. This loss function identifies the location of
saturated areas in the image and generates a weight map, enabling the network to focus on
evaluating values in pixel-level saturated areas during training. The weight loss function
calculation formula is as follows:

Lo = T L Lo WO (1 (Hr™ ) = 7 (11) ), an

where W represents the weight values of the saturated areas detected by MSF, and Hpre
represents the HDR image predicted earlier in the weighted attention module. Here, the
loss of the pixel in the saturated area between the tone-mapped predicted HDR image and
the ground truth HDR image is calculated.

4. Experiment

In this section, we initially delineate the experimental setup, which encompasses
the datasets and training phase. Subsequently, we compare it quantitatively and qualita-
tively with other single-image HDR reconstruction methods. Finally, an ablation study is
described to evaluate the contribution of each component.
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4.1. Datasets and Experiment Settings

The selection of datasets plays a crucial role in determining the effectiveness of a deep
learning network, facilitating learning, and maintaining objectivity in environments with
similar objects. To robustly evaluate the merits of the proposed method, we employed
widely recognized HDR image reconstruction datasets: Funt [47], Stanford [48], Ward [49],
and Fairchild [50]. Given that these datasets solely encompass HDR images and lack
LDR-HDR pairs, we applied tone mapping to synthesize corresponding LDR images,
thereby obtaining a total of 9870 LDR images by randomly cropping 512 x 512 regions ten
times for each tone mapping, in alignment with the methods delineated in [24,51,52]. In
addition, we utilized the HDR-Real dataset [12], which comprises 480 HDR and 4893 LDR
images. The LDR images, captured with 42 cameras, were converted into HDR images
using Photomatix software version 6.3 [53]. Consistent with the approaches in [12,24,51,52],
we amalgamated these datasets, referring to them as the HDR-Synth-Real dataset, and
conducted the evaluations. A total of 11,810 images were allocated for training and 2953
images were allocated for testing. Furthermore, we conducted tests using the HDR-eye [54]
public dataset, which includes 46 sets of ground truth HDR images and LDR images
captured with various cameras. However, due to the substantial black areas present in the
LDR images of the initial four sets, only 42 sets of the HDR-eye dataset were utilized for
the evaluation.

Regarding the experimental environment settings, training and testing were imple-
mented under the PyTorch framework on an Intel i7-8700K CPU equipped with an Nvidia
GTX 1080 Ti GPU. The training images were resized to 256 x 256 pixels, and the HDR
images were normalized to the [0, 1] range to ensure uniform learning. For testing, we
utilized images of 512 x 512 pixels. The training was conducted over 200 epochs, with
the interim results assessed every ten epochs to avert overfitting. In terms of parameters,
the Adam optimizer was configured with 31 =0.9, 32 = 0.999, and a learning rate of 0.001,
adopting a linear decay strategy every 30 epochs. The batch size was established at 1.

4.2. Qualitative Comparison

In the ensuing visual analysis, Photomatix [53] is employed for tone mapping, uti-
lizing the 8-bit LDR image for the HDR image to compare with the proposed method,
aligning with the prevalent practices in the majority of HDR literature. We juxtapose our
approach with the recent handcrafted-based methods rTMO [55] and MEO [56], and the
deep learning-based methods reported by Liu et al. [12], HDRCNN [13], ExpandNet [24],
FHDR [25], and KUNet [57]. Visual comparisons enable the discernment of intuitive perfor-
mance advantages among various methods, such as the detail retention in image regions,
naturalness, and saturation levels, as exemplified in Figure 5a, 6a, and 7a. These test
images, which exhibit significant luminance disparities in highlight or shadow regions,
clearly reveal numerous detail losses upon visual inspection.

Figure 5 illustrates the results of reconstructing test image 07 from the HDR-eye
dataset using different methods. In Figure 5¢, although the method [55] enhances the
overall brightness of the image, it exhibits a poor detail performance in the shadow (blue
box) region, rendering it indistinct to the human eye. Conversely, Figure 5d retains some
detail in the shadow (blue box) region, yet the arch details in the bright (red box) region
lack clarity. In Figure 5e, the shadow (blue box) region details are less prominent, possibly
due to the HDRCNN [13] neglecting the underexposed information. Figure 5f has a
commendable overall naturalness, yet the tree bark texture details in the shadow (blue
box) region are nearly imperceptible. Figure 5g represents shadow (blue box) and bright
(red box) region details adequately, albeit with a somewhat unnatural overall color tone.
Figure 5h successfully retains details in both the shadow (blue box) and light (red box)
regions, but it presents a muted color vibrancy and insufficient global contrast. Figure 5i
displays enhanced color saturation in both shadow (blue box) and light (red box) regions;
however, it does not effectively capture the finer details of the architectural features and
tree bark textures. In contrast, Figure 5j adeptly reconstructs the details in the shadow (blue
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box) and bright (red box) regions, accurately reflecting the information of the real scene
and exhibiting excellent natural color tones.

Figure 5. Comparative visualization of HDR image reconstruction applied to test image 07 from the
HDR-Eye dataset. (a) LDR image, (b) ground truth, (c¢) rTMO [55], (d) MEO [56], () HDRCNN [13],
(f) ExpandNet [24], (g) FHDR [25], (h) Liu et al. [12], (i) KUNet [57], and (j) the proposed method.

Figure 6 demonstrates the visualization of reconstructing test image 17 in the HDR-
eye dataset. In Figure 6c, the stone texture details near the bright (red box) region are
evident, yet the stair details in the shadow (blue box) region are not recovered. Figure 6d
reveals texture details in the shadow (blue box) region, but the stone step details in the
bright (red box) region are elusive. In Figure 6e, while the bright (red box) region details
are preserved, noise is generated in the stairs in the shadow (blue box) region. Figure 6f
displays details of the scene in the bright (red box) and shadow (blue box) regions, albeit
with a monotonous and flat overall color tone. Figure 6g reconstructs details well in the
bright (red box) and shadow (blue box) regions, maintaining good overall naturalness, yet
the overall lack of contrast yields a suboptimal visual experience. Figure 6h improves the
scene’s visibility in both regions; however, the stair structure in the shadowed region (blue
box) lacks clarity. Figure 61 more accurately represents the shapes in the bright area (red
box) but appears somewhat blurred compared to the alternative approaches, presenting a
color tone and contrast that deviate significantly from the ground truth. In comparison,
Figure 6j, which benefits from the utilization of the ERB module, adeptly preserves the
image’s edge information, rendering the stair details in the shadow (blue box) region clearly
visible, and the image overall is vibrant, presenting good visual richness.
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Figure 6. Comparative visualization of HDR image reconstruction applied to test image 17 from the
HDR-Eye dataset. (a) LDR image, (b) ground truth, (c¢) rTMO [55], (d) MEO [56], () HDRCNN [13],
(f) ExpandNet [24], (g) FHDR [25], (h) Liu et al. [12], (i) KUNet [57], and (j) the proposed method.

Figure 7 displays the visualization of reconstructing test image 22 in the HDR-eye
dataset. In Figure 7c,d, the scene details in the bright (red box) and shadow (blue box)
regions are almost invisible. Figure 7e preserves the bright (red box) region details but
fails to effectively reconstruct the tile tones. Figure 7f displays the bright (red box) region
details and maintains a natural overall color tone; however, the details in the shadow
(blue box) region are lost. Figure 7g preserves details well, yet the overall color tone
is monotonous, lacking contrast. Figure 7h represents the bright (red box) and shadow
(blue box) region details well, yet the image appears unrealistic due to a lack of global
contrast. While Figure 7i falls short in recovering additional structural details in the shadow
(blue box) areas, the incorporation of the cascade structure from KUNet [57] facilitates the
reconstruction of intricate structural details in the stairway section. In contrast, Figure 7j
reconstructs more visual content in the bright (red box) and shadow (blue box) region
details, thereby enhancing the overall visual quality.
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Figure 7. Comparative visualization of HDR image reconstruction applied to test image 22 from the
HDR-Eye dataset. (a) LDR image, (b) ground truth, (c¢) rTMO [55], (d) MEO [56], (¢) HDRCNN [13],
(f) ExpandNet [24], (g) FHDR [25], (h) Liu et al. [12], (i) KUNet [57], and (j) the proposed method.

4.3. Quantitative Comparison

To ensure a fair comparison, we utilized commonly used metrics such as the peak
signal-to-noise ratio (PSNR) [58], structural similarity (SSIM) [58], and multi-scale structural
similarity (MS-SSIM) [59] to evaluate the differences between the predicted HDR images
and the HDR ground truth images, thereby objectively comparing the advantages among
the different methods. The PSNR is calculated based on the mean squared error (MSE),
which represents the Euclidean distance between pixels and indicates a higher similarity to
the original pixels as its value increases. The SSIM measures the similarity to the original
image using pixel variance and the mean of two images, while the MS-SSIM incorporates
scale-space theory into the SSIM calculations. Before calculating the PSNR, SSIM, and
MS-SSIM metrics, we applied the p-law tone mapping operator to the images, maintaining
the output within [0, 1]. Additionally, HDR images should be measured based on human
visual perception and image differences. Therefore, we also employed the quality Q score
of the HDR visual difference predictor (HDR-VDP2.2) [60] as an evaluation metric, which is
based on a human visual perception model and is applicable to all luminance environments,
providing the highest level of objective evaluation of the HDR image quality.

Table 1 displays the comparison of the various methods” PSNR, SSIM, MS-SSIM, and
HDR-VDP2.2 scores on two datasets. Figure 8 shows the thumbnails of test image scenes,
such as outdoor/indoor, day/night, and rural/urban scenarios. On the test dataset, deep
learning-based methods outperformed traditional inverse tone mapping algorithms in
average scores across all metrics, as it might be challenging for traditional methods to find
optimal parameters and functions for each image. In contrast, deep learning-based methods,
with superior adaptability and minimal training parameter tuning, demonstrate robust
HDR reconstruction capabilities across various images. Notably, the proposed method
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yielded the best PSNR, MS-SSIM, and HDR-VDP2.2 scores and the second-best SSIM score.
A higher PSNR score indicates lower distortion in the generated image, implying a better
quality of the predicted image. A higher HDR-VDP2.2 score indicates a better quality of
the generated image, meaning the predicted image is closer to the real image under human
visual system observation. The SSIM and MS-SSIM scores denote the structural similarity of
the generated image, with higher scores indicating a greater structural similarity between
the predicted and real images. Although our method slightly underperformed in the
SSIM metric compared to [25], considering the scale concept, we achieved the best score in
the MS-SSIM metric. Simultaneously, we also conducted evaluation tests on the publicly
available HDR-eye dataset, and the proposed method achieved the best scores in all four
metrics. Overall, compared to other HDR reconstruction methods, the proposed method
achieves superior performance and exhibits a better generalization capability.

Table 1. Reconstruction results obtained for the HDR-Synth-Real and HDR-EYE public datasets. The
bold indicates the best performance.

HDR-Synth-Real HDR-EYE
Method
etho PSNR SSIM  MS-SSIM  Q-Score PSNR SSIM  MS-SSIM  Q-Score
MEO [56] 143587 05558 0.7273 47.9059 153920  0.6789 0.8143 50.7127
FTMO [55] 157702 05903 0.7906 49.9514 156703  0.6932 0.8492 50.9251
HDRCNN [13] 158559 05893 0.7982 51.1234 169791 07024 0.8520 52.2274
ExpandNet [24] 157862 06122 0.7877 50.0693 174671 07555 0.8753 52.4345
Liu etal. [12] 168019  0.6322 0.8123 52,5716 195234 07999 0.9255 54.7989
FHDR [25] 171186 0.6542 0.8308 52.1636 194047 07913 0.9307 53.7691
KUNet [57] 172050  0.6206 0.8159 52.1499 189806 07531 0.9202 53.6063
This work 174261  0.6503 0.8376 52.7729 19.5814  0.8105 0.9367 54.9493

(b)

Figure 8. Thumbnails of test images. (a) LDR image, and (b) reconstruction result of the pro-
posed method.

4.4. Ablation Studies

This section delineates the evaluation of contributions from various components within
the proposed HDRFormer model. Specifically, we utilize LDR images as input and employ
a CNN-based U-net model as the baseline [13]. The different components are adjusted and
incorporated to analyze and evaluate their efficacy within the HDRFormer. Table 2 presents
the performance evaluation of each component, articulated in terms of the PSNR, SSIM, and
MS-SSIM. Initially, the advantages of the FEM are analyzed. A conspicuous improvement
is observed in the PSNR, SSIM, and MS-SSIM evaluations, with values approximately 4.730,
0.069, and 0.064, respectively, upon substituting the CNN-based feature extraction module
with the proposed LASwin transformer block. This result underscores the aptness of the
LASwin transformer block architecture for HDR reconstruction.
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Table 2. Results of ablation studies using the FEM and WAM on the HDR-Synth-Real dataset.

FEM
LASwin WAM PSNR SSIM  Ms-ssiv  Runtime
ERB (ms)
Transformer Block

Unet backbone (Baseline) [13] 12.2037 0.5753 0.7675 205

v 16.9339 0.6443 0.8370 322

v v 17.1641 0.6490 0.8404 343

v v 17.0415 0.6451 0.8370 381

v v v 17.4261 0.6503 0.8376 395

The subsequent analysis delves into the disparities engendered by the incorporation
of the ERB. The quantitative experimental results demonstrate improvements across all
the evaluated metrics. Figure 9 visually elucidates the impact of embedding the ERB
module within the LASwin transformer block architecture. In the absence of the ERB, the
texture details of the wall, when illuminated by the streetlight, are somewhat obfuscated.
In contrast, employing the ERB not only renders the texture details distinctly visible but
also preserves the structural information of the wall. Furthermore, the efficacy of the WAM
is assessed. While integrating the WAM into the LASwin transformer block architecture
does not universally enhance the quantitative results, the visual analysis reveals a more
natural reconstruction in saturated areas. Figure 10 illustrates that, without the WAM,
artifacts appear in the sky region. Conversely, employing the WAM presents a natural
scenery devoid of artifacts in the sky region. This result can be attributed to our strategy
of focusing on the information in the saturated areas when utilizing the WAM, thereby
providing it with a more accurate direction to reconstruct images in real-world scenarios.

Figure 9. Comparison of HDR images with and without ERB. (a) Without ERB, and (b) with ERB.

In addition to component evaluation, a runtime analysis was conducted to provide
insights into the computational efficiency of this study. Table 2 demonstrates that incorpo-
rating the LASwin transformer block, ERB, and WAM increases the computational runtime;
processing an image takes approximately 395 ms with the complete HDRFormer model,
in contrast to the 205 ms required by the baseline U-net model. Despite the increase,
the significant improvements in image quality, as denoted by the superior PSNR, SSIM,
and MS-SSIM metrics, warrant the additional computational cost. The comprehensive
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HDRFormer model yields remarkably refined reconstruction results. These quantitative
and visual enhancements in HDR images affirm the increased runtime, emphasizing the
HDRFormer model’s effectiveness in producing high-fidelity images within an acceptable
processing time increment. In future work, we aim to optimize model inference techniques
to enhance HDRFormer further, facilitating deployment on edge devices and applications
in practical settings.

(b)

Figure 10. Comparison of HDR images with and without WAM. (a) Without WAM, and
(b) with WAM.

5. Conclusions

In this study, we propose a novel framework for HDR image reconstruction in edge—
cloud computing environments, focusing on enhancing video surveillance systems. The
framework leverages the self-attention mechanism inherent in transformers to capture
long-range dependencies in images while incorporating convolutional operations for the
more effective learning of local features. To further enhance the quality of reconstructed
images, we integrated the ERB and the WAM, focusing on strengthening the information
in edge structures and saturated regions, respectively. The comprehensive experimentation
on publicly available HDR image reconstruction datasets has substantiated the exceptional
performance of the HDRFormer, particularly evident in the qualitative comparison analysis,
where the proposed method demonstrates superior overall appearance and detail restora-
tion capabilities. The ablation studies further validated the efficacy of each component
within the HDRFormer architecture.

Despite these advancements, we acknowledge certain limitations. The current HDR-
Former, while robust, has yet to be fully optimized for computational efficiency, which
is paramount for real-time applications. Furthermore, the framework’s adaptability to
different imaging modalities and potential applicability in real-world scenarios require
additional exploration. To tackle these challenges, the future iterations of the HDRFormer
will focus on enhancing the model’s efficiency, reducing its computational cost, and refining
model inference techniques to facilitate its deployment on edge devices. In addition, we in-
tend to extend our examination of the framework’s adaptability across imaging conditions
and its broader applicability to real-world contexts.
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