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Abstract: This work investigates a novel pulsating DC high-voltage linear driving scheme for GaN-
based Light-emitting diode (GaN LED) general lighting to save costs and alleviate flicker. The
superiority and practicality of this scheme in three-phase AC power grids were demonstrated for the
first time. Compared to applications for single-phase AC grids, linear driving of GaN LEDs for three-
phase AC grids can provide superior performance for general lighting. The DC component of the
three-phase AC rectified voltage reaches 90.7%, which effectively alleviates the flicker problem. In this
paper, we balanced GaN LED power and driving efficiency by optimizing the GaN LED distribution
of the linear multi-string GaN LED driving scheme while taking the effects of grid voltage fluctuations
into account. In addition, we constructed a double-string GaN LED lighting system as a modular
prototype with scalability. The experimental results exhibit high driving efficiency (~94% @380 V line
voltage), high power factor (~0.952), flicker-free, and high reliability at a very low cost (~$0.005/W).

Keywords: GaN LED; linear circuit; three-phase AC power

1. Introduction

GaN-based Light-emitting diodes (GaN LEDs) demonstrate significant potential to
replace traditional lighting sources. With a luminous efficacy of more than 220 lm/W, GaN
LEDs have been regarded as the fourth generation of solid-state light sources, following
incandescent, fluorescent, and high-intensity discharge lamps. Due to the advantages of
high efficiency, small size, fast response, low power consumption and long life [1,2], GaN
LEDs are widely utilized in commercial lighting, medical lighting, agricultural lighting,
sports lighting, entertainment lighting, and other fields [3,4]. Nevertheless, these benefits
attributed to GaN LED capabilities are achieved by the LED driver.

Conventional GaN LED driving systems with constant current are broadly classified
into two competitive architectures, namely the switched-mode power supply (SMPS) [5]
and linear-mode driving [6]. Typical SMPS LED driving circuit topologies, such as buck [7],
boost [8], and buck-boost [9], are characterized by high efficiency and low flicker with
a bulky system and a comparatively higher cost. Linear LED driving circuit topologies
primarily use linear constant-current regulators, avoiding complex structures, including
voltage transformation, filtering, and voltage stabilization in SMPSs. This compact topology
of linear LED driving contributes to fewer passive components, reduced electromagnetic
interference (EMI), high reliability, long life, and low cost, as proven in single-phase AC
power grids [10–12].

However, the high pulsation of the single-phase AC rectified voltage makes it impossi-
ble to achieve a high power factor (PF) and flicker-free simultaneously, limiting the lighting
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applications of linear GaN LED driving in the high-end market. Commonly, general light-
ing is powered by single-phase AC power, and only for high-power lighting is three-phase
AC power considered. Currently, there is no report of three-phase AC power being used to
drive GaN LEDs in linear mode.

To save lighting costs and alleviate flicker, we turned the sight at the three-phase AC
power and proposed a novel pulsating DC high-voltage linear driving scheme for GaN
LED general lighting. This novel linear driving scheme with three-phase AC power can
easily make up for the shortcomings of single-phase AC power, which is mainly reflected
in three aspects:

(1) Three-phase power provides a higher rectified voltage than single-phase power and
is adaptable to thinner cables, yielding a reduced wiring cost;

(2) The frequency of the three-phase AC rectified voltage with a diode-bridge full-wave
rectifier is six times the fundamental frequency of the power grid and three times the
frequency of the single-phase AC rectified voltage;

(3) The pulsating DC component of the three-phase AC rectifier voltage is significant
(~90.7% of the effective voltage). The flicker problem can be effectively alleviated by
the higher frequency and the significant DC component.

This scheme is well-suited for specific public and industrial general lighting applica-
tions such as tunnel lights, high bay lights, stadium spotlights, and floodlights, all of which
are in hard-to-access locations with available three-phase AC power grids [13].

In this paper, our efforts for the proposed scheme are mainly in two aspects: first,
optimizing the GaN LED distribution of a linear multi-string LED driving scheme to
balance GaN LED power and driving efficiency for the purpose of diminishing the effects
of grid voltage fluctuations; and second, constructing and testing a modular prototype of a
linear double-string GaN LED driving lighting system with three-phase AC power to verify
the feasibility of the proposed scheme. In the end, the results confirm for the first time that
the novel pulsating DC high-voltage linear drive scheme for GaN LEDs with three-phase
AC power is capable of well solving the dilemma between PF and flicker of single-phase
AC power while maintaining high reliability, small size, and low cost. The comparisons
of single-phase and three-phase AC power sources for linear GaN LED driving are given
in Table 1.

Table 1. Single-phase AC power VS three-phase AC power for linear GaN LED driving.

Single-Phase AC Power Three-Phase AC Power

Input voltage Low High
Size Small Small
PF 0.5–0.9 ≥0.95

Flicker-free No Yes
Electrolytic capacitor Required Not required

Lifetime ~5000 h 25,000–50,000 h
Reliability General Excellent

Cost Low Extremely low

The paper is organized as follows: Section 1 clarifies the motivation and efforts for
driving GaN LEDs linearly utilizing three-phase AC power with pulsating DC. Section 2
describes the topology and the operating principles. Section 3 calculates the LED power
and driving efficiency of the multi-string GaN LED architecture to optimize the distribution
of LEDs in sub-strings. Section 4 presents the experimental results and discussion of the
high-voltage linear double-string GaN LED driving prototype. Lastly, the conclusion is
given in Section 5.

2. Driving Principle

The equivalent circuit diagram of the novel pulsating DC high-voltage linear driving
scheme for multi-string GaN LED is shown in Figure 1. It is primarily composed of
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two modules: a three-phase full-wave rectification circuit and a linear multi-string GaN LED
driving circuit without capacitors and inductors. The three-phase full-wave rectification
circuit, which supplies a high pulsating DC voltage to loads, comprises a three-phase AC
power supply and a set of rectifier diodes for AC/DC conversion.
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Figure 1. Equivalent circuit diagram of the novel pulsating DC high-voltage linear driving scheme
for multi-string GaN LED.

The linear multi-string GaN LED driving circuit is built with LED sub-strings and
a linear constant current regulator with multiple ports, which divides the high turn-on
voltage of the LED string into the low turn-on voltage of each LED sub-string to reduce
power loss and achieve high efficiency. Further, the current regulator typically contains
metal oxide semiconductor field-effect transistors (MOSFETs), comparators, operational
amplifiers, resistors, and other components [6], where the current regulator can be equiva-
lent to n controllable constant current sources Is[k] (k = 1, 2, . . . , n). The ends of n GaN LED
sub-strings are connected individually with Is[k] (k = 1, 2, . . . , n), which are parallel with
each other, sharing the negative electrode in the loop. The current of Is[k] (k = 1, 2, . . . , n) is
given by I[k] (k = 1, 2, . . . , n). And the total voltage drop of the first k GaN LED sub-strings
is marked as Vf[k] (k = 1, 2, . . . , n). By analogy, the saturation voltages of the current
regulator in the n branches can be represented independently by Vsat[k] (k = 1, 2, . . . , n).

The three-phase AC voltage in power grids used to drive LEDs can be expressed
separately as

Va(t) =
√

2U sin(ωt) (1)

Va(t) =
√

2U sin
(

ωt− 2
3

π

)
(2)

Va(t) =
√

2U sin
(

ωt +
2
3

π

)
(3)

where U is the phase voltage.
Rectified voltage, i.e., the input voltage Vin for LEDs, is

Vin(t) = Max(Va(t), Vb(t), Vc(t))−Min(Va(t), Vb(t), Vc(t)) (4)

The specific operation of this circuit is illustrated in Figure 2 and can be described as
follows: the n constant current sources are turned on or off in sequence with the ripple
of Vin. If Vf[k−1] + Vsat[k−1] ≤ Vin < Vf[k] + Vsat[k] (k = 1, 2, . . . , n), Is[k−1] (k = 1, 2, . . . , n)
will be turned on sequentially, and other constant current sources will be turned off; if
Vin ≥ Vfn + Vsatn, Isn, will be turned on and if Vin < Vfn + Vsatn, Isn will be turned off. It is
similar to the linear multi-string GaN LED driving principle for single-phase AC power
in Ref. [14].



Electronics 2023, 12, 764 4 of 12

Electronics 2023, 12, x FOR PEER REVIEW 4 of 12 
 

 

The specific operation of this circuit is illustrated in Figure 2 and can be described as 
follows: the n constant current sources are turned on or off in sequence with the ripple of 
Vin. If Vf[k−1] + Vsat[k−1] ≤ Vin < Vf[k] + Vsat[k] (k = 1, 2, …, n), Is[k−1] (k = 1, 2, …, n) will be turned on 
sequentially, and other constant current sources will be turned off; if Vin ≥ Vfn + Vsatn, Isn, 
will be turned on and if Vin < Vfn + Vsatn, Isn will be turned off. It is similar to the linear multi-
string GaN LED driving principle for single-phase AC power in Ref [14]. 

 
Figure 2. Equivalent circuits of the multi-string GaN LED driving at different Vin. 

In summary, the number of illuminated GaN LED sub-strings depends on the level 
of Vin; it is less at low Vin and grows as Vin increases. Also, the proportion of on-time for 
each sub-string depends on Vf[k] (k = 1, 2, …, n). 

3. Calculation and Optimization 
Grid voltage fluctuations have a significant effect on GaN LED lighting applications. 

Therefore, we optimized the GaN LED distribution in sub-strings by adjusting Vf[k] (k = 1, 
2, ..., n) to reduce the impact of voltage fluctuations. In the process, multi-string GaN LED 
power PLED and driving efficiency η were calculated as two essential parameters. Their 
product was proposed as an optimization goal to balance high PLED and high η. 

To illustrate the calculation process more clearly, this paper shows specific calcula-
tion examples with 380 V line voltage, and the input voltage Vin was considered within a 
tolerance of ±10%. For 380 V ±10% line voltage, the corresponding Vin range is 420–593 V, 
as shown in Figure 3a. 

Figure 2. Equivalent circuits of the multi-string GaN LED driving at different Vin.

In summary, the number of illuminated GaN LED sub-strings depends on the level of
Vin; it is less at low Vin and grows as Vin increases. Also, the proportion of on-time for each
sub-string depends on Vf[k] (k = 1, 2, . . . , n).

3. Calculation and Optimization

Grid voltage fluctuations have a significant effect on GaN LED lighting applica-
tions. Therefore, we optimized the GaN LED distribution in sub-strings by adjusting Vf[k]
(k = 1, 2, ..., n) to reduce the impact of voltage fluctuations. In the process, multi-string
GaN LED power PLED and driving efficiency η were calculated as two essential parameters.
Their product was proposed as an optimization goal to balance high PLED and high η.

To illustrate the calculation process more clearly, this paper shows specific calculation
examples with 380 V line voltage, and the input voltage Vin was considered within a
tolerance of ±10%. For 380 V ±10% line voltage, the corresponding Vin range is 420–593 V,
as shown in Figure 3a.
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3.1. LED Power and Driving Efficiency

For simplifying the calculation, suppose that the input constant current Iin = I[k]
(k = 1, 2, . . . , n) = I0 and Vsat[k] (k = 1, 2, . . . , n) = 0 V (as Vsat[k] is much smaller than Vf[k],
which can be ignored). To achieve the maximum driving efficiency and the lowest flicker,
the optimum Vf1 should be set at as same as the minimum, Vin, so that the first GaN
LED sub-string operates continuously without being affected by the Vin ripple, i.e., the
input current is constant at I0, as shown in Figure 3b. Then the input power Pin can be
calculated by

Pin =

∫ t=T
t=0 I0 Vin(t) dt

T
(5)

where T is the period of Vin, equal to 1/6 of the fundamental period of three-phase AC voltage.
Considering the symmetry of the Vin waveform in the period, GaN LED power PLED is

PLED =
2 ∑n

1

(∫ t=tn+1
t=tn

I0Vf n dt
)
−
∫ t=tn+1

t=tn
I0 Vf n dt

T
(6)

where t[k] (k = 1, 2, . . . , n) is the time when Vin(t) = Vf[k] + Vsat[k] (k = 1, 2, . . . , n) indepen-
dently, which is also the time when Is[k] (k = 1, 2, . . . , n) is turned on in sequence, and tn+1
is the time when Isn is turned off.

Driving efficiency η is defined as

η =
PLED
Pin

(7)

η equals the ratio of the area under the stepped line representing Vf[k] (k = 1, 2, . . . , n)
to the area under the arc line representing Vin in Figure 3b. It is observed that the larger the
number of GaN LED sub-strings, the closer the ratio is to 1.

However, the number of GaN LED sub-strings can’t be as large as possible in practice.
On the one hand, the multi-string GaN LED structure reduces the utilization ratio of
GaN LEDs, which increases the material cost of lamps; on the other hand, each MOSFET
connected to the GaN LED sub-string must be capable of withstanding high voltage, so
each port needs to use a high-voltage MOS device. Multiple high-voltage MOSFET devices
will increase the size and cost of the current regulator chip. Therefore, there is a trade-off
between the total luminous flux of GaN LEDs and the cost of multi-string GaN LEDs in
lighting applications. Given the practical applications, only the optimization results and
analysis of the double-string and triple-string GaN LED schemes were shown for reference.

3.2. Optimization for Double-String GaN LED

In the double-string GaN LED driving scheme, Vf1 is set to 420 V, i.e., the minimum
value of Vin, to ensure that the first LED sub-string can be lit all the time. Vf2 is set to
420–564 V. I0 is set to 40 mA to be consistent with the experiment.

Figure 4a shows PLED of the double-string LED with different Vf2. At Vf2 = Vf1 = 420 V,
it is equivalent to a single-string LED in the circuit, and there is almost no change in PLED as
the line voltage increases. At 420 V < Vf2 < 492 V, PLED increases with the rise of line voltage.
At Vf2 ≥ 492 V, a breakpoint can be seen in PLED, and it shifts to the right as Vf2 increases.
At this breakpoint, Vf2 equals Max(Vin). This means that when Vf1 ≤Max(Vin) < Vf2, only
the first LED sub-string operates, and PLED remains constant; when Max(Vin) ≥ Vf2, the
second LED sub-string starts to work and PLED increases with the increase of Vin.

Figure 4b shows the η of the double-string LED with different Vf2 values. At
420 V ≤ Vf2 < 492 V, η gradually decreases with the increase of line voltage. Similar
to the trend of PLED, the breakpoint also appears at Vf2 ≥ 492 V. Overall, PLED and η are
obviously impacted by line voltage fluctuations. PLED remains stable with the decrease
of η at small Vf2, while PLED fluctuates significantly with the increase of η at high Vf2.
Therefore, it isn’t easy to select Vf2 intuitively.
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Taking the balance of PLED and η into account, the maximum average value of
PLED × η within ±10% voltage fluctuations was selected as a candidate for optimizing Vf2.
The optimization goal G in the double-string scheme can be expressed as

G =

∫ (1+10%)∗ U0
(1−10%)∗U0

PLED

(
Vf 2 , U

)
η
(

Vf 2 , U
)

dU∫ (1+10%)∗ U0
(1−10%)∗ U0

dU
(8)

where U is the input voltage Vin and U0 is the rated line voltage within ±10% tolerance.
G rises firstly and then falls as the line voltage increases, exhibiting a parabolic-like

trend in Figure 5a. Within ±10% voltage fluctuations, the maximum G is achieved at
optimal Vf2 = 492 V, and the corresponding η is 87% (@420V line voltage)–95% (@365V
line voltage).
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3.3. Optimization for Triple-String GaN LED

Similarly, in the triple-string GaN LED driving scheme, Vf1 is set to 420 V, and I0 is
40 mA. Vf3 is set to 420–564 V. Vf2 satisfies Vf1 < Vf2 < Vf3 and the optimal Vf2 is calculated
after its corresponding Vf3 is determined.

The optimization goal G in the triple-string GaN LED scheme is

G =

∫ (1+10%)∗ U0
(1−10%)∗U0

PLED

(
Vf 2 , Vf 3 , U

)
η
(

Vf 2 , Vf 3 , U
)

dU∫ (1+10%)∗ U0
(1−10%)∗ U0

dU
(9)

Figure 5b shows the three-dimensional surface of G with different Vf2 and Vf3. The
maximum G is calculated at Vf2 = 477 V and Vf3 = 522 V, and the corresponding calculated
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η is 93% (@420V line voltage)–96% (@387V line voltage). A comparison of single-, double-
and triple-string LED driving schemes reveals that η increases with the number of GaN
LED sub-strings.

4. Experiment and Discussion

A double-string GaN LED lighting system linearly driven by three-phase power with
pulsating DC was constructed as a module prototype and tested for driving efficiency,
harmonic current, and flicker, as shown in Figure 6. Twenty-nine GaN LED lamps were
mounted on the printed circuit board (PCB). The forward voltage of each GaN LED lamp
used in the experiment is 18 V. For continuous operation of the first LED sub-string to
alleviate flicker, the number of LED lamps in the first sub-string was chosen to be 23,
corresponding to Vf1 = 414 V, a little lower than the minimum input voltage of 420 V. The
linear constant current regulator IC chip with dual-channel, named SM2186E, provided by
Shenzhen Sunmoon Microelectronics Co., LTD [15], was used to control the turn-on and
turn-off of the double-string GaN LED with a constant current of 40 mA.
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It’s worth noting that the total cost of components in the system, including six diodes,
one regulator, and one resistor, is around $0.1. In addition, by connecting several such mod-
ules in parallel, it is feasible to assemble high-power lighting equipment while maintaining
high driving efficiency and high PF.

At 380 V ± 10% line voltage, the first LED sub-string with 23 GaN LED lamps is in
continuous operating mode, while the second LED sub-string with 1–6 GaN LED lamps is
in discontinuous operating mode. Specifically, the distribution of GaN LED lamps in both
sub-strings and their corresponding Vf[k] (k = 1, 2) can be seen in Table 2.

Table 2. The distribution of GaN LED lamps in sub-strings.

Total Number of LED Lamps (pcs) LED Counts in 1st Sub-String:
2nd Sub-String

Vf1
[V]

Vf2
[V]

23 23:0 414 \
24 23:1 414 432
25 23:2 414 450
26 23:3 414 468
27 23:4 414 486
28 23:5 414 504
29 23:6 414 522

In this experiment, the results of PLED and η in the double-string GaN LED were
obtained by Keysight DSOX3024T oscilloscope. The effects of harmonic, PF and total
harmonic distortion (THD) were tested by PF9830 digital power meter (Hangzhou Everfine
Phtoto-E-Info Co., LTD). The flicker results were tested by a portable flicker-meter “Light
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master” (OPPLE Lighting Co., LTD). And the Light master was placed ~0.5 m above the
central position of the light board to receive the flicker signal.

4.1. LED Power and Driving Efficiency

Figure 7a,b show the experimental results of PLED and η under 380 V ± 10% line volt-
age, respectively. The experimental results are essentially consistent with the calculations.
PLED of the module prototype is 16–22 W, corresponding to a very low driving cost of
$0.005/W. At 380 V line voltage, both PLED and η increase firstly and then decrease with
the rise of the total number of GaN LED lamps and the maximum η (~94%) is achieved
when there are 23 GaN LED lamps in the first sub-string and 4 GaN LED lamps in the
second sub-string.
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Figure 7c shows the G of the module prototype. The maximum G is obtained when the
total number of GaN LED lamps is 27 (23:4), and its corresponding Vf1 = 414 V and Vf2 = 486 V
are closest to the calculation results. In addition, Figure 7d shows the driving current of the
module prototype with a total number of 27 GaN LED lamps at different line voltages. The
driving current is measured to be 40 mA ± 4% within ±10% voltage fluctuations.

4.2. PF and THD

Figure 8a shows the voltage waveform v(t) and current waveform i(t) of each AC
phase in the linear GaN LED driving scheme. Based on the voltage waveform v(t) and
current waveform i(t), PF is calculated by its definition to be 0.955, and THD is calculated
as 31% by the Fourier series on current waveform i(t) [16]. Furthermore, Figure 8b shows
the PF and THD of the module prototype with a total number of 27 GaN LEDs under
380 V ± 10% line voltage. It can be seen that PF is maintained near 0.952 and THD is about
31%, meeting the requirement of ENERGY STAR [17]. Experimental results agree with
theoretical calculations in Figure 8a.
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4.3. Harmonic

Three-phase GaN LED driving falls into the regulation for IEC 61000-3-2 Class A due
to it being balanced three-phase equipment [18]. The harmonic result indicates that only the
(6 k ± 1)-th (k = 1, 2, . . . ) harmonic currents exist, and all harmonic currents at 20 W GaN
LED power fully satisfy the requirements of Class A. Figure 9a shows the harmonic currents
of 66 module prototypes connected in parallel with a power of ~1320 W, its corresponding
harmonic currents meet the Class A requirements.
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On the other side, GaN LEDs are also lighting equipment, limited by the most restric-
tive regulation for IEC 61000-3-2 Class C. Figure 9b shows the corresponding harmonic
currents expressed as a percentage of the fundamental current under 380 V ± 10% line
voltage. The harmonic currents at 20 W GaN LED power also meet the requirements of
Class C because when the rated power < 25 W, Class C only limits the fifth, seventh, and
11th harmonic currents. However, when the rated power > 25 W, e.g., 66 module prototypes
connected in parallel, its 5th–37th harmonic current will exceed the Class C requirement.

For high-power lighting equipment, one optimal solution was considered to meet
Class C, in which a centralized high-power three-phase full-wave rectifier was used to pro-
duce pulsating DC power. As shown in Figure 10, many pieces of lighting equipment are
installed along electric lines. Both lines flow constant current. There are no problems with
electromagnetic interference (EMI) along these lines. And the hybrid active power filter
(HAPF) is assembled for centralized harmonic suppression in the busbar [19]. Compared
with the common solution that each GaN LED driving topology includes electromagnetic
compatibility, rectification, power factor correction, filtering, inverter step-down, volt-
age stabilization, etc., this optimal solution with fewer driving components and higher
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reliability is more suitable for road and tunnel lighting projects with harsh environmen-
tal conditions.
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4.4. Flicker

To limit the harmful effects of flicker in lighting applications, such as headaches,
migraines, or any other neurological response, IEEE Standard 1789-2015 is recommended
for evaluating flicker in general illumination [20]. Flicker, also described as modulation (%),
is relevant to the ripple of the luminance waveform. Following its definition in Ref. [21], the
theoretical modulation can be calculated. For the optimized GaN LED sub-strings (23:4), the
maximum luminance equals the luminance sum of 27 GaN LED lamps and the minimum
luminance equals the luminance sum of 23 GaN LED lamps. Therefore, the estimated
maximum modulation is 8% at 300 Hz. Figure 11 shows the measured modulation of
27 GaN LED lamps under 380 V ± 10% line voltage and assesses the modulation results
according to the most restrictive practice 2 in IEEE Standard 1789-2015. All results are
within the recommended region. The maximum modulation was measured to be about 8%
at 380 V line voltage, consistent with expectation.
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5. Conclusions

The paper investigates a novel pulsating DC high-voltage linear driving scheme
for GaN LED general lighting. It combines a three-phase full-wave rectification circuit
with a linear multi-string GaN LED driving circuit. A double-string GaN LED lighting
system linearly driven by three-phase power was constructed as a module prototype to
verify its superiority and practicality. The experimental results show high η, high PF, and
flicker-free. Further, the calculation results demonstrate that η can be improved with the
optimization of GaN LED distributions and the increase of LED sub-string numbers. This
scheme, which covers excellent driving performance, high reliability, and low cost, shows
great competitiveness for general lighting in the future, especially in public and industrial
lighting applications.
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This is only the first step towards high-voltage linear driving by pulsating DC for GaN
LEDs. People may find many research works that need to be fulfilled, such as the current
regulator IC should be redesigned to keep constant power driven by three-phase AC power;
fresh LED lighting sources should be developed to avoid the perspective luminance changes
of high-end LED strings when input voltage fluctuates; and customized smart/wireless
controllers powered by pulsating DC voltage are needed to adjust the brightness of the
LED lamps intelligently, etc.
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