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Abstract: This paper proposes a circuit model of a cross-coupled CMOS AC–DC charge pump
(XC–CP) operating in the subthreshold region. The aim is to improve the efficiency of designing
XC–CPs with a variety of specifications, e.g., input and output voltages and AC input frequency. First,
it is shown that the output resistance (Ro) of XC–CP is much higher than those of CPs with single
diodes (SD–CP) and ultra-low-power diodes (ULPD–CP) as charge transfer switches (CTSs). Second,
the reason behind the above feature of XC–CP, identified by a simple model, is that the gate-to-source
voltages of CTS MOSFETs are independent of the output voltage of the CP. Third, the high but finite
Ro of XC–CP is explainable with a more accurate model that includes the dependence of the saturation
current of MOSFETs operating in the subthreshold region on the drain-to-source voltage, which is a
function of the output voltage of CP. The model is in good agreement with measured and simulated
results of XC–, SD–, and ULPD–CPs fabricated in a 250 nm CMOS.

Keywords: AC–DC; RF–DC; charge pump; rectenna; wireless power transfer; IoT; energy harvesting

1. Introduction

AC–DC charge pumps (CPs) are used to convert AC input power to DC output
power for microwave wireless power transmission (MWPT) or RF energy harvesting
(RF–EH) [1–11], biomedical applications [12–16], and vibration energy harvesting [17–20],
as shown in Figure 1a–c. Figure 1d illustrates a block diagram of a CP composed of multiple
rectifiers and capacitors connected in series between the input and output terminals. The
capacitors are driven by the differential signals CLK and CLKB alternately. A filtering
capacitor is connected to the output terminal to generate a DC voltage. The DC voltage is
used for the following circuit blocks or ICs, such as sensors and RF ICs in IoT edge modules
or medical devices. The rectifier used in AC–DC CPs was originally a diode-connected
single MOSFET [21–23], as shown in Figure 2a. When the amplitude of the input AC
voltage is low in low-power systems, reverse leakage becomes a significant concern. To
reduce the reverse leakage current, ultra-low-power diodes were proposed and used in
low-power AC–DC CPs [24–26], as shown in Figure 2b. To boost the gate voltages of
switching MOSFETs for increasing the forward current, cross-coupled CMOS or CMOS
latches have been widely used [27–34], as shown in Figure 2c.

The frequency of AC signals is spread depending on the use cases. MWPT utilizes
ISM bands such as 920 MHz [1–3], 2.4 GHz [4–7], 5.8 GHz [8,9], and 24 GHz [10,11].
To have low tissue attenuation, ultrasound with moderate frequencies of 6.78 MHz and
13.56 MHz is used for biomedical applications [12–16]. Fundamental resonant frequency
used for vibration energy harvesting is nominally at 1–100 Hz [17–20]. Thus, improving
the efficiency of designing AC–DC CPs is required. A circuit model plays a key role in
improving the design efficiency. Models for AC–DC CPs with single diodes have been
developed in [25–40]. DC–DC CPs with cross-coupled CMOS operating in the triode
region were modeled in [41]. However, the output resistance of the CP (Ro) was given not
specifically, but through the traditional method of N/fC coth(Ton/Ron C), where N is the
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number of stages, f is the clock frequency, C is the stage capacitance, Ton is the period in
which the MOSFET turns on, and Ron is the on-resistance of the MOSFET.
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To directly take a look at differences in Ro among SD–CP, ULPD–CP, and XC–CP, 
SPICE simulation was conducted using the design parameters of a 65 nm CMOS, as shown 
in Table 1, resulting in Figure 3. Low-threshold-voltage transistors with a threshold volt-
age of about 0.3 V and with a minimum gate length of 60 nm were used. Surprisingly, the 
Ro of XC–CP was 3 times higher than those of SD–CP and ULPD–CP. As a result, the 
previous model [39,40] needs to be modified to predict high Ro for XC–CP. 

Table 1. Design parameters for Figure 3. 

Parameter Symbol Value 
Clock frequency f 1 GHz 
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Clock amplitude Vdd 400 mV 

Figure 1. Applications of AC–DC/RF–DC CPs (a) Microwave wireless power transmission or RF
energy harvesting, (b) biomedical application, (c) vibration energy harvesting) and (d) block diagram
of CP.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 17 
 

 

were modeled in [41]. However, the output resistance of the CP (Ro) was given not spe-
cifically, but through the traditional method of N/fC coth(Ton/Ron C), where N is the num-
ber of stages, f is the clock frequency, C is the stage capacitance, Ton is the period in which 
the MOSFET turns on, and Ron is the on-resistance of the MOSFET.  

 
Figure 1. Applications of AC–DC/RF–DC CPs ((a) Microwave wireless power transmission or RF 
energy harvesting, (b) biomedical application, (c) vibration energy harvesting) and (d) block dia-
gram of CP.  

 
Figure 2. AC–DC CPs with diode-connected MOSFETs (a), ultra-low-power diodes (ULPDs) (b), 
and cross-coupled CMOS or CMOS latch (c). 

To directly take a look at differences in Ro among SD–CP, ULPD–CP, and XC–CP, 
SPICE simulation was conducted using the design parameters of a 65 nm CMOS, as shown 
in Table 1, resulting in Figure 3. Low-threshold-voltage transistors with a threshold volt-
age of about 0.3 V and with a minimum gate length of 60 nm were used. Surprisingly, the 
Ro of XC–CP was 3 times higher than those of SD–CP and ULPD–CP. As a result, the 
previous model [39,40] needs to be modified to predict high Ro for XC–CP. 

Table 1. Design parameters for Figure 3. 

Parameter Symbol Value 
Clock frequency f 1 GHz 

Number of stages N 32 
Stage capacitance C 100 fF 
Clock amplitude Vdd 400 mV 

Figure 2. AC–DC CPs with diode-connected MOSFETs (a), ultra-low-power diodes (ULPDs) (b), and
cross-coupled CMOS or CMOS latch (c).

To directly take a look at differences in Ro among SD–CP, ULPD–CP, and XC–CP,
SPICE simulation was conducted using the design parameters of a 65 nm CMOS, as shown
in Table 1, resulting in Figure 3. Low-threshold-voltage transistors with a threshold voltage
of about 0.3 V and with a minimum gate length of 60 nm were used. Surprisingly, the Ro of
XC–CP was 3 times higher than those of SD–CP and ULPD–CP. As a result, the previous
model [39,40] needs to be modified to predict high Ro for XC–CP.

Table 1. Design parameters for Figure 3.

Parameter Symbol Value

Clock frequency f 1 GHz
Number of stages N 32
Stage capacitance C 100 fF
Clock amplitude Vdd 400 mV
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This paper proposes a circuit model of a cross-coupled CMOS AC–DC charge pump
(XC–CP) operating in the subthreshold region. The aim is to improve the efficiency of
designing XC–CPs with a variety of specifications, e.g., input and output voltages and AC
input frequency. First, it is shown that the output resistance (Ro) of XC-CP is much higher
than those of CPs with single diodes (SD–CP) and ultra-low-power diodes (ULPD–CP) as
charge transfer switches (CTSs). Second, the reason behind the above feature of XC-CP,
identified by a simple model, is that the gate-to-source voltages of CTS MOSFETs are
independent of the output voltage of the CP. Third, the high but finite Ro of XC–CP is
explainable with a more accurate model that includes the dependence of the saturation
current of MOSFETs operating at a subthreshold voltage on the drain-to-source voltage,
which is a faction of the output voltage of CP. The model is in good agreement with
measured and simulated results of XC–, SD–, and ULPD–CPs fabricated in a 250 nm CMOS.
Table 2 summarizes the abbreviations of the charge pumps discussed in this paper.

Table 2. Abbreviations of the charge pumps discussed in this paper.

CP Name Charge Transfer Switch Configuration

SD–CP Single diode-connected MOSFET Single transistor whose gate and body
terminals are tied to drain

ULPD–CP Ultra-low-power diode CMOS transistors connected in series

XC–CP Cross-coupled CMOS

CMOS latch; the source terminals of
NFETs connected to the input terminal

and those of PFETs connected to the
output terminal

This paper is composed of the following sections. Section 2 overviews modeling of
XC–CP [42,43] and shows the characteristics and schematics of the rectifiers composing
each stage to be optimized. Section 3 presents the fabricated circuits and measurement
results. Section 4 summarizes this research.

2. Modeling of Cross-Coupled CMOS AC–DC Charge Pump (XC–CP) Operating in
Subthreshold Region

This section starts with a review of the previous AC–DC CP model [39,40], and
proposes a new one for XC–CP operating in the subthreshold region. Table 3 summarizes
the circuit parameters of the XC–CP.
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Table 3. Definition of design parameters.

Parameter Description Parameter Description

f Frequency of input power IS
Saturation current of MOSFET

operating in subthreshold region
Vin Input AC voltage of XC–CP C Stage capacitor (capacitance per stage)
Vdd Amplitude of Vin N Number of stages
VPP Output DC voltage of XC–CP RO Output resistance of CP
IPP Average output current of XC–CP ISC Short-circuit current of CP
VT Effective thermal voltage VOC Open-circuit voltage defined by RO ISC

2.1. Previous Model of AC–DC CP [39,40]

Figure 4a illustrates a sub-circuit of XC–CP to define the nodal voltages Vn and Vn+1.
CLK and CLKB have a voltage amplitude of Vdd/2. Figure 4b shows the waveform of Vn
and Vn+1.
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The charge transfer switch (CTS) or rectifying diode D1 operates a forward-bias regime
between T1 and T3 and a reverse-bias one after T3. The peak forward voltage appears
around the middle of the time period between T1 and T3, namely T2. V1 and V2 at T2 can
be expressed as Vdd/2 − Ipp/fC and Vdd/2 + Ipp/fC + Vpp/(N + 1), respectively, where Vdd/2
is the clock amplitude of each of CLK and CLKB when the top plate parasitic capacitance is
ignored for simplicity, Ipp is the output current, Ipp/fC is a voltage shift due to the amount
of transferred charges Ipp/f in steady state, and Vpp/(N + 1) is the DC offset between the
next-neighbor capacitor nodes. As a result, the voltage difference at the peak points of Vn
and Vn+1 at T2 (Vd), is given by (1).

Vd = Vdd −
2Ipp

f C
−

Vpp

N + 1
(1)



Electronics 2023, 12, 5031 5 of 16

When the CTS MOSFET operates under the subthreshold region, the drain-to-source
current Id is expressed by (2), where IS is the saturation current, Vgs the gate-to-source
voltage, and VT is the effective thermal voltage.

Id = Ise
Vgs
VT (2)

with a conduction angle γ defined by Ton/Tc, i.e., (3), the average output current Ipp can be
expressed by (4).

γ = cos−1
(

1 −
2Ipp

f CVdd

)
(3)

Ipp =
γ

π
Id (4)

When Vgs is equal to Vd as in a single-MOSFET CTS, from (1), (2), and (4), one can
determine the Vpp–Ipp relationship (5).

Ipp =
2
π

√
Ipp

f CVdd
Ise

Vdd−
2Ipp

f C −
Vpp
N+1

VT (5)

The “Previous model” in Figure 3 is given by (5). One can numerically calculate Vpp
with a certain input value to Ipp.

2.2. Proposed Model of XC–CP

Figure 5a illustrates two next-neighbor stages of XC–CP. Because each stage has
two capacitors, the capacitance of each capacitor is designed to be C/2 so that the total
capacitance per stage is the same as the other CPs. The peak voltage difference Vd between
the next-neighbor capacitors is the sum of the Vds of PMOSFET and NMOSFET, i.e., 2Vds.
Figure 5b shows Vgs and Vd at the peak points. When the stage in the right half of
Figure 5a is the second stage, V2D and V2U are given by −Vdd/2 + Ipp/fC + Vpp/(N + 1) and
Vdd/2 − Ipp/fC + Vpp/(N + 1), respectively.
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Thus, Vgs = V2U − V2D is given by (6).

Vgs = Vdd −
2Ipp

f C
(6)
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Vd is given by (1) as well as SD–CP. Assuming NMOSFET has a drain-to-source current as
large as PMOSFET does, the peak current from one capacitor to the next is given by (7).

Id = Ise
Vgs
VT

(
1 − e−

Vds
VT

)
(7)

Charge transfer occurs in every half cycle, resulting in (8).

Ipp =
2γ

π
Id (8)

From Vd = 2Vds and (6)–(8), a subthreshold XC–CP model is given by (9).

Ipp =
2γIs

π
e

Vdd−
2Ipp

f C
VT (1 − e−

Vdd−
2Ipp

f C −
Vpp
N+1

VT ) (9)

When Vds ≫ VT , (9) is reduced to be (10). Because it has no Vpp term, this indicates that a
subthreshold XC–CP is a current source with infinite output resistance. This fact is derived
from (6), which has no dependency on Vpp.

Ipp =
2γIs

π
e

Vdd−
2Ipp

f C
VT (10)

2.3. More Accurate Model with Finite Output Resistance

Even though (10) can express high output resistance, it needs modification to have
finite output resistance rather than infinite. Figure 6a shows the Ids − Vgs of an NMOSFET
in a 250 nm CMOS, which suggests that Is has dependency on Vds, namely drain-induced
barrier lowering. Hereinafter, low-threshold-voltage 5 V CMOS transistors with threshold
voltages of about 0.3 V for NFET and about −0.3 V for PFET and with a minimum channel
length of 0.25 µm were used. Based on the data of Figure 6a, Is − Vds is plotted in Figure 6b.
The curve fits well with IS = 18.4 1010.7 Vds in nA.
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Assuming the Is − Vds curve can be generally described by (9)–(11) can be revised to
obtain (12) and (13), respectively.

Is = Is0e
Vds
ηVT (11)

Ipp =
2γIs0

π
e
(1+ 1

2η )(V
dd

−
2Ipp

f C )−
Vpp

2η(N+1)
VT (12)
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Ipp =
2γIs0

π
e
(1+ 1

2η )(V
dd

−
2Ipp

f C )−
Vpp

2η(N+1)
VT (1 − e−

Vdd−
2Ipp

f C −
Vpp
N+1

VT ) (13)

Figure 7 compares Vpp − Ipp between SPICE and Models (10), (12), and (13) at
Vdd = 200 mV when XC–CP is designed with the parameters in Table 4. Because Model (10)
does not include Vpp, the curve is a line in parallel with the horizontal axis, meaning an
infinite Ro. Both Models (12) and (13) have a Vpp term, and they show a finite Ro. Model (13)
has a stronger function of Vpp than Model (12). Because of the performance limitation of the
lab’s measuring instruments, the clock frequency was assumed to be 1 MHz. Also, in order
to measure output power below 1 µW, the number of stages was determined to be 24. The
three CPs were fabricated with these design parameters, and will be discussed in Section 3.
Even though the short-circuit current at Vpp = 0 V had discrepancies when compared with
the SPICE result, the output resistance of Model (13) was in better agreement with SPICE
than that of Model (12).
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Table 4. Design parameters of Figure 7 and used for the fabricated CPs which will be discussed in
Section 3.

Parameter Symbol Value

Clock frequency f 1 MHz
Number of stages N 24
Stage capacitance C 10 pF
Clock amplitude Vdd 400 mV, 200 mV, 50 mV

3. Validation of the Proposed Model

XC–CP, SD–CP, and ULPD–CP were designed in a 250 nm CMOS with the parameters
shown in Table 4. Figures 8–10, respectively, show simulated waveforms at 12th and 13th
stages when Vdd is 400 mV and Vpp is 3.0 V. Note that V3 and the N- and P-well voltages of
XC–CP in Figure 9, and V2 and V4 and the N- and P-well voltages of ULPD–CP in Figure 10,
are much more stable than V1–V3 of SD–CP, as shown in Figure 8. That is because the
ON-resistance of the two pass gates connected in series was designed to be about the same.
Ideally, those nodal voltages become the averaged value of the nodal voltages of the two
next-neighbor capacitors. This contributes to the power conversion efficiency of XC and
ULPD CPs. The reduction in the voltage swing of the N-well potential results in a reduction
in power loss. I1 and I2 of ULPD–CP become negative in the cycle time, but this is due to
the AC current to the gate of the CTS transistors, not the actual leakage current.
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Figure 13. Layout unit of ULPD–CP (a) and its layout design (b).

NMOSFETs were formed in a triple well to isolate their P-well from the P-substrate.
The deep N-well of the NMOSFET is shared with the N-well for PMOSFET to minimize
the parasitic capacitance for XC and ULPD CPs. To route wires for CLK and CLKB with
minimal length, two adjacent stages are laid out by placing two capacitors at the top and
bottom of the cell. The CTS is placed in the middle. The cell width is determined by the
CTS and the cell height is determined by the two caps and the CTS.

Figure 14 shows a die photo. Each CP has 24 stages with a stage capacitor of 10 pF.
Because of differences in the CTS size of the three CPs, XC, ULPD and SD, the CPs have
overall sizes of 0.48 mm2, 0.49 mm2, and 0.44 mm2, respectively.
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Figure 15 shows the measured waveforms of the three CPs with a Vdd of 200 mV, f
of 1 MHz, and a load resistance of 10 MΩ. The ripple voltages were below 6 mV with a
filtering capacitance of 22 pF. Table 5 summarizes their DC values.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 13. Layout unit of ULPD–CP (a) and its layout design (b). 

NMOSFETs were formed in a triple well to isolate their P-well from the P-substrate. 
The deep N-well of the NMOSFET is shared with the N-well for PMOSFET to minimize 
the parasitic capacitance for XC and ULPD CPs. To route wires for CLK and CLKB with 
minimal length, two adjacent stages are laid out by placing two capacitors at the top and 
bottom of the cell. The CTS is placed in the middle. The cell width is determined by the 
CTS and the cell height is determined by the two caps and the CTS. 

Figure 14 shows a die photo. Each CP has 24 stages with a stage capacitor of 10 pF. 
Because of differences in the CTS size of the three CPs, XC, ULPD and SD, the CPs have 
overall sizes of 0.48 mm2, 0.49 mm2, and 0.44 mm2, respectively. 

 
Figure 14. Die photo. 

Figure 15 shows the measured waveforms of the three CPs with a Vdd of 200 mV, f 
of 1 MHz, and a load resistance of 10 MΩ. The ripple voltages were below 6 mV with a 
filtering capacitance of 22 pF. Table 5 summarizes their DC values. 

 
Figure 15. Measured waveform with Vdd of 200 mV and f of 1 MHz. Figure 15. Measured waveform with Vdd of 200 mV and f of 1 MHz.

Table 5. Comparison of Vpp between SPICE and measured results in case of Vdd of 200 mV and f of
1 MHz.

CP SPICE Measured

SD 1.7 V 1.3 V
ULPD 1.1 V 1.0 V

XP 2.1 V 2.2 V

Vpp was measured with various Vdd and load resistance values. Figure 16 compares
the Vpp–Ipp curves between XC, ULPD, and SD with the SPICE, measurement, and model
results. Hereinafter, the models for XC and SD indicate (13) and (5), respectively.

Figure 16a–c show the comparison of Vpp–Ipp curves given by SPICE simulation
between XC, ULPD, and SD at Vdd values of 400 mV in Figure 16a, 200 mV in Figure 16b,
and 50 mV in Figure 16c. At a Vdd of 400 mV or 200 mV, “Latch” or XC–CP had the highest
Ro in a lower Vpp range, but Ipp suddenly collapsed at a certain Vpp. The reason for this
behavior has not been identified in this work, and will be determined in research. An Isc of
SC was the highest among the three CPs at Vdd values of 400 mV, 200 mV, and 50 mV. At a
Vdd of 50 mV, the Ipp of XC is as low as that of ULPD. At such a low Vdd, the Vds of each
CTS transistor may play a main role. The Vds of each CTS transistor in XC and ULPD is half
of that in SD. When Vds goes below VT, (7) indicates that Ids is reduced as Vds decreases.



Electronics 2023, 12, 5031 11 of 16

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

Table 5. Comparison of Vpp between SPICE and measured results in case of Vdd of 200 mV and f of 
1 MHz. 

CP SPICE Measured 
SD 1.7 V 1.3 V 

ULPD 1.1 V 1.0 V 
XP 2.1 V 2.2 V 

Vpp was measured with various Vdd and load resistance values. Figure 16 compares 
the Vpp–Ipp curves between XC, ULPD, and SD with the SPICE, measurement, and model 
results. Hereinafter, the models for XC and SD indicate (13) and (5), respectively.  

 
Figure 16. Vpp–Ipp characteristics: SPICE results with Vdd of 400 mV (a), 200 mV (b), and 50 mV (c); 
measured results with Vdd of 400 mV (d), 200 mV (e), and 50 mV (f); models with Vdd of 400 mV 
(g), 200 mV (h), and 50 mV (i). 

Figure 16a–c show the comparison of Vpp–Ipp curves given by SPICE simulation be-
tween XC, ULPD, and SD at Vdd values of 400 mV in Figure 16a, 200 mV in Figure 16b, 
and 50 mV in Figure 16c. At a Vdd of 400 mV or 200 mV, “Latch” or XC–CP had the highest 
Ro in a lower Vpp range, but Ipp suddenly collapsed at a certain Vpp. The reason for this 
behavior has not been identified in this work, and will be determined in research. An Isc 
of SC was the highest among the three CPs at Vdd values of 400 mV, 200 mV, and 50 mV. 
At a Vdd of 50 mV, the Ipp of XC is as low as that of ULPD. At such a low Vdd, the Vds of 
each CTS transistor may play a main role. The Vds of each CTS transistor in XC and ULPD 
is half of that in SD. When Vds goes below VT, (7) indicates that Ids is reduced as Vds de-
creases. 

Figure 16d–f show a comparison of Vpp–Ipp curves given by measurement between 
XC, ULPD, and SD at Vdd values of 400 mV in Figure 16d, 200 mV in Figure 16e, and 50 

Figure 16. Vpp–Ipp characteristics: SPICE results with Vdd of 400 mV (a), 200 mV (b), and 50 mV (c);
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200 mV (h), and 50 mV (i).

Figure 16d–f show a comparison of Vpp–Ipp curves given by measurement between
XC, ULPD, and SD at Vdd values of 400 mV in Figure 16d, 200 mV in Figure 16e, and 50 mV
in Figure 16f. The Vpp–Ipp characteristics at a Vdd of 400 mV or 200 mV between XC, ULPD,
and SD were very similar to those of the SPICE results. Unlike the SPICE results, the Ipp
values of the three CPs were about the same at the Vdd of 50 mV.

Figure 16g–i show a comparison of the Vpp–Ipp curves given by the models between
XC and SD at Vdd values of 400 mV in Figure 16g, 200 mV in Figure 16h, and 50 mV in
Figure 16i. The Ipp of XC was larger than SD when Vdd was 400 mV or 200 mV, whereas
the Ipp of XC was smaller than SD when Vdd was 50 mV. These trends were similar to the
SPICE results.

Figure 17 compares Vpp–Ipp curves between the SPICE, measurement, and model
results. Figure 17a–c show a comparison of the Vpp–Ipp curves of XC–CP at Vdd values
of 400 mV in Figure 17a, 200 mV in Figure 17b, and 50 mV in Figure 17c. The proposed
model (13) was in good agreement with the SPICE and measured results within a factor
of 3 in the swept ranges of Vpp and Vdd. The model did not succeed in showing sudden
collapse at a certain Vpp with a Vdd of 400 mV. Note that the breakdown voltage of the
PN junction between the P-substrate and N-well was higher than 9 V. This means that the
sudden collapse occurs due to unknown phenomena in CPs, which should be identified
in future work. Figure 17d–f show a comparison of the Vpp–Ipp curves of ULPD–CP at
Vdd values of 400 mV in Figure 17d, 200 mV in Figure 17e, and 50 mV in Figure 17f. The
SPICE and measured results were well matched in terms of the open-circuit voltage and
within a discrepancy of 20% in terms of Ro. Figure 17g–i show a comparison of the Vpp–Ipp
curves of SD–CP at Vdd values of 400 mV in Figure 17g, 200 mV in Figure 17h, and 50 mV
in Figure 17i. Ro had discrepancies when compared with SPICE and measured results by a
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factor of two at a Vdd of 400 mV and was in good agreement with the measured results at
Vdd values of 200 mV and 50 mV. The discrepancy in Ro between the SPICE and measured
results increases as Vdd decreases in comparison with XC and ULPD. Discrepancies in the
models against the measured and SPICE results were larger at a Vdd of 400 mV than at a
Vdd of 200 mV. One possible reason for that is that the transistors of CTS enter into strong
inversion at 400 mV, whereas they operate in weak inversion at 200 mV.
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Figure 17. Vpp–Ipp characteristics: XC–CP (latch) with Vdd values of 400 mV (a), 200 mV (b), and
50 mV (c); ULPD–CP with Vdd values of 400 mV (d), 200 mV (e), and 50 mV (f); SD–CP (Single) with
Vdd values of 400 mV (g), 200 mV (h), and 50 mV (i).

Figure 18a–c compare the Ro in Figure 18a, Isc in Figure 18b, and Voc in Figure 18c of
XC–CP between the SPICE, measured, and Model (13) results under the three conditions of
(Vdd, Vpp) = (400 mV, 2.5 V), (200 mV, 1.0 V), and (50 mV, 0.2 V). The Voc of the model was
closer to that of the SPICE and measured results than the Ro and Isc of the model were. This
means that the discrepancy in the Ro of the model from the SPICE and measured results
is as large as that in Isc. Figure 18d–f compare the Ro in Figure 18d, Isc in Figure 18e, and
Voc in Figure 18f of SD–CP between the SPICE, measured, and Model (5) results under the
three conditions of (Vdd, Vpp) = (400 mV, 2.5 V), (200 mV, 1.0 V), and (50 mV, 0.2 V). Like
XC–CP, the Voc of the model was closer to that of the SPICE and measured results than the
Ro and Isc of the model were.
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Figure 18. Ro (a), Isc (b), and Voc (c) of XC–CP, and Ro (d), Isc (e), and Voc (f) of SD–CP between SPICE,
measured and Model (13) results under three conditions of (Vdd, Vpp) = (400 mV, 2.5 V), (200 mV,
1.0 V), and (50 mV, 0.2 V).

Figure 19a–c compare Ro in Figure 19a, Isc in Figure 19b, and Voc in Figure 19c of
XC–CP normalized by those of SD–CP between the SPICE, measured, and model results
under the three conditions of (Vdd, Vpp) = (400 mV, 2.5 V), (200 mV, 1.0 V), and (50 mV,
0.2 V). From Figure 19a, except for the measured result at (Vdd, Vpp) = (50 mV, 0.2 V), the
Ro of XC–CP was larger than that of SD–CP by a factor of 2.5 or more. When the condition
of (Vdd, Vpp) moved from (400 mV, 2.5 V) to (200 mV, 1.0 V) and from (200 mV, 1.0 V) to
(50 mV, 0.2 V), the Ro ratio increased with SPICE, whereas it did not with the measured
and model results, except for the measured result from (200 mV, 1.0 V) to (50 mV, 0.2 V).
Figure 19b shows that the Isc ratio decreased with the SPICE and model results, whereas
it did not with the measured results. Figure 19c shows that the Voc ratios were in good
agreement between the SPICE, measured, and model results in these three conditions even
though the Ro ratio and the Isc ratio had different tendencies in the operation condition.
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4. Conclusions

In this paper, a circuit model of AC–DC charge pumps with a subthreshold operation
cross-coupled CMOS as a charge transfer switch (CTS), namely XC–CP, was developed
for circuit designers to use the model for determining the initial condition for SPICE
simulation. It was observed that XC–CP had much higher output resistance than charge
pumps with single NMOSFETs as CTS, namely SD–CP. The reason is that the gate-to-source
voltage of the MOSFETs in XC–CP does not depend on the output voltage unlike SD–CP
and charge pumps with ultra-low-power diodes (ULPDs). Very high but finite output
resistance results from the weak but finite dependence of the drain-to-source voltage on the
subthreshold current through drain-induced barrier lowering. In both the SPICE simulation
and measured results, the output current of XC–CP collapses at a certain output voltage.
The developed model (13) does not predict this behavior. Further research is required
to identify what leads to such behavior. To validate the proposed model, XC-, SD-, and
ULPD–CPs were fabricated in a 250 nm CMOS. The output resistance predicted by the
model was in good agreement with the SPICE and measured results within a factor of two
at Vdd values of 400 mV, 200 mV, and 50 mV.
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