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Abstract: In order to cope with the massive scale of traffic and reduce the memory overhead of traffic
statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot
for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch
algorithm and proposes a method to estimate the flow heat from massive network traffic using the
Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In
view of the performance difficulties of applying multiple hash functions in the implementation of the
Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve
the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments
of data in a single step, implement multiple hash operations at the same time, compare and sort
multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly,
the elements of data flow are described and stored in the form of vectors, while the construction,
analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash
operation is simplified into a single vector operation, which reduces the CPU computing resource
consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize
the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD
instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm
program, and the optimized code is tested and analyzed. The experimental results show that the time
consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant
reduction compared to the original version. When the length of KEY is 96 bytes, the instructions
consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time
consumed by the optimized version of AVX is about 67.2% of that in the original version. As the
length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX
decreases to 53.8% of the original version. The simulation results show that the AVX optimization
algorithm is effective in improving the measurement efficiency of network flow.

Keywords: SIMD instruction set; AVX instruction set; Sketch algorithm; top-k flow; flow heat ranking

1. Introduction

Network measurement is an important basis for the development of a Software De-
fined Network (SDN) [1]. Network condition monitoring [2], network fault analysis [3],
network security defense [4], and even network intelligence all depend on network mea-
surement [5]. Network traffic detection is the most basic and important part of network
measurement. Network traffic detection mainly collects network data flow continuously
and analyzes network traffic. For example, once a malicious attacker takes advantage of
some vulnerabilities in the system to obtain sensitive data in the network, traffic transmis-
sion is bound to occur. Traffic detection can extract the required target information from the
malicious traffic so as to analyze the network behavior and take corresponding measures
for network security defense [6]. Network traffic is characterized by few attributes, large
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amounts of data, and large human influence factors, without typical behavior character-
istics. Numerous studies on network traffic show that massive network traffic data are
power-law distributed [7]. Because the flow distribution in the network is not balanced,
most of the flow is very small, which is called cold flow. A small part of the flows is very
large, which is called hot flow. However, the small amount of top-k heat flows with the
biggest traffic has a greater impact on the network. For example, in data center networks,
some applications require a large amount of data transmission, such as data mining and
machine learning. Such hot flows may account for only 10% of the total flow, but they
account for 90% of the total traffic [8]. Focusing full traffic analysis to top-k traffic analysis
makes it possible to analyze massive network traffic in real time. For example, real-time
monitoring and understanding of the top-k service providers in network traffic helps
operators to understand the network status in real time and facilitate network management.
J. Li et al. proposed a new Sketch algorithm, WavingSketch, which can be applied to four
applications: finding top-k frequent items, finding top-k heavy changes, finding top-k
persistent items, and finding top-k Super-Spreaders [9]. Alawadi A H et al. proposed a
new stochastic performance evaluation model to detect and mark top-k heat flows, and
then optimize these flows using dynamic load balancing, equal-cost multi-path routing
(ECMP), and other traffic engineering technologies, which can improve throughput and
flow completion time (FCT) [10]. L. Tang et al. presented the MV-Sketch algorithm, a fast
and compact invertible Sketch algorithm that supports heavy flow detection with small
and static memory allocation [11].

To rank the popularity of massive network traffic with the Sketch algorithm, it is often
necessary to perform multiple hash operations on KEY with long length and sort large-
scale flow tables [12], which requires a large amount of computation and takes a long time,
because KEY needs to contain most of the flow identification at the link layer, network layer,
and transport layer to adapt to various protocol types of flows and distinguish each specific
flow. For a flow, according to its protocol type, multiple tuples in the packet are selected
to construct the KEY of a hash function, and each tuple is filled into the corresponding
position of KEY. KEY needs at least five tuples; the other tuples, such as the source MAC
address and destination MAC address, can also be added to expand the length of KEY. The
graphics processor (GPU), due to its powerful computing power and unique advantages in
matrix operations, has undertaken most of the computing tasks of the entire computing
process in many studies [13]. However, due to the very limited memory capacity of the
GPU, it is usually more than a few levels worse than the CPU. As a result, the scale of
network models that the GPU can support is largely limited. The CPU has, on the contrary,
a generally much larger memory capacity than the GPU, but the computing power is far
lower than the GPU [14], so it is neglected in large-scale long data processing, and its
computing power is not fully excavated.

The Single-Instruction-Multiple-Data (SIMD) is an extension of the CPU’s basic instruc-
tion set, which can use one instruction to operate on multiple data, and simultaneously
perform the same operation on each data point in a set of data vectors [15]. Thus, the
technology of parallel processing in space is realized. Current microprocessors generally
provide SIMD extension components, and the supported vector length is increasing. For
example, Intel Corporation introduced a new vector-processing-oriented advanced vec-
tor extensions (AVX) series instruction set on the CPU, which adopts the SIMD mode.
Jakobs et al. used Message Passing Interface (MPI) together with the AVX instruction set
to obtain optimization of application programs [16]. Shafqat Khan et al. proposed an
efficient sub-word parallelism (SWP)-enabled reduced instruction-set computer (RISC)
architecture based on Streaming SIMD extensions (SSE) [17]. The SIMD instruction set
of the processor includes SSE, AVX, AVX2, and AVX512, with different versions of the
instruction set register varying in length and number. Al Hasib et al. investigated the effects
on performance and energy using a data reuse methodology combined with paralleliza-
tion and vectorization in multi- and many-core processors. In this reference, a full-search
motion estimation kernel was evaluated on an Intel® (Santa Clara, CA, USA) Xeon PhiTM
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many-core processor with SSE and the AVX instruction set; the test results revealed that
data-level parallel architectures was the design choice in many energy-efficient computing
systems [18]. The instruction set can be used to process massive data hashing, comparison,
and sorting operations so that the CPU as the effective computing power for flow heat
ranking becomes possible. At the same time, because the memory capacity of the CPU is
often much larger than that of the video memory of GPU, it is more suitable for Sketch
algorithms and flow tables that need to occupy a lot of memory. Therefore, based on the
AVX instruction set, it is necessary to optimize the hash calculation and flow table sorting
of the Sketch algorithm and to develop the computational role and advantages of the CPU
in large-scale data processing.

This paper takes network data packets as the object, counts network data flows based
on the Sketch algorithm, and sorts top-k hot flows based on flow tables. This method
can screen and sort the hot flow from massive amounts of traffic. In order to improve the
performance of hash calculation and flow table sorting of the Sketch algorithm, the AVX
instruction set is used to optimize the multi-data processing during the implementation of
the Sketch algorithm and flow table, and a large number of serial processing is converted
to the parallel processing of a single instruction stream and multi-data. Compared with the
traditional single instruction stream single-data processing, the hash calculation and flow
table sorting performance of the Sketch algorithm are greatly improved. The rest of this
article is organized as follows. The second section introduces the mathematical principle of
the Sketch algorithm and bitonic sort algorithm [19], and the basic idea of using the AVX
instruction set to optimize the top-k flow heat ranking of network traffic. The third section
realizes the construction and operation of a vector based on the AVX instruction set, studies
the method of replacing traditional operation instructions with AVX instructions, and
completes the optimization of the Sketch algorithm and bitonic sort algorithm. In the fourth
section, experimental tests are conducted to verify the improvement of the AVX instructions
on the performance optimization of the Sketch algorithm and bitonic sort algorithm.

2. Top-k Flow Heat Ranking Algorithm Based on AVX
2.1. Data Structure of the Sketch Algorithm

There are a variety of packets in the network. If each packet is allocated a counter to
store, although the measurement is accurate, the storage of all data flows and the need
to search all the historical data flows will require a lot of memory space because of the
huge amount of data in flow mining. Therefore, based on the hash value, the required
storage space is determined according to the range of hash values [20]. Various packages
are reclassified according to the hash value, and the data stream is compressed and stored
in a smaller space, which can greatly reduce the storage space [21]. The hash function is
defined as follows: given two data sets X and Y, R is a mapping relationship on the data
sets X and Y, and the functional relationship between them is shown below [22].

fR : x R→ y(∀x ∈ X, y ∈ Y) (1)

The method that uses hash to estimate the flow is called a Sketch-algorithm-based
method. The Sketch algorithm has a hash based data structure, and the hash function is
used to map the data flow to two-dimensional space to generate a summary information of
the data flow to reduce the space overhead [23]. The commonly used string hash functions
include BKDRHash, APHash, DJBHash, etc. Reference [24] presents a comparison of the
performance of different hash functions. Increasing the range of hash functions or the
number of hash functions can improve the accuracy of the Sketch algorithm, but also
increases the complexity of the operations [25].

At present, with the increasing network traffic, the Sketch algorithm is widely used in
data flow mining algorithms, and the demand for Sketch algorithm performance is also
increasing. Among various Sketch algorithm structures, Count-min Sketch [26] proposed
in 2004 has better performance. In recent years, most data flow mining algorithms based
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on the Sketch algorithm have been improved based on Count-min Sketch. It randomly
projects high-dimension traffic data to low-dimension space, which is a typical compression
mapping. The Count-Min Sketch algorithm is composed of a two-dimensional array with
a width of w and a depth of d. Each element of the array corresponds to a counter, that
is, counter [1,1], . . ., counter [d, w]. Each counter value of the array is initialized to 0. The
Count-Min Sketch algorithm uses hash mapping rules to map elements in a data stream
to the corresponding counter in each row for counting. The Count-min Sketch algorithm
has the characteristics of fast update and query speed, high-speed arrival of data flow, and
fast processing [27,28]. Figure 1 shows the summary method of the Sketch data stream
processing method of the Count-min Sketch algorithm. The specific algorithm process is
as follows.

Electronics 2023, 12, x FOR PEER REVIEW  4  of  16 
 

 

number of hash functions can improve the accuracy of the Sketch algorithm, but also in‐

creases the complexity of the operations [25]. 

At present, with the increasing network traffic, the Sketch algorithm is widely used 

in data flow mining algorithms, and the demand for Sketch algorithm performance is also 

increasing. Among various Sketch algorithm structures, Count‐min Sketch [26] proposed 

in 2004 has better performance. In recent years, most data flow mining algorithms based 

on the Sketch algorithm have been  improved based on Count‐min Sketch. It randomly 

projects high‐dimension traffic data to low‐dimension space, which is a typical compres‐

sion mapping. The Count‐Min Sketch algorithm is composed of a two‐dimensional array 

with a width of w and a depth of d. Each element of the array corresponds to a counter, 

that is, counter [1,1], …, counter [d, w]. Each counter value of the array is initialized to 0. 

The Count‐Min Sketch algorithm uses hash mapping  rules  to map  elements  in a data 

stream to the corresponding counter in each row for counting. The Count‐min Sketch al‐

gorithm has the characteristics of fast update and query speed, high‐speed arrival of data 

flow, and fast processing [27,28]. Figure 1 shows the summary method of the Sketch data 

stream processing method of the Count‐min Sketch algorithm. The specific algorithm pro‐

cess is as follows. 

 

Figure 1. Summary method of the Sketch data stream. 

The main actions of the Sketch algorithm are as follows: 

(1) Hash mapping, which means taking d pairwise independent hash functions hash1, 

hash2, …, hashd and constructing an array of d rows of counters; each row uses a hash 

function to map the newly arrived element to a counter in that row to generate the 

Sketch’s summary of that element. 

(2) Update the two‐dimension array. The input can be regarded as the data that arrives 

one after another. When the new elements (jt, ct) arrive at time t, the table entries are 

updated, and all the data streams are updated through this table to obtain the final 

two‐dimensional array. The updating process is as follows. For each row in the two‐

dimensional array, hashi (j) is used to calculate the index of element j in row i, and 

the counter value of the map is added to c. The formula is as follows. 

cjhashicounterjhashicounter ii  ))(,())(,(   (2)

(3) Query the result; the formula for the value corresponding to the query element j is as 

follows: 

depthijhashicounterjQ i ,,2,1)))(,(min()(    (3) 

Figure 1. Summary method of the Sketch data stream.

The main actions of the Sketch algorithm are as follows:

(1) Hash mapping, which means taking d pairwise independent hash functions hash1,
hash2, . . ., hashd and constructing an array of d rows of counters; each row uses a
hash function to map the newly arrived element to a counter in that row to generate
the Sketch’s summary of that element.

(2) Update the two-dimension array. The input can be regarded as the data that arrives
one after another. When the new elements (jt, ct) arrive at time t, the table entries
are updated, and all the data streams are updated through this table to obtain the
final two-dimensional array. The updating process is as follows. For each row in the
two-dimensional array, hashi (j) is used to calculate the index of element j in row i,
and the counter value of the map is added to c. The formula is as follows.

counter(i, hashi(j)) = counter(i, hashi(j)) + c (2)

(3) Query the result; the formula for the value corresponding to the query element j is
as follows:

Q(j) = min(counter(i, hashi(j))) i = 1, 2, · · · , depth (3)

Different elements may conflict if they are mapped to the same counter through hash
function calculation, so multiple hash functions are set up and the minimum hash value
is taken to improve the accuracy of the measurement results. Multiple hash functions
are set up and take the smallest hash value to improve the accuracy of the measurement
results so as to avoid conflicts that may occur when different elements are mapped to the
same counter after the hash function calculation. Therefore, the count of the row with the
smallest query result is selected as the approximate result.
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2.2. Top-k Algorithm Based on Bitonic Sort

The top-k flow statistics method plays an important role in network statistics. In the
application of the Sketch algorithm, there has been much research on top-k flow statistics,
such as the Elastic Sketch algorithm [29] and MV-Sketch algorithm [30]. Their basic idea is
to maintain an additional data structure to count top-k flow. One of the problems involved
is the replacement strategy. Different data structures and different replacement strategies
will produce different computational overhead and storage overhead, and will also affect
the statistical accuracy of top-k flows. A reasonable data structure is conducive to better
implement the replacement strategy and facilitate the sorting of top-k flows. Therefore, this
paper proposes a flow table based on a bitonic sequence to count the top-k flow based on
the Sketch algorithm.

Based on the Sketch algorithm, this paper adds a heat ranking flow table to track
the top-k flows with the highest heat and the L flows with the lowest heat by bitonic sort.
Each flow in the flow table is arranged in a manner that the heat increases monotonically
and then decreases monotonically. The specific implementation method is as follows.
When the heat ranking function is turned on, after each message arrives, the heat of the
current flow is first estimated by the Sketch algorithm, and then processed by the flow
table after the heat reaches a certain threshold. The current flow is compared with the
lowest heat flow in the flow table. If the heat of the current flow is higher, whether the
current flow already exists in the flow table is checked. If so, the current flow count in the
flow table is updated; otherwise, the lowest heat flow in the flow table is replaced with
the current flow. In order to ensure the monotonicity of the bitonic sequence, when the
count of a flow in the flow table is updated, the heat of this flow with the neighbor flow is
compared. If the heat ranking changes, the position of this flow and the neighbor flow is
exchanged. After replacing the lowest heat flow, it is necessary to insert the replaced new
flow at the appropriate position to ensure that the flow table is arranged in a monotonically
increasing and then monotonically decreasing manner. The lowest heat flow in the flow
table is distributed on both sides of the flow table sequence, and the highest heat flow is
concentrated in the middle of the flow table sequence.

Bitonic sorting is a sorting method based on the Batcher theorem [31]. Any bitonic
sequence A with a length of 2 n is divided into X and Y of equal length. The elements
in X are compared with the elements in Y one by one in the original order, that is, a [i] is
compared with a [i + n] (i < n). The larger one is put into sequence M, and the smaller one is
put into sequence N. Then, the obtained sequences M and N are still bitonic sequences, and
any element in the sequence M is not less than that in the sequence N. According to this
principle, sequences M and N can be obtained by shuffling and comparing from a bitonic
sequence with 2 n elements, and then an ordered sequence can be obtained by processing
two n-order bitonic mergers. Figure 2 shows the bitonic sorting diagram.

The heat ranking flow table is not a bitonic sequence at the beginning. It can be
converted into a bitonic sequence through the bitonic merge [32] process. Two adjacent
monotone sequences with opposite monotonicity are regarded as a bitonic sequence, and
these two adjacent monotone sequences with opposite monotonicity are merged to generate
a new bitonic sequence each time. For four adjacent sequences A, B, C, and D with
length n, sequence A and C are monotonically increasing and sequence B and D are
monotonically decreasing. Through bitonic sorting once, sequence A and B can be merged
into a monotonically increasing sequence with length 2 n and sequence C and D can
be merged into a monotonically decreasing sequence with length 2 n, and then the two
adjacent sequences with length 2 n are merged into a monotonic sequence with length
4 n. In this manner, an out-of-order sequence can be converted into a bitonic sequence. The
schematic diagram of constructing a bitonic sequence is shown in Figure 3.
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Bitonic sort is a sorting algorithm that can easily implement parallel computing.
Through SIMD instructions and parallel operations of multiple cores, the operation perfor-
mance can be greatly accelerated. However, traditional serial sorting algorithms, such as
fast sorting [33], face difficulty in using SIMD instructions to achieve parallel operations.
In addition, the bitonic sort algorithm is more suitable for arrays with a length of 2n, so the
flow table specification and the k value of top-k generally take the power of 2.
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2.3. Overview of AVX Technology

The idea of classification is used in the Count-Min Sketch algorithm. Group network
flows with the same hash value into one class, and use the same counter to count, which
means describing the characteristics of all data with a small amount of data. Although
accuracy is sacrificed, the cost of data storage is reduced. However, multiple hash func-
tions are used in the implementation of the Count-min Sketch algorithm, which requires
d × w counters to ensure high query accuracy, resulting in high requirements on memory
resources. Compared with the traditional x64 instruction set, SIMD has a significant advan-
tage in the processing speed of data-intensive operations. In order to solve the problem of
memory consumption during the implementation of the Sketch algorithm, AVX technology
is used to optimize the performance of the Sketch algorithm. The AVX instruction set
is designed and implemented based on the idea of SIMD technology, which processes
multiple channels of data in memory at the same time in one CPU instruction execution
cycle, and processes multiple fragments of data in a single step, which can improve data
processing efficiency. The AVX instruction supports 256-bit vector operations and can
process eight 32-bit data at a time [34], making the hash operation nearly 4–8 times faster.
Compared with traditional instructions, AVX instructions save access time and improve
data processing speed, thus improving the throughput of executing tasks.

3. Optimization of Flow Heat Ranking Algorithm Based on AVX
3.1. Algorithm of Flow Heat Ranking

The construction and operation of vectors are realized based on the AVX instruction set,
the method of replacing traditional operation instructions with AVX instructions is studied,
and the optimization of the Sketch algorithm is completed. This method can realize the
simultaneous calculation of multiple hash functions and reduce the instruction operation
consumption of the Sketch algorithm. It has the characteristics of high reliability, simple
implementation, and saving CPU instruction consumption, thus improving the efficiency
of the Sketch algorithm and meeting the requirements of top-k hot flow identification and
classification in a high-speed network environment. Figure 4 shows the flow chart of Sketch
algorithm optimization based on the AVX instruction set.
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The algorithm for flow heat ranking is shown in Algorithm 1.

Algorithm 1: Algorithm for flow heat ranking

Input: packet
Output: flow hot rank

1. key = GetKey(packet);

2. index = hash_v(key);

3. insert_sketch(index)

4. flowCnt = query_sketch(index)

5. if (flowCnt > threshold)

6. if (flowCnt > flow_table.min)

7. if (flow_table.find(key) == 1)

8. flow_table.delete_min;

9. flow_table.insert_flow(key, flowCnt);

10. else

11. flow_table.update_flow(key, flowCnt);

12. while (flowCnt > flow_table.neighbor_cnt)

13. flow_table.switch(key);

Corresponding with Step 1 to Step 13 of the algorithm for flow heat ranking, we
provide a detailed explanation of each step of the procedure below.

1. Obtain multiple tuples from packets to form vector KEY.
2. Index vector of the Sketch algorithm is calculated by the AVX instruction set according

to vector KEY.
3. According to the index vector, the indexes of multiple counters are obtained, and the

multiple counters corresponding to these indexes are increased.
4. The flow heat is estimated by taking the minimum value of multiple counters accord-

ing to the Sketch algorithm.
5. If the heat of the flow is bigger than the threshold.
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6. If the heat of the flow is bigger than the flow with the smallest counter in the flow table.
7. If the flow is already in the flow table.
8. Then the flow with the smallest counter is deleted in the flow table.
9. The flow table is inserted into the current flow, and inserted into the appropriate

position according to the heat of the flow, maintaining bitonic peculiarity.
10. Update the heat of the current flow in the flow table.
11. If the current flow heat is higher than that of the neighbor.
12. In the flow table, the current flow switches positions with the neighbor, maintaining

bitonic peculiarity.

3.2. Optimize Sketch Algorithm with AVX

AVX instructions support 256-bit-wide vector operations, and hash function seeds
and results can be represented by 64-bit-wide numbers, so a single AVX instruction can
implement four hash function operations at the same time. The specific implementation
flow of the Sketch algorithm is as follows:

(1) Initialize the hash function and select a set of four hash functions constructed using a
random number modding method, which means supposing that the hash function
hashi(j) of row i is as follows:

hashi(j) = {[(k1i × j) + k2i] %mod } %width (i = 1, 2, 3, 4) (4)

where j is the data element and k1 and k2 are randomly generated integers, which are
hash seeds and initial values, respectively. The effective bit width of j, k1, and k2 is
32. The multiplication result is represented by 64 bits, and the effective lower 32 bits
are taken by the modulus operation, that is, mod is the base of a modulus operation,
mod = 232; width is the width of the two-dimension array. Equation (4) maps each
incoming data element j to an integer by hashi(j) calculation. Different hash functions
are constructed by different initial values k2i and hash seeds k1i. Multiplication and
addition of different hash functions for the same element are accelerated by AVX
vector operations.

(2) Construct the vector: according to the initial value of each hash function, use the
instruction _mm256_set_epi32 to construct the hash result vector. According to the
seeds of each hash function, a hash seed vector is constructed. For the data stream to
be processed, use instruction _mm256_set1_epi32 to make four copies and construct
the data element vector. Because the effective bit width of each seed, hash result,
and data element is 32-bit, the actual bit width of these values in the vector is 64-bit
to prevent multiplication transgression. The composition structure of each vector is
shown in Figure 5.
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(3) Hash operation means using _mm256_mul_epi32 and _mm256_add_epi32 instruc-
tions to achieve vector multiplication and addition, using AVX instruction to complete
the operation of multiple hash functions, and completing the calculation of four
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hash results after traversing all packets, thus improving the performance of the
Sketch algorithm.

hash_v =_mm256_mul_epi32(hash_v, seed_v) (5)

hash_v =_mm256_add_epi32(hash_v, data_v) (6)

(4) Sketch algorithm counting means extracting the final results of four hash functions
from the hash result vector to obtain four counters by taking the minimum value of
the traffic count results of the Count-min Sketch algorithm.

3.3. Bitonic Sort Optimizing with AVX

The AVX instructions support 256-bit-wide vector operations, and the heat of flows
in the flow table can be represented by 32-bit-wide numbers, so an AVX instruction can
achieve the heat ordering of eight streams at the same time. The specific implementation
process of the sorting algorithm is as follows:

(1) Initialize the bitonic sequence. The number of streams supported in the flow table is
limited, and the number is usually set to a power of 2, while the number of flows in
the real network is massive. At the beginning, the flow table is empty. When a packet
arrives, the Sketch algorithm is used to estimate the heat of the flow. When the heat
exceeds the threshold, the flow is inserted into the flow table. This is because the heat
value returned by the Sketch algorithm will only be estimated to be larger, not smaller.
A flow whose heat estimation value by Sketch is greater than the threshold may not be
a heat flow, but a flow whose estimation value is less than the threshold is definitely
not a heat flow. When the flow table is full or needs to be top-k sorted, the bitonic
merge process is converted into a bitonic sequence, ensuring that the flow table is
arranged in a monotonically increasing and then monotonically decreasing manner.

(2) Update the bitonic sequence. After the flow table is filled, when a new flow arrives,
it needs to be compared with the flow with the lowest heat in the flow table. If the
heat of the new flow is lower, there is no need to insert the flow table. If the heat of
the flow is higher than the lowest heat of the flow table, whether the new flow has
been inserted into the flow table is checked. If the heat value of the flow is higher, it
only needs to update the heat value of the flow in the flow table. If not, the flow is
replaced with a new flow. After the heat updating or new flow replacement, the heat
of the new flow are compared with their neighbor, the appropriate location is found
through binary search [35], and the new flow is moved to the location, so as to ensure
the monotony of the bitonic sequence.

(3) Order the bitonic sequence. The bitonic sequence with length of 2 n is divided into X
and Y with equal length, and a set of data are taken from X and Y for construction
vectors. When the length of X and Y is greater than the length of the vector, the
_mm256_loadu_ps instruction is used to take continuous data for construction vectors.
When the length of X and Y is equal to or less than the length of the vector, the
instruction _mm256_shuffle_ps is used for construction vectors by shuffling. The
instructions _mm256_max_ps and _mm256_min_ps are used to compare the two
vectors; the larger vector is put into the sequence M and the smaller vector is put
into the sequence N, and the resulting sequences M and N are still bitonic sequences.
According to this principle, a bitonic sequence with 2 n elements can firstly be obtained
by shuffling and comparing operations to sequences M and N. And then the ordered
sequence can be obtained by recursively performing bitonic sorting of subsequences.

4. Analysis of Experiments and Results

The specific experimental environment of this paper is as following. The Windows
11 Professional Edition operating system, 11th Gen Intel® CoreTM i9-11950H @ 2.60GHz
processor, 32 GB of RAM, and Visual Studio 2022 development platform are adopted. The
objective of the experimental test is to verify the function of the flow heat ranking algorithm
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and verify the improvement of the AVX instruction set on the performance optimization
of the Sketch algorithm and bitonic sorting algorithm. For this purpose, two versions of
the flow heat ranking algorithm are implemented: the original version and the optimized
version. The original version is not optimized using the AVX instruction set. The AVX-
optimized version means that the AVX instructions are used to complete the calculation of
multiple hash functions at one time, and the multiple flow table sorting is completed at
one time.

This paper uses several datasets obtained from the MAWI Working Group Traffic
Archive [36]. The three data sets were collected from different time periods to collect
traffic packets from the carrier backbone network. For each data set, the five tuples of the
packet are extracted, including the source IP address, destination IP address, source port
number, destination port number, and transport protocol. In addition, the MAC address
and Differentiated Services Code Point (DSCP) of the IPv4 packet are extracted to construct
a hash KEY of different length.

For all data sets, the two versions of the flow heat ranking algorithm achieve exactly
the same function, and the Sketch’s counters used for the final ranking result in the two
versions being the same. Here is the simulation to compare the performance gap between
the two versions.

In the experiment of this paper, in order to verify the optimization effect of the AVX
instructions over time, a hash operation is used for the counting and query actions of the
Sketch algorithm. For a flow, when the flow counter returned by its Sketch algorithm is
greater than the threshold of 10, it will be selected into the flow table processing process;
otherwise, it will be regarded as a small flow and no flow table processing is required. The
experimental data set information is as following in Table 1.

Table 1. Experimental data set information.

Data Set Message Number Flow Number Flow Number in Flow Table

data set 1 4,774,122 1,196,845 9339
data set 2 7,664,905 1,691,924 14,791
data set 3 10,163,203 1,996,525 18,541

For all data sets, the two versions of the flow heat ranking algorithm should achieve
exactly the same function; the counter estimated by the Sketch algorithm and the final
ranking result should be the same. Both versions are developed based on the CPU, making
full use of the CPU’s large memory characteristics, so the memory space consumption of
the two versions is consistent. The following is a simulation to compare the performance
gap between the two versions in CPU instruction execution time.

The original version of flow heat ranking algorithm and the version optimized by the
AVX instruction set are used for simulation, and the performance of lookup, flow table
construction, and sorting processing in the Sketch algorithm are compared; the simulation
results are shown in Table 2. Table 2 shows a running time comparison between the original
version and the AVX-optimized version under conditions of different data sets and different
KEY lengths.

The following conclusions can be drawn from Table 2. Taking the test results of data
set 3 as an example, in terms of hash operation, when the length of KEY is 128 bytes, the
running time of sketch decreases from 3,917,605 us in the original version to 2,576,302
us in the optimized version, and the time consumed by the AVX-optimized version is
65.8% of the original version. When the length of KEY is short, the instructions consumed
by multiple hash functions account for less in the whole process. For example, when
the length of KEY is 96 bytes, the running time is reduced from 3,109,784 us to 2,089,397
us, and the time consumed by the AVX-optimized version is about 67.2% of the original
version. As the length of KEY gradually increases, the proportion of instructions consumed
by multiple hash functions in the whole Sketch also gradually increases. For example,
when the length of KEY is 256 bytes, the running time is reduced from 6,321,628 us to



Electronics 2023, 12, 5026 12 of 15

3,399,399 us, and the time consumed by the AVX-optimized version is reduced to 53.8%
of the original version. Figure 6 gives the performance comparison of the original Sketch
algorithm with the AVX-optimized Sketch algorithm. As can be seen from the comparison
diagram in Figure 6, the longer the length of KEY, the more operation time the original
version needs to perform a hash operation in Sketch, and the better the optimization effect
of the AVX-optimized version.

Table 2. Simulation results.

Test Set Key Length (B) Processing Time (µs) Optimize Ratio
Original AVX Optimization

Test set 1

64 1,173,567 935,560 79.7%
96 1,647,833 1,039,376 63.1%
128 1,857,836 1,156,706 62.3%
256 3,257,260 1,699,635 52.2%

Test set 2

64 1,606,498 1,261,235 78.5%
96 2,361,363 1,733,468 73.4%
128 2,664,560 2,162,273 81.1%
256 4,709,894 2,429,931 51.6%

Test set 3

64 2,293,531 1,837,161 80.1%
96 3,109,784 2,089,397 67.2%
128 3,917,605 2,576,302 65.8%
256 6,321,628 3,399,399 53.8%
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In one test, the same data set is read and both versions of the algorithm are applied
for heat ranking of a massive network flow. The CPU instruction consumption of major
operations in the two versions is calculated in one test, as shown in Table 3. In the heat
ranking of a massive network flow algorithm, the basic processing of the data set consumes
18% of the CPU instructions. The original version consumes 51.6% of CPU instructions;
the AVX-optimized version consumes 30.4% of the CPU instructions. The management
operations of flow tables in the two versions are basically the same, and both of them
consume about 7.8% of CPU instructions. The AVX-optimized version mainly reduces the
count and access costs of Sketch, which are reduced from 43.8% in the original version
to 22.7% in the AVX-optimized version. Figure 7 shows the pie chart of CPU instruction
consumption of each module in the original version and AVX-optimized version of the
algorithm for heat ranking of massive network flows, which is an intuitive presentation
of Table 3.
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Table 3. CPU instructions consumption for major operations in both versions.

Process Operation Percent of Instruction Consumption Total

Original
Sketch counts 19.9%

51.6%Sketch query 23.9%
Flow table 7.8%

AVX-optimized
Sketch counts 10.4%

30.4%Sketch query 12.3%
Flow table 7.7%

Basic process Read data set 14.8%
18.0%Others 3.2%
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5. Conclusions and Future Work

In this paper, we propose a method to implement and optimize the Sketch algorithm
and bitonic sort algorithm using the AVX instruction set, which is applied to heat ranking
for massive network flows. This method takes network data packets as the object, counts
network flows based on the Sketch algorithm, and sorts flows based on a flow table to select
the top-k hot flows from massive network traffic. In order to improve real-time performance
of the algorithm for top-k hot flow ranking, it is necessary to solve the problem that the
existing Sketch algorithm needs to perform multiple hash operations on KEY with long
length, which consumes a lot of CPU instruction computing resources. This paper uses the
AVX instruction set to optimize multi-data processing during the implementation of Sketch
and flow table, and converts a large amount of serial processing into parallel processing
of single-instruction and multi-data. Using one vector operation to realize multiple hash
operations that need to be executed successively and using one vector sorting to realize
comparison and exchange operations that need to be executed successively, it has theoretical
reliability, reduces the consumption of CPU instructions, greatly improves the computing
efficiency, and thus improves the efficiency of network flow measurement. This method is
an effective way to improve the overall computing power of the system without increasing
the hardware cost.

Based on the real traffic in the data set, this paper verifies the improvement of op-
timization performance of the Sketch algorithm and bitonic sort algorithm by the AVX
instruction set through experimental tests. The experimental results show that compared
with the traditional single-instruction single-data processing, the optimization method
proposed in this paper can greatly improve the performance of hash calculation and flow
table sorting in Sketch. In terms of hash function operation, when the length of KEY is
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short, the instructions consumed by multiple hash functions account for less in the whole
Sketch algorithm, and the optimization effect of the AVX-optimized version decreases. As
the length of KEY gradually increases, the proportion of instructions consumed by multiple
hash functions in the whole Sketch also gradually increases, and the optimization effect of
the AVX-optimized version will also be more obvious.

In the future research, with increasing deployment of the IPv6 protocol, we plan
to further expand KEY’s length of hash operation for IPv6 traffic, supporting longer IP
addresses, simultaneously supporting IPv4 and other protocol traffic detection. On the other
hand, using machine learning to optimize the flow heat ranking algorithm is considered,
which means using the network traffic characteristics extracted from a small number
of traffic data packets to quickly predict and identify heat flow, so as to improve the
speed and accuracy of flow heat ranking. We also intend to consider using the powerful
parallel processing capability of the GPU to further improve the parallelism and real-time
performance of the heat ranking algorithm for massive network traffic.
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