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Abstract: With the rapid development of satellite and internet of things (IoT) technology, it becomes
more and more convenient to acquire high-resolution satellite images from the ground. Extraction
of urban vegetation from high-resolution satellite images can provide valuable suggestions for
the decision-making of urban management. At present, deep-learning semantic segmentation has
become an important method for vegetation extraction. However, due to the poor representation
of context and spatial information, the effect of segmentation is not accurate. Thus, vegetation
extraction based on Deep Attention Model (VEDAM) is proposed to enhance the context and spatial
information representation ability in the scenario of vegetation extraction from satellite images.
Specifically, continuous convolutions are used for feature extraction, and atrous convolutions are
introduced to obtain more multi-scale context information. Then the extracted features are enhanced
by the Spatial Attention Module (SAM) and the atrous spatial pyramid convolution functions. In
addition, image-level feature obtained by image pooling encoding global context further improves
the overall performance. Experiments are conducted on real datasets Gaofen Image Dataset (GID).
From the comparative experimental results, it is concluded that VEDAM achieves the best mIoU
(mIoU = 0.9136) of vegetation semantic segmentation.

Keywords: vegetation extraction; satellite image; semantic segmentation; attention; integrated
satellite-terrestrial

1. Introduction

As low-cost, low-power satellite-based global connectivity becomes ubiquitous, the
total number of connected sensors worldwide will accelerate [1,2]. Agricultural monitoring,
smart grids, and urban planning can all benefit from satellite–terrestrial integrated Internet
of things (IoT) services [3]. The satellite IoT is an important field of satellite-terrestrial
research, which can obtain big data containing rich ground observation information through
satellite observation on the ground. With the acceleration of the urbanization process, a
huge increase in people is beginning to live and work in urban areas. As an important index
that can reflect urbanization and global climate change, vegetation phenomenology in urban
and peri-urban areas has attracted people’s attention in recent years [4–6]. Urban vegetation
plays an important role in urban livability, sustainability, and ecosystem services [7,8]. There
is therefore a need for effective monitoring of urban vegetation to understand its capacity
and vulnerability to urban stress and its role in promoting sustainable urban development.
Efficient and accurate extraction of urban vegetation has become the key technology of
modern urban planning and ecological environment evaluation [9,10].

Traditional artificial manual field survey methods need to invest a lot of human and
material resources. The high cost and long cycle make it difficult to obtain effective veg-
etation status information for a long time. With the development of satellite-terrestrial
integrated IoT, more and more satellites integrate into IoT and provide global hybrid
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satellite-terrestrial broadband access, making it convenient to collect satellite information.
So, the satellite has become an effective means of urban vegetation information extraction
with its advantages of fast information acquisition speed, short cycle, and strong time-
liness. It provides details such as the structure and composition of urban vegetation in
different spatial and time scales and multi-dimension for urban vegetation information ex-
traction [11–15]. The continuous improvement of satellite image resolution not only creates
favorable conditions for better vegetation information extraction but brings challenges as
well. Therefore, urban vegetation information extraction based on high-resolution satellite
images has become a research hot spot.

Recently, semantic segmentation has become an important method for satellite image
information extraction. There are two main methods for the semantic segmentation of
satellite images [16]. The first is the traditional methods based on artificial features, includ-
ing the threshold method [17,18], edge detection method [19], and region method [20–27].
The traditional methods are inefficient and inaccurate, and require a lot of professional
knowledge, which limits their wide application. The second is the deep learning-based
methods, which have made remarkable achievements in the field of computer vision and
artificial intelligence [28–38]. More and more researchers apply these methods to satellite
image information extraction [39–47].

At present, the most advanced vegetation extraction methods are based on deep-
learning semantic segmentation models [48–58]. Bhatnagar et al. [51] mapped the main
vegetation communities of Clara swamp wetland in Ireland in spring using Unmanned
Aerial Vehicle (UAV) images, and a good semantic segmentation result (accuracy≈90%) was
obtained by using the combination of ResNet50 and SegNet [52] architecture in the transfer
learning framework. Yang et al. [53] used UAV images to estimate rice lodging in large-
area paddy fields. They built an image semantic segmentation model using two neural
network structures, FCN-AlexNet and SegNet, which had higher efficiency and lower error
interpretation rate. Wu et al. [54] used U-Net [55] to train the semantic segmentation of
satellite images and obtained the results of semantic segmentation. Heryadi et al. [56]
combined the DeepLabV3 model with two other networks: ResNet and conditional random
field network to make DeepLabV3 model a deep network structure to improve the semantic
segmentation performance. Based on the results of comparative experiments, this model
outperformed other models in semantic segmentation.

Chen et al. [59] designed parallel atrous convolution with different atrous rates to
obtain more multi-scale context information in DeepLabV3. In addition, image-level
features were used to encode the global context to further improve the performance. This
made DeepLabv3 achieve a good effect in many kinds of semantic segmentation scenes.
However, the atrous convolution method leads to the loss of spatial information due to the
continuous atrous convolution, resulting in the “chessboard effect” [60]. At the same time,
Atrous Spatial Pyramid Pooling (ASPP) was effective for feature extraction of large-scale
targets, but small-scale targets would be lost.

To further enhance spatial information, Ni et al. [61] proposed a pyramid attention
aggregation network. It uses double attention modules, including position attention block
and channel attention block, to model the semantic correlation between position and
channel by capturing joint semantic information and global context, respectively. Zhong
et al. [62] proposed a new architecture of Squeeze-and-Attention Network (SANet), which
adds pixel-group attention to the traditional convolution by introducing an “attention”
convolution channel, to consider the interdependence of spatial channels in an effective
way. Chen et al. [63] embedded a Convolution Block Attention Module (CBAM) between
convolution blocks of P-Net, constructed CBAM-P-Net, and proposed a method to improve
the efficiency of P-Net feature extraction. The CBAM contains two parts: the first one
is the Spatial Attention Module (SAM), which pays attention to the feature relationship
between spaces; the second one is the Channel Attention Module (CAM), which pays
attention to the feature relationship between channels. Chen et al. [64] proposed a fly
species recognition method based on improved RetinaNet and CBAM. ResNeXt101 was
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used as the feature extraction network, and the improved CBAM was added, which was
called Stochastic-CBAM. The SAM can make the corresponding spatial transformation of
the spatial domain information in the images, to extract the key information. The essence
of the CBAM is to use the learning weight of the relevant feature map, and then apply
the learning weight to the original feature map for weighted summation, to obtain the
enhanced features.

The contribution of this paper is summarized as follows. To extract vegetation from
high-resolution satellite images, a deep learning model called vegetation extraction based
on Deep Attention Model (VEDAM) is proposed, which uses continuous convolution
for feature extraction, and atrous convolution is introduced to obtain more multi-scale
context information. After feature extraction, the SAM is used to enhance the spatial
feature, and then the ASPP operation is performed. In addition, image-level feature
encoding global context is used to further improve performance. This makes VEDAM
more suitable for vegetation segmentation. The effectiveness of the attention module is
also analyzed. The experimental results show that SAM is better, and VEDAM is better
than the classical method.

The rest of this paper is organized as follows. In the Section 2, the network structure is
introduced in detail. The Section 3 gives an explicit explanation of the dataset and evalua-
tion criteria used in the experiments. The experimental results are presented and analyzed
in Section 4. Section 5 concludes this paper and highlights directions for future work.

2. Methodology

Satellite images related to urban vegetation are characterized by rich local detail
information, and affected by complex backgrounds, such as those containing building
shadows. The relevant local details can effectively distinguish the vegetation from the
surrounding ground features. Therefore, it is important to maintain the detailed spatial
information extracted by vegetation. ResNet has been proven to be effective in feature
extraction. The model in this paper uses the improved ResNet as the backbone network,
which can make full use of vegetation details. Based on the method of ASPP [65], VEDAM
is proposed to extract target features of different scales and levels, and apply SAM to
enhance the spatial information perception of ResNet and improve the performance of
vegetation extraction.

2.1. Network Architecture

Figure 1 shows the detailed model structure of VEDAM proposed in this paper. The
proposed VEDAM is divided into three modules: the encoder module, the attention mod-
ule, and the decoder module. The encoder module takes ResNet50 as the backbone network
for feature extraction. Firstly, the image is convoluted, and the size of the feature map
is continuously reduced through block1, block2, and block3 to extract effective features.
Atrous convolution on the feature map is performed in block4. Following feature extrac-
tion, the feature map obtained by block4 is enhanced through the SAM in the attention
module. In the decoder module, the ASPP operation is carried out, and the required spatial
dimension is upsampled by bilinear interpolation to realize the semantic segmentation of
satellite images.
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Figure 1. Model structure of VEDAM.

2.2. Encoder Module

Our encoding network takes the improved ResNet50 [66] as the backbone network for
feature extraction. First, the image is a convolution of 7× 7, then the size of the feature map
is continuously reduced through block1, block2, and block3 to extract effective features.
At block4, atrous convolution is used to increase the receptive field. Finally, the size of
the feature map obtained by the encoder module is 7 × 7 × 512, where 7 is the number of
pixels and 512 is the number of channels of the feature map.

2.3. Feature-Enhanced Attention Module

After getting the feature map from the encoder module, the feature-enhanced attention
module is implemented based on CBAM [67]. Compared with the Squeeze-and-Excitation
(SE) module, the CBAM focuses on the feature relationship not only among channels but
also among dimensions in space. As shown in Figure 2, the CBAM contains two parts: the
Spatial Attention Module (SAM), targeting the feature relationship among dimensions in
space; and the Channel Attention Module (CAM), the feature relationship among channels.
Through the joint action of both modules, the network can recalibrate the features better.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 1. Model structure of VEDAM. 

2.2. Encoder Module 

Our encoding network takes the improved ResNet50 [66] as the backbone network 

for feature extraction. First, the image is a convolution of 7 × 7, then the size of the feature 

map is continuously reduced through block1, block2, and block3 to extract effective fea-

tures. At block4, atrous convolution is used to increase the receptive field. Finally, the size 

of the feature map obtained by the encoder module is 7 × 7 × 512, where 7 is the number 

of pixels and 512 is the number of channels of the feature map. 

2.3. Feature-Enhanced Attention Module 

After getting the feature map from the encoder module, the feature-enhanced atten-

tion module is implemented based on CBAM [67]. Compared with the Squeeze-and-Exci-

tation (SE) module, the CBAM focuses on the feature relationship not only among chan-

nels but also among dimensions in space. As shown in Figure 2, the CBAM contains two 

parts: the Spatial Attention Module (SAM), targeting the feature relationship among di-

mensions in space; and the Channel Attention Module (CAM), the feature relationship 

among channels. Through the joint action of both modules, the network can recalibrate 

the features better. 

 

Figure 2. CBAM network structure diagram. 

The structure diagram of the CAM is shown in Figure 3. The feature recalibration 

process between channels is as follows: first, the input feature map is passed through the 

maximum pooling layer and the average pooling layer to get 𝐹𝑚𝑎𝑥
𝑐  and 𝐹𝑎𝑣𝑔

𝑐 , respectively. 

Then the outputs of the two are passed through the Multilayer Perceptron (MLP) with one 

hidden layer, in which the hidden activation size is set to ℝ𝐶/𝑟×1×1 [67]. C is the number 

of channels and r is the reduction ratio to reduce parameter overhead. The MLP output 

features are added, and then the channel attention feature map is output through the sig-

moid activation function. Finally, the channel attention feature map and the input feature 

map are multiplied to realize the feature recalibration of the feature map on the channel. 

Figure 2. CBAM network structure diagram.

The structure diagram of the CAM is shown in Figure 3. The feature recalibration
process between channels is as follows: first, the input feature map is passed through the
maximum pooling layer and the average pooling layer to get Fc

max and Fc
avg, respectively.

Then the outputs of the two are passed through the Multilayer Perceptron (MLP) with
one hidden layer, in which the hidden activation size is set to RC/r×1×1 [67]. C is the
number of channels and r is the reduction ratio to reduce parameter overhead. The MLP
output features are added, and then the channel attention feature map is output through the
sigmoid activation function. Finally, the channel attention feature map and the input feature
map are multiplied to realize the feature recalibration of the feature map on the channel.
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The channel attention is computed as [67]:

Mc(F) = σ(MLP(AvgPool(F) + MLP(MaxPool(F))))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) , (1)

F is the input feature; σ is a sigmoid operation; AvgPool and MaxPool denote average pooling
and maximum pooling, respectively; Fc

avg and Fc
max denote average-pooled features and

max-pooled features, respectively, where W0 needs to be followed by the ReLU activation
function, W0 and W1 represent the weight matrix of two convolution layers, Mc is the
channel recalibration feature.

The SAM is shown in Figure 4. The feature recalibration process between spaces is as
follows: firstly, the input feature map is passed through the channel-based average pooling
layer and maximum pooling layer; then the output results of the two are concatenated
based on the channel features; and finally, through 7 × 7 convolution layer and sigmoid
activation function generate spatial attention feature map and multiply the spatial attention
feature map with the input feature map to realize the feature recalibration of the feature
map in space.
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The spatial attention is computed as [67]:

Ms(F) = σ
(

f 7×7([AvgPool(F)]; [MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) , (2)

F is the input feature; σ is a sigmoid operation; AvgPool and MaxPool denote average
pooling and maximum pooling, respectively; Fs

avg and Fs
max denote average-pooled features

and max-pooled features across the channel, respectively; f 7×7 represents a convolution
operation with the filter size of 7 × 7 and Ms is the spatial recalibration feature.

After the feature has been enhanced through SAM, the ASPP operation is carried
out to make the input feature map 1 × 1 convolution and three 3 × 3 convolutions,
when output_stride = 16, the atrous rate of convolution is rate = {6,12,18}. Output_stride
is denoted by the ratio of input image spatial resolution to final output resolution. At
the same time, the input feature map is pooled by global average pooling. The results
obtained by four convolutions and one global average pooling are concatenated and 1 × 1
convolution.

2.4. Decoder Module

The final feature map with output_stride of 16 is finally obtained, after ResNet50
feature extraction, SAM feature enhancement, and ASPP capturing multi-scale context
information. It is a challenge to reconstruct the original size segmentation graph from such
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a small feature map. Therefore, the feature map is upsampled on the decoder module. The
ASPP output feature map is upsampled by bilinear interpolation with factor 16, and the size
of the feature map is changed from 14× 14 to 224× 224 to get the final segmentation output.

3. Experimental Settings

In this section, the dataset used in the experiments is first introduced. Then, the
experimental implementation details are explained. Finally, the evaluation criteria adopted
are depicted.

3.1. Gaofen Image Dataset (GID)

In this paper, the proposed VEDAM is tested and evaluated on the dataset GID, which
is an open dataset [68]. It contains 150 high-quality Gaofen-2 (GF-2) images from more than
60 different cities in China, covering a geographical area of more than 50,000 km2. GID
images have high intra-class diversity and low inter-class separability. Gf-2 satellite includes
panchromatic images with a spatial resolution of 1 m and multispectral images with a spatial
resolution of 4 m and image size of 6908 × 7300 pixels. Multispectral provides images in
blue, green, red, and near-infrared bands. GID consists of a large-scale classification set and
a fine land-cover classification set, both of which contain the original images and labeled
ground truth. The fine land-cover classification set used in this experiment is composed of
15 fine classifications: paddy field, irrigated land, dry cropland, garden land, arbor forest,
shrub land, natural meadow, artificial meadow, industrial land, urban residential, rural
residential, traffic land, river, lake, and pond. The combination of paddy fields, irrigated
land, dry cropland, garden land, arbor forest, shrub land, natural meadow, and artificial
meadow is regarded as vegetation in our following discussion. Table 1 shows the vegetation
classes in the GID Dataset. The total number of finally generated images is 37170, which is
obtained by cutting the original images from 6800 × 7200 (h × w) to 224 × 224 with the
cutting stride 112. A random set of 7170 cutting images is selected as the validation set (the
validation set contains all classes and is evenly distributed). Figure 5 shows the sample
images of training and validation images in the GID dataset.

Table 1. The 8 vegetation subclasses in the GID dataset.

Vegetation

Forest Farmland Meadow
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3.2. Experimental Implementation Details

VEDAM is trained on a computer equipped with Intel Core i9-9900x and 64 GB of
memory. The computer is equipped with two GPUs, type RTX2080ti, with 11 GB GPU
memory. Because the training model requires a lot of GPU memory, the method in this paper
uses 224 × 224 size images as input to the network. Adam [69] is an adaptive learning rate
optimizer with high computational efficiency and low memory requirements. Therefore,
this paper uses Adam optimizer to optimize the network and updates parameters. In
addition, the network proposed in this paper uses NLLLoss as the loss function. When
training VEDAM, the training epoch is set to 30 and the learning rate to 0.0001. The training
batch size is 8.

3.3. Comparative Methods and Evaluation Criteria

To verify the performance of VEDAM, it is compared with two representative deep
learning network models, U-Net and SegNet, on the GID dataset under the same condi-
tions. U-Net and SegNet have achieved satisfactory performance in different segmentation
applications. The training settings are the same as VEDAM.

To evaluate the performance of the model comprehensively, seven widely used veg-
etation segmentation evaluation criteria are adopted. The one-vs-rest method is used to
extend these binary classification criteria to multi-classification problems. The first 5 criteria
are Accuracy [40], Recall [40], Precision [40], mIoU [65], and F-score [70], mIoU is expressed as
follows:

mIoU =
1

k + 1

k

∑
i=0

IoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

, (3)

where TP, FN, FP, and TN denote true positive, false negative, false positive, and true
negative, respectively. k is the number of classes minus 1.

The sixth evaluation criterion is IoU, which is expressed in Figure 6, and calculated as
follows:

IoU =
area(C) ∩ area(G)

area(C) ∪ area(G)
=

TP
TP + FN + FP

, (4)

area(C) represents the area of the candidate bound, and area(G) represents the area of the
ground truth bound.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

3.2. Experimental Implementation Details 

VEDAM is trained on a computer equipped with Intel Core i9-9900x and 64 GB of 

memory. The computer is equipped with two GPUs, type RTX2080ti, with 11 GB GPU 

memory. Because the training model requires a lot of GPU memory, the method in this 

paper uses 224 × 224 size images as input to the network. Adam [69] is an adaptive learn-

ing rate optimizer with high computational efficiency and low memory requirements. 

Therefore, this paper uses Adam optimizer to optimize the network and updates param-

eters. In addition, the network proposed in this paper uses NLLLoss as the loss function. 

When training VEDAM, the training epoch is set to 30 and the learning rate to 0.0001. The 

training batch size is 8. 

3.3. Comparative Methods and Evaluation Criteria 

To verify the performance of VEDAM, it is compared with two representative deep 

learning network models, U-Net and SegNet, on the GID dataset under the same condi-

tions. U-Net and SegNet have achieved satisfactory performance in different segmenta-

tion applications. The training settings are the same as VEDAM. 

To evaluate the performance of the model comprehensively, seven widely used veg-

etation segmentation evaluation criteria are adopted. The one-vs-rest method is used to 

extend these binary classification criteria to multi-classification problems. The first 5 cri-

teria are Accuracy [40], Recall [40], Precision [40], mIoU [65], and F-score [70], mIoU is ex-

pressed as follows: 

𝑚𝐼𝑜𝑈 =
1

𝑘+1
∑ 𝐼𝑜𝑈𝑘
𝑖=0 =

1

𝑘+1
∑

𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑃

𝑘
𝑖=0 , (3) 

where TP, FN, FP, and TN denote true positive, false negative, false positive, and true 

negative, respectively. k is the number of classes minus 1. 

The sixth evaluation criterion is IoU, which is expressed in Figure 6, and calculated 

as follows: 

 

Figure 6. IoU calculation diagram. 

𝐼𝑜𝑈 =
𝑎𝑟𝑒(𝐶)∩𝑎𝑟𝑒(𝐺)

𝑎𝑟𝑒(𝐶)∪𝑎𝑟𝑒(𝐺)
=

𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
, (4) 

area(C) represents the area of the candidate bound, and area(G) represents the area of the 

ground truth bound. 

The seventh evaluation criterion is Kappa [71], which is expressed as follows: 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝐶𝐶−𝑃

1−𝑃
, (5) 

𝑃 =
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)+(𝐹𝑁+𝑇𝑁)(𝐹𝑃+𝑇𝑁)

𝑁2
, (6) 

p represents the proportion of expected agreement between the ground truth and predic-

tions with given class distributions [72]. N is the total number of pixels. 

4. Experimental Results and Discussion 

In this section, the overall performance of VEDAM is evaluated, then VEDAM is 

compared with two classical segmentation methods (U-Net and SegNet), and finally, the 

impact of the CBAM module on VEDAM is discussed. In each part, the 8 vegetation 

Figure 6. IoU calculation diagram.

The seventh evaluation criterion is Kappa [71], which is expressed as follows:

Kappa =
ACC− P

1− P
, (5)

P =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

N2 , (6)

p represents the proportion of expected agreement between the ground truth and predic-
tions with given class distributions [72]. N is the total number of pixels.

4. Experimental Results and Discussion

In this section, the overall performance of VEDAM is evaluated, then VEDAM is
compared with two classical segmentation methods (U-Net and SegNet), and finally, the
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impact of the CBAM module on VEDAM is discussed. In each part, the 8 vegetation
subclasses are classified into vegetation for discussion first, and then the performance of
the model on the 8 vegetation subclasses is discussed in detail.

4.1. The Overall Results of the Classification Experiments

In this part, the experimental results of VEDAM on the GID dataset are discussed.
As shown in Figure 7, through qualitative analysis, it can be seen that the vegetation
is completely extracted. There are only some small errors, such as in Figure 7d, the
small corner of the bottom is not correctly divided, in Figure 7f, there is an error in the
segmentation of the middle joint, the rest of which is close to the ground truth. To verify
the performance of VEDAM quantitatively, 8 out of all the 16 classes are discussed under
vegetation (paddy fields, irrigated land, dry cropland, garden land, arbor forest, shrub
land, natural meadow, and artificial meadow). Table 2 lists the Accuracy, Recall, Precision,
F-score, IoU, mIoU, and Kappa of validation images of the GID dataset. Following, these 8
vegetation subclasses are discussed. Table 3 lists the Accuracy, Recall, Precision, F-score,
IoU, mIoU, and Kappa of the 8 subclasses above mentioned.
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Table 2. Experiment results of the GID dataset by VEDAM.

Back
Ground

Industria
Land

Urban
Residential

Rural
Residential

Traffic
Land Vegetation River Lake Pond

ACC 0.9644 0.9961 0.9936 0.9949 0.9930 0.9815 0.9988 0.9994 0.9987
Recall 0.9468 0.9599 0.9622 0.9223 0.9314 0.9746 0.9890 0.9892 0.9725

Precision 0.9562 0.9533 0.9652 0.9339 0.8487 0.9737 0.9788 0.9792 0.9611
F-score 0.9515 0.9566 0.9637 0.9281 0.8882 0.9742 0.9839 0.9842 0.9668

IoU 0.9075 0.9168 0.9299 0.9658 0.7988 0.9496 0.9683 0.9688 0.9357

mIoU 0.9157
Kappa 0.9450
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Table 3. Experiment results of the GID dataset for 8 vegetation subclasses by VEDAM.

Paddy
Field

Irrigated
Land

Dry
Cropland

Garden
Plot

Arbor
Woodland

Shrub
Land

Natural
Grassland

Artificial
Grassland

ACC 0.9982 0.9884 0.9984 0.9993 0.9962 0.9996 0.9991 0.9996
Recall 0.9656 0.9746 0.9548 0.9337 0.9697 0.9717 0.9582 0.9750

Precision 0.9687 0.9745 0.9679 0.9248 0.9663 0.8735 0.9590 0.9408
F-score 0.9671 0.9745 0.9613 0.9292 0.9680 0.9199 0.9586 0.9576

IoU 0.9364 0.9503 0.9254 0.8678 0.9380 0.8518 0.9205 0.9186

mIoU 0.9136

4.1.1. Performance on the GID Dataset

As shown in Table 2, VEDAM achieves good segmentation results in 9 classes. For all
the classes of the GID dataset, the values of Accuracy, Recall, mIoU, and Kappa are higher
than 90%, and Accuracy and Recall are even higher than 92%. As shown in bold in Table 2,
it can be seen that the overall accuracy (Accuracy, Recall, Precision, F-score, and IoU) of the
experimental results of vegetation classes are 98.15%, 97.46%, 97.37%, 97.42%, and 94.96%,
respectively. This proves the excellent performance of VEDAM.

4.1.2. Performance in Vegetation Classes

It can be seen from Table 3 that the mIoU of experimental results within the vegetation
classes can reach 91.36%. In the 8 vegetation subclasses, the values of Accuracy, Recall,
Precision, IoU, and F-score are higher than 98%, 93%, 87%, 85%, and 91%, respectively.

In conclusion, the experimental results maintain the integrity of vegetation extraction,
which shows that the model performs well in the task of vegetation extraction from high-
resolution satellite images.

4.2. The Results of the Comparative Experiments

In this part, VEDAM is compared with two representative deep learning network
models, namely, U-Net and SegNet, on the GID dataset under the same conditions.

4.2.1. Performance on the GID Dataset

As shown in bold in Table 4, VEDAM achieves significantly better segmentation results
in all nine classes than the other two. With the exception of Precision, which is slightly
lower than the other two methods on traffic land, VEDAM outperforms U-Net and SegNet
in all classes. For all classes of the GID dataset, Accuracy, Recall, and mIoU.

Table 4. Comparison results of U-Net, SegNet, and VEDAM on the GID dataset.

Back
Ground

Industrial
Land

Urban
Residential

Rural
Residential

Traffic
Land Vegetation River Lake Pond

ACC
U-Net 0.9474 0.9935 0.9894 0.9931 0.9922 0.9700 0.9983 0.9985 0.9979

SegNet 0.9229 0.9901 0.9823 0.9900 0.9898 0.9548 0.9950 0.9947 0.9965
VEDAM 0.9644 0.9961 0.9936 0.9949 0.9930 0.9815 0.9988 0.9994 0.9987

Recall
U-Net 0.9124 0.9256 0.9453 0.9180 0.8720 0.9721 0.9811 0.9513 0.9478

SegNet 0.9125 0.8362 0.9536 0.8065 0.7983 0.9192 0.9086 0.9172 0.9247
VEDAM 0.9468 0.9599 0.9622 0.9223 0.9314 0.9746 0.9890 0.9892 0.9725

Precision
U-Net 0.9429 0.9299 0.9365 0.8924 0.8686 0.9455 0.9735 0.9622 0.9470

SegNet 0.8821 0.9377 0.8624 0.9034 0.8518 0.9526 0.9553 0.8107 0.9043
VEDAM 0.9562 0.9533 0.9652 0.9339 0.8487 0.9737 0.9788 0.9792 0.9611

F-score
U-Net 0.9274 0.9277 0.9408 0.9051 0.8703 0.9586 0.9773 0.9567 0.7474

SegNet 0.8970 0.8841 0.9057 0.8522 0.8241 0.9356 0.9314 0.8607 0.9144
VEDAM 0.9515 0.9566 0.9637 0.9281 0.8882 0.9742 0.9839 0.9842 0.9668
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Table 4. Cont.

Back
Ground

Industrial
Land

Urban
Residential

Rural
Residential

Traffic
Land Vegetation River Lake Pond

IoU
U-Net 0.8646 0.8652 0.8883 0.8266 0.7745 0.9205 0.9555 0.9171 0.9001

SegNet 0.8133 0.7922 0.8277 0.7425 0.7009 0.8790 0.8715 0.7554 0.8422
VEDAM 0.9075 0.9168 0.9299 0.8658 0.7988 0.9496 0.9683 0.9688 0.9357

mIoU
U-Net 0.8792

SegNet 0.8027
VEDAM 0.9157

Kappa
U-Net 0.9129

SegNet 0.8727
VEDAM 0.9450

Kappa is more than 90%, and Accuracy and Recall are even higher than 92%. As shown in bold italics in Table 4, it
can be seen that the Accuracy of vegetation extraction by VEDAM is as high as 98.15%, 1.15% higher than U-Net,
and 2.67% higher than SegNet. Recall, Accuracy, and F-score of VEDAM are higher than 97%, 5.54%, 2.11%, and
3.86% higher than SegNet, respectively, higher than U-Net by 0.25%, 2.82%, and 1.56%. The IoU of VEDAM is
94.96%, 7.06% higher than that of SegNet and 2.91% higher than that of U-Net. The results show that VEDAM is
superior to the other two methods in the extraction of the vegetation class.

4.2.2. Performance in Vegetation Classes

Table 5 shows the experimental results of all methods on 8 vegetation subclasses. As
shown in bold in Table 5, the segmentation effect of nearly all the vegetation subclasses
is better than SegNet and U-Net. The F-score, obtained by VEDAM, exceeds 91%, much
better than SegNet and U-Net. VEDAM achieves a mIoU value of 91.36% in 8 vegetation
subclasses, which is 15.23% and 7.43% higher than SegNet and U-Net, respectively. Only
on shrubland, the Precision of VEDAM is 5.03% lower than that of SegNet, but its Recall
is 28.59% higher than that of SegNet. The reason is that the distribution of shrubland is
discontinuous and there are fewer training samples. Overall, VEDAM is superior to the
other two methods in the extraction of 8 vegetation subclasses.

Table 5. Comparison results of U-Net, SegNet, and VEDAM on the GID dataset for 8 vegetation
subclasses.

Paddy
Field

Irrigated
Land

Dry
Cropland

Garden
Plot

Arbor
Wood-
land

Shrub
Land

Natural
Grass-
land

Artificial
Grass-
land

ACC
U-Net 0.9972 0.9818 0.9973 0.9989 0.9930 0.9992 0.9984 0.9986

SegNet 0.9951 0.9679 0.9916 0.9984 0.9905 0.9992 0.9977 0.9987
VEDAM 0.9982 0.9884 0.9984 0.9993 0.9962 0.9996 0.9991 0.9996

Recall
U-Net 0.9477 0.9728 0.9399 0.8711 0.9596 0.9274 0.9384 0.9669

SegNet 0.8866 0.9140 0.6399 0.7579 0.9449 0.6858 0.9152 0.8823
VEDAM 0.9656 0.9746 0.9548 0.9337 0.9697 0.9717 0.9582 0.9750

Precision
U-Net 0.9483 0.9487 0.9313 0.8823 0.9238 0.7396 0.9136 0.8005

SegNet 0.9287 0.9432 0.9375 0.8778 0.8987 0.9238 0.8780 0.8670
VEDAM 0.9687 0.9745 0.9679 0.9248 0.9663 0.8735 0.9590 0.9408

F-score
U-Net 0.9480 0.9606 0.9356 0.8767 0.9413 0.8229 0.9258 0.8759

SegNet 0.9071 0.9283 0.9607 0.8135 0.9212 0.7872 0.8962 0.8760
VEDAM 0.9671 0.9745 0.9613 0.9292 0.9680 0.9199 0.9586 0.9576

IoU
U-Net 0.9011 0.9242 0.8790 0.7804 0.8891 0.6991 0.8619 0.7792

SegNet 0.8300 0.8663 0.6138 0.6856 0.8540 0.6491 0.8120 0.7794
VEDAM 0.9364 0.9503 0.9254 0.8678 0.9380 0.8518 0.9205 0.9186

mIoU
U-Net 0.8393

SegNet 0.7613
VEDAM 0.9136
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Figure 8 shows the experimental results of all methods on the GID fine land-cover
classification dataset. In general, the extraction results of VEDAM are almost consistent with
the ground truth. Compared with the other two models, VEDAM has great advantages. As
shown in the lower right corner of Figure 8c, there is an obvious misclassification problem
in the extraction results of SegNet and U-Net. In Figure 8d, VEDAM obtains the smoothest
segmentation result, while SegNet and U-Net to a certain extent of misclassification. In
general, SegNet has a poor effect on edge segmentation between different classes, such as
(a), (b), (e), and (g) in Figure 8. At the same time, there will be serious segmentation errors,
such as (c), (d), and (h) in Figure 8. The segmentation effect of U-Net is slightly better than
that of SegNet, and the segmentation effect is no less than that of VEDAM in (b), (g), and
(h) of Figure 8, but there are still serious segmentation errors, such as (c) and (d) of Figure 8.
Among the three models, the VEDAM has the best performance and the least segmentation
errors of all the images, which is also consistent with the quantitative analysis results.
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(a–h) represents the visualization results of randomly selected samples.

4.3. Effect of the CBAM

To verify the importance of the added SAM in the process of vegetation segmentation,
the original model is compared with the model with different attention modules under the
same training conditions. In the original model, the SAM added in VEDAM is deleted. In
the comparison models, the CAM and CBAM are added in the same position as VEDAM.
Validation experiments are conducted on the GID fine land-cover classification dataset.
Table 6 shows the experimental results of the four models on the GID dataset.

4.3.1. Performance on the GID Dataset

As shown in bold in Table 6, VEDAM combined with the different attention modules
achieves good segmentation results in 9 classes, of which VEDAM is better. In terms of
the overall segmentation effect, mIoU and Kappa obtained by VEDAM are 91.57% and
94.50%, respectively, which are 1.08% and 0.71% higher than the VEDAM with SAM, 0.65%
and 0.48% higher than the VEDAM-CAM, and 0.67% and 0.35% higher than the VEDAM-
CBAM. As shown in bold italics in Table 6, it can be seen that Accuracy, Precision, F-score,
and IoU of vegetation segmentation of the VEDAM have achieved the best results, reaching
98.15%, 97.37%, 97.42%, and 94.96%, respectively. VEDAM outperformed the other three
methods in comparison. The results show that the VEDAM is better than other comparison
methods in the segmentation of vegetation classes.
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Table 6. Comparison results of VEDAM combined with different attention modules on the GID
dataset.

Back
Ground

Industrial
Land

Urban
Residential

Rural
Residential

Traffic
Land Vegetation River Lake Pond

ACC

VEDAM 0.9644 0.9961 0.9936 0.9949 0.9930 0.9815 0.9988 0.9994 0.9987
VEDAM w/o

SAM 0.9600 0.9956 0.9929 0.9939 0.9924 0.9789 0.9985 0.9993 0.9983

VEDAM-CAM 0.9613 0.9958 0.9932 0.9946 0.9929 0.9794 0.9987 0.9994 0.9983
VEDAM-CBAM 0.9621 0.9958 0.9932 0.9949 0.9931 0.9797 0.9986 0.9993 0.9980

Recall

VEDAM 0.9468 0.9599 0.9622 0.9223 0.9314 0.9746 0.9890 0.9892 0.9725
VEDAM w/o

SAM 0.9310 0.9509 0.9592 0.9323 0.9360 0.9777 0.9903 0.9728 0.9658

VEDAM-CAM 0.9503 0.9434 0.9573 0.9118 0.8946 0.9712 0.9756 0.9831 0.9632
VEDAM-CBAM 0.9413 0.9578 0.9687 0.9340 0.9187 0.9729 0.9910 0.9883 0.9222

Precision

VEDAM 0.9562 0.9533 0.9652 0.9339 0.8487 0.9737 0.9788 0.9792 0.9611
VEDAM w/o

SAM 0.9592 0.9512 0.9607 0.9013 0.8315 0.9638 0.9702 0.9866 0.9526

VEDAM-CAM 0.9449 0.9625 0.9656 0.9355 0.8712 0.9712 0.9880 0.9856 0.9547
VEDAM-CBAM 0.9552 0.9495 0.9557 0.9233 0.8609 0.9704 0.9709 0.9744 0.9778

F-score

VEDAM 0.9515 0.9566 0.9637 0.9281 0.8882 0.9742 0.9839 0.9842 0.9668
VEDAM w/o

SAM 0.9449 0.9511 0.9599 0.9165 0.8807 0.9707 0.9802 0.9796 0.9592

VEDAM-CAM 0.9476 0.9529 0.9614 0.9235 0.8827 0.9712 0.9818 0.9843 0.9590
VEDAM-CBAM 0.9482 0.9536 0.9622 0.9286 0.8889 0.9717 0.9809 0.9813 0.9492

IoU

VEDAM 0.9075 0.9168 0.9299 0.8658 0.7988 0.9496 0.9683 0.9688 0.9357
VEDAM w/o

SAM 0.8956 0.9067 0.9230 0.8459 0.7868 0.9430 0.9611 0.9601 0.9216

VEDAM-CAM 0.9005 0.9100 0.9257 0.8579 0.7901 0.9440 0.9642 0.9692 0.9212
VEDAM-CBAM 0.9015 0.9114 0.9271 0.8668 0.8000 0.9449 0.9625 0.9633 0.9033

mIoU

VEDAM 0.9157
VEDAM w/o

SAM 0.9049

VEDAM-CAM 0.9092
VEDAM-CBAM 0.9090

Kappa

VEDAM 0.9450
VEDAM w/o

SAM 0.9379

VEDAM-CAM 0.9402
VEDAM-CBAM 0.9415

4.3.2. Performance in Vegetation Classes

Table 7 shows the experimental results of all methods in 8 classes within the vegetation.
As shown in bold in Table 7, it can be seen that VEDAM has achieved higher Accuracy,
Precision, F-score, IoU, and mIoU in most vegetation classes, especially mIoU reached
91.36%, which is 1.92% higher than the VEDAM without SAM, 3.13% higher than the
VEDAM-CAM and 2.00% higher than the VEDAM-CBAM. This shows that the VEDAM
method can effectively reduce the missing and misclassification of vegetation pixels and
extract vegetation information more accurately.

Figure 9 shows the extraction results of the four methods on the GID dataset. It can be
seen from the image that the models with the attention module achieve better extraction
results, without large-area misclassification as SegNet and U-Net do. In contrast, the
effect of edge segmentation between different classes in the original model is far from
satisfactory. Due to the addition of the attention modules, VEDAM-CAM, VEDAM-CBAM,
and VEDAM produce clearer boundaries between vegetation and non-vegetation. In the
segmentation in the lower right corner of Figure 9g, the three comparison methods to a
certain extent misclassification. Among them, the VEDAM without SAM misclassifies
the background into vegetation, the VEDAM-CAM misclassifies the vegetation into the
pond, and the VEDAM-CBAM misclassifies the pond into vegetation and background.
The integrity of the extraction results of the VEDAM is much better than the other three
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comparison models. The vegetation results extracted from the original model and the other
two network models inevitably have the problems of misclassification and omission.

Table 7. Comparison results of VEDAM combined with different attention modules on 8 vegetation
subclasses on the GID dataset.

Paddy
Field

Irrigated
Land

Dry
Cropland

Garden
Plot

Arbor
Woodland

Shrub
Land

Natural
Grassland

Artificial
Grassland

ACC

VEDAM 0.9982 0.9884 0.9984 0.9993 0.9962 0.9996 0.9991 0.9996
VEDAM w/o

SAM 0.9981 0.9871 0.9983 0.9993 0.9953 0.9994 0.9989 0.9995
VEDAM-CAM 0.9978 0.9871 0.9984 0.9991 0.9958 0.9992 0.9990 0.9994

VEDAM-CBAM 0.9979 0.9870 0.9985 0.9990 0.9955 0.9994 0.9990 0.9996

Recall

VEDAM 0.9656 0.9746 0.9548 0.9337 0.9697 0.9717 0.9582 0.9750
VEDAM w/o

SAM 0.9601 0.9796 0.9494 0.9284 0.9740 0.9756 0.9462 0.9614
VEDAM-CAM 0.9414 0.9703 0.9578 0.9392 0.9681 0.9709 0.9513 0.9635

VEDAM-CBAM 0.9668 0.9669 0.9675 0.9488 0.9764 0.9846 0.9579 0.9701

Precision

VEDAM 0.9687 0.9745 0.9679 0.9248 0.9663 0.8735 0.9590 0.9408
VEDAM w/o

SAM 0.9706 0.9645 0.9673 0.9193 0.9474 0.7859 0.9509 0.9351
VEDAM-CAM 0.9773 0.9728 0.9636 0.8836 0.9608 0.7254 0.9529 0.9128

VEDAM-CBAM 0.9553 0.9757 0.9597 0.8595 0.9480 0.7768 0.9508 0.9485

F-score

VEDAM 0.9671 0.9745 0.9613 0.9292 0.9680 0.9199 0.9586 0.9576
VEDAM w/o

SAM 0.9653 0.9720 0.9583 0.9239 0.9605 0.8705 0.9485 0.9480
VEDAM-CAM 0.9590 0.9715 0.9607 0.9105 0.9645 0.8304 0.9521 0.9375

VEDAM-CBAM 0.9610 0.9713 0.9635 0.9019 0.9620 0.8684 0.9543 0.9592

IoU

VEDAM 0.9364 0.9503 0.9254 0.8678 0.9380 0.8518 0.9205 0.9186
VEDAM w/o

SAM 0.9329 0.9455 0.9199 0.8585 0.9240 0.7707 0.9021 0.9012
VEDAM-CAM 0.9212 0.9447 0.9243 0.8358 0.9313 0.7100 0.9086 0.8823

VEDAM-CBAM 0.9250 0.9442 0.9297 0.8214 0.9268 0.7674 0.9126 0.9215

mIoU

VEDAM 0.9136
VEDAM w/o

SAM 0.8944
VEDAM-CAM 0.8823

VEDAM-CBAM 0.8936
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on the GID dataset, (a–h) represents the visualization results of randomly selected samples.

In short, the added SAM can enhance the spatial feature information, by means
of extracting the key details. It plays an important role in improving the performance of
vegetation segmentation and ensuring its integrity of vegetation segmentation. Experiments
show that the VEDAM has a good performance in vegetation segmentation.
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4.4. Discussion

In this section, the misclassification of VEDAM and its potential application value
is analyzed.

4.4.1. Analysis of Misclassification

VEDAM proposed in this paper has achieved remarkable results in the above com-
parative experiments, but due to the complex backgrounds, there is still a small amount of
vegetation omission in the extraction process, which is unavoidable currently. There is a
small amount of misclassification on the right side of Figure 9g and adhesion of vegetation
segmentation in Figure 9f. Urban buildings, roads, pond, and vegetation constitute a
complex background, which interferes with the perception of target features by the model,
and, in turn, cause misclassification.

4.4.2. Potential application value of VEDAM

The semantic segmentation maps of high-resolution satellite images can be obtained
by VEDAM, and the location, area, and species of urban vegetation can be obtained effi-
ciently. Such information can not only provide valuable advice for urban decision-making,
including on urban planning, livability, sustainability, and ecosystem services, but also
accelerate urbanization, to help reduce pollution, maintain dust, mitigate urban heat island
effect, flood control, carbon sequestration and promote sustainable urban development.
Therefore, the efficient and accurate extraction of urban vegetation by VEDAM can become
the key technology of modern urban planning and eco-environmental assessment.

5. Conclusions and Future Work

Satellite-terrestrial integrated IoT can capture rich ground observation information
through satellite sensors and obtain high-space, high-spectral resolution satellite images,
which can better reflect the land use land cover (LULC) on the ground, it provides the
possibility of obtaining high-resolution satellite images. The use of remote sensing tech-
nology, especially satellite remote sensing, which is not restricted by ground conditions,
makes it possible to obtain various valuable information in a convenient and timely manner.
Extraction of urban vegetation from high-resolution satellite images can provide valuable
suggestions for the decision-making of urban management.

For the purpose of vegetation extraction from high-resolution satellite images, a
network called VEDAM is proposed in this paper. The network is based on the structure of
the convolution model, in which atrous convolution is introduced to obtain more multi-
scale context information. After feature extraction, SAM is used to enhance the spatial
information of the extracted feature. The extracted features are further enhanced by ASPP
and image pooling. VEDAM retains more detailed information, and the extraction result of
vegetation information is more precise than that of the state-of-the-art models. In addition,
on the GID fine land-cover classification dataset, VEDAM is compared with U-Net and
SegNet. Experiments show that the VEDAM performs well qualitatively and quantitatively.
VEDAM achieved the best mIoU of vegetation semantic segmentation (mIoU = 0.9136).
Therefore, VEDAM is an effective vegetation extraction model with superior performance.

In future research, we will explore more vegetation subclasses as well as optimize
the proposed model to better support decision-makers in sustainable urban planning
and management.

Author Contributions: Conceptualization, B.Y. and M.Z.; methodology, B.Y. and M.Z.; validation,
M.Z. and B.Y.; formal analysis, M.Z. and Y.X.; investigation, F.Z. and Z.S.; resources, Y.X.; writing
original draft preparation, M.Z.; writing—review and editing, B.Y. and Y.X.; supervision, Y.X. and
F.Z.; project administration, Y.X.; funding acquisition, B.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.



Electronics 2023, 12, 1215 15 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.; Jia, M.; Zhou, M.; Wang, B.; Durrani, T.S. Integrated Cooperative Spectrum Sensing and Access Control for Cognitive

Industrial Internet of Things. IEEE Internet Things J. 2023, 10, 1887–1896. [CrossRef]
2. Jia, M.; Gao, Z.; Guo, Q.; Lin, Y.; Gu, X. Sparse Feature Learning for Correlation Filter Tracking Toward 5G-Enabled Tactile

Internet. IEEE Trans. Ind. Inform. 2020, 16, 1904–1913. [CrossRef]
3. Jia, M.; Zhang, X.; Sun, J.; Gu, X.; Guo, Q. Intelligent Resource Management for Satellite and Terrestrial Spectrum Shared

Networking toward B5G. IEEE Wirel. Commun. 2020, 27, 54–61. [CrossRef]
4. Taubenböck, H.; Weigand, M.; Esch, T.; Staab, J.; Wurm, M.; Mast, J.; Dech, S. A new ranking of the world’s largest citiesdo

administrative units obscure morphological realities? Remote Sens. Environ. 2019, 232, 111353. [CrossRef]
5. White, M.A.; Brunsell, N.; Schwartz, M.D. Vegetation Phenology in Global Change Studies. In Phenology: An Integrative

Environmental Science. Tasks for Vegetation Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 39.
[CrossRef]

6. Luo, Z.; Sun, O.J.; Ge, Q.; Xu, W.; Zheng, J. Phenological responses of plants to climate change in an urban environment. Ecol. Res.
2007, 22, 507–514. [CrossRef]

7. Bidolakh, D.I.; Bilous, A.M.; Kuziovych, V.S. The accuracy of measuring the height of trees with the use of a quadrocopter. Ukr. J.
For. Wood Sci. 2019, 10, 19–26. [CrossRef]

8. Bidolakh, D.I. Geoinformation monitoring of green stands using remote sensing methods. Ann. For. Sci. 2020, 11, 4–14.
9. Ozdarici-Ok, A.; Ok, A.O.; Schindler, K. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-

Driven Smoothing vs. Parcel-Based Smoothing. Remote Sens. 2015, 7, 5611–5638. [CrossRef]
10. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 3–5 November 2010;
pp. 270–279. [CrossRef]

11. Gharineiat, Z.; Tarsha Kurdi, F.; Campbell, G. Review of automatic processing of topography and surface feature identification
LiDAR data using machine learning techniques. Remote Sens. 2022, 14, 4685. [CrossRef]

12. Camuffo, E.; Mari, D.; Milani, S. Recent Advancements in Learning Algorithms for Point Clouds: An Updated Overview. Sensors
2022, 22, 1357. [CrossRef]

13. Zhang, X.; Du, S. Learning selfhood scales for urban land cover mapping with very-high-resolution satellite images. Remote Sens.
Environ. 2016, 178, 172–190. [CrossRef]

14. Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between urban vegetation and surface urban heat islands: A case
study in the boston metropolitan region. Environ. Res. Lett. 2016, 11, 054020. [CrossRef]

15. Schreyer, J.; Geiß, C.; Lakes, T. TanDEM-X for Large-Area Modeling of Urban Vegetation Height: Evidence from Berlin, Germany.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1876–1887. [CrossRef]

16. De, S.; Bhattacharyya, S.; Chakraborty, S.; Dutta, P. Hybrid Soft Computing for Multilevel Image and Data Segmentation; Springer:
Berlin/Heidelberg, Germany, 2016. [CrossRef]

17. Zhang, L.B.; Li, H. Region of interest detection based on visual attention and threshold segmentation in high spatial resolution
remote sensing images. KSII Trans. Internet Inf. Syst. 2013, 7, 1843–1859. [CrossRef]

18. Ghamisi, P.; Couceiro, M.S.; Ferreira, N.M.F.; Kumar, L. Use of Darwinian Particle Swarm Optimization technique for the
segmentation of Remote Sensing images. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing
Symposium, Munich, Germany, 22–27 July 2012; pp. 4295–4298. [CrossRef]

19. Gaetano, R.; Masi, G.; Poggi, G.; Verdoliva, L.; Scarpa, G. Marker-Controlled Watershed-Based Segmentation of Multiresolution
Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2987–3004. [CrossRef]

20. Mylonas, S.K.; Stavrakoudis, D.G.; Theocharis, J.B.; Mastorocostas, P.A. Spectral-spatial classification of remote sensing images
using a region-based GeneSIS Segmentation algorithm. In Proceedings of the 2014 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 1976–1984. [CrossRef]

21. Sellaouti, A. Méthode Collaborative de Segmentation et Classification d’objets à Partir d’images de Télédétection à Très Haute
Résolution Spatiale. (Collaborative Method of Segmentation and Classification of Objects from Remote Sensing Images with Very
High Spatial Resolution). Doctoral Dissertation, Tunis El Manar University, Tunis, Tunisie, 2014.

22. Mylonas, S.K.; Stavrakoudis, D.G.; Theocharis, J.B. A GA-based sequential fuzzy segmentation approach for classification of
remote sensing images. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, QLD, Australia,
10–15 June 2012; pp. 1–8. [CrossRef]

23. Michel, J.; Inglada, J. Multi-Scale Segmentation and Optimized Computation of Spatial Reasoning Graphs for Object Detection in
Remote Sensing Images. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium,
Boston, MA, USA, 7–11 July 2008; pp. III-431–III-434. [CrossRef]

24. Ren, J.; Zeng, X.; McKee, D. Segmentation of multispectral images and prediction of CHI-A concentration for effective ocean
colour remote sensing. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Milan, Italy, 26–31 July 2015; pp. 2303–2306. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3137408
http://doi.org/10.1109/TII.2019.2906087
http://doi.org/10.1109/MWC.001.1900238
http://doi.org/10.1016/j.rse.2019.111353
http://doi.org/10.1007/978-94-007-0632-3_28
http://doi.org/10.1007/s11284-006-0044-6
http://doi.org/10.31548/forest2019.03.019
http://doi.org/10.3390/rs70505611
http://doi.org/10.1145/1869790.1869829
http://doi.org/10.3390/rs14194685
http://doi.org/10.3390/s22041357
http://doi.org/10.1016/j.rse.2016.03.015
http://doi.org/10.1088/1748-9326/11/5/054020
http://doi.org/10.1109/JSTARS.2015.2508660
http://doi.org/10.1007/978-3-319-47524-0
http://doi.org/10.3837/tiis.2013.08.006
http://doi.org/10.1109/IGARSS.2012.6351718
http://doi.org/10.1109/TGRS.2014.2367129
http://doi.org/10.1109/FUZZ-IEEE.2014.6891620
http://doi.org/10.1109/FUZZ-IEEE.2012.6251163
http://doi.org/10.1109/IGARSS.2008.4779376
http://doi.org/10.1109/IGARSS.2015.7326268


Electronics 2023, 12, 1215 16 of 17

25. Masi, G.; Gaetano, R.; Poggi, G.; Scarpa, G. Superpixel-based segmentation of remote sensing images through correlation
clustering. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy,
26–31 July 2015; pp. 1028–1031. [CrossRef]

26. Costa, W.S.; Fonseca, L.M.G.; Körting, T.S.; Simões, M.; Bendini, H.D.N.; Souza, R.C.M. Segmentation of optical remote sensing
images for detecting homogeneous regions in space and time. In Proceedings of the XVIII Brazilian Symposium on GeoInformatics
(GEOINFO 2017), Salvador, BA, Brazil, 4–6 December 2017; Unifacs: Salvador, BA, Brazil, 2017; Volume 18, pp. 40–51. [CrossRef]

27. Chen, C.Y.; Feng, H.M.; Chen, H.C.; Jou, S.-M. Dynamic image segmentation algorithm in 3D descriptions of remote sensing
images. Multimed. Tools Appl. 2016, 75, 9723–9743. [CrossRef]

28. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017;
Volume 31. [CrossRef]

29. Xu, Y.; Chen, Z.; Xie, Z.; Wu, L. Quality assessment of building footprint data using a deep autoencoder network. Int. J. Geogr. Inf.
Sci. 2017, 31, 1929–1951. [CrossRef]

30. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

31. Kalayeh, M.M.; Shah, M. On Symbiosis of Attribute Prediction and Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
2021, 43, 1620–1635. [CrossRef]

32. Mittal, S.; Tatarchenko, M.; Brox, T. Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 43, 1369–1379. [CrossRef]

33. Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Guided Attention Inference Network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2996–3010. [CrossRef] [PubMed]

34. Lin, D.; Huang, H. Zig-Zag Network for Semantic Segmentation of RGB-D Images. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 2642–2655. [CrossRef] [PubMed]

35. Zhang, Y.; David, P.; Foroosh, H.; Gong, B. A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban
Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1823–1841. [CrossRef]

36. Gao, H.; Yuan, H.; Wang, Z.; Ji, S. Pixel Transposed Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
1218–1227. [CrossRef] [PubMed]

37. Lin, G.; Liu, F.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for Dense Prediction. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 42, 1228–1242. [CrossRef] [PubMed]

38. Wang, L.; Wang, L.; Lu, H.; Zhang, P.; Ruan, X. Salient Object Detection with Recurrent Fully Convolutional Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2019, 41, 1734–1746. [CrossRef]

39. Han, B.-B.; Zhang, Y.-T.; Pan, Z.-X.; Tai, X.-Q.; Li, F.-F. Residual dense spatial pyramid network for urban remote sensing image
segmentation. J. Image Graph. 2020, 25, 2656.

40. Li, W.; Zhao, W.; Zhong, H.; He, C.; Lin, D. Joint Semantic-geometric Learning for Polygonal Building Segmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 1958–1965. [CrossRef]

41. Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A. Foreground-aware relation network for geospatial object segmentation in high spatial
resolution remote sensing imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 4096–4105.

42. Ayhan, B.; Kwan, C. Application of Deep Belief Network to Land Cover Classification Using Hyperspectral Images. In Advances in
Neural Networks-ISNN 2017; Cong, F., Leung, A., Wei, Q., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2017; Volume 10261. [CrossRef]

43. Yuan, M.; Ren, D.; Feng, Q.; Wang, Z.; Dong, Y.; Lu, F.; Wu, X. MCAFNet: A Multiscale Channel Attention Fusion Network for
Semantic Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 361. [CrossRef]

44. Li, L.; Zhang, W.; Zhang, X.; Emam, M.; Jing, W. Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based
on Deep Learning. Electronics 2023, 12, 348. [CrossRef]

45. Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic Segmentation Network With Spatial and Channel
Attention Mechanism for High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 905–909. [CrossRef]

46. Tan, X.; Xiao, Z.; Wan, Q.; Shao, W. Scale Sensitive Neural Network for Road Segmentation in High-Resolution Remote Sensing
Images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 533–537. [CrossRef]

47. Saltiel, T.M.; Dennison, P.E.; Campbell, M.J.; Thompson, T.R.; Hambrecht, K.R. Tradeoffs between UAS Spatial Resolution and
Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping. Remote Sens. 2022, 14, 2703.
[CrossRef]

48. Behera, T.K.; Bakshi, S.; Sa, P.K. A Lightweight Deep Learning Architecture for Vegetation Segmentation using UAV-captured
Aerial Images. Sustain. Comput. Inform. Syst. 2023, 37, 100841. [CrossRef]

49. Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep Learning for Land Cover Classification
Using Only a Few Bands. Remote Sens. 2020, 12, 2000. [CrossRef]

50. Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using Extended
Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens. 2020, 12, 1392. [CrossRef]

http://doi.org/10.1109/IGARSS.2015.7325944
http://doi.org/10.14393/rbcv70n5-45227
http://doi.org/10.1007/s11042-015-2795-y
http://doi.org/10.1609/aaai.v31i1.11231
http://doi.org/10.1080/13658816.2017.1341632
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/TPAMI.2019.2956039
http://doi.org/10.1109/TPAMI.2019.2960224
http://doi.org/10.1109/TPAMI.2019.2921543
http://www.ncbi.nlm.nih.gov/pubmed/31180839
http://doi.org/10.1109/TPAMI.2019.2923513
http://www.ncbi.nlm.nih.gov/pubmed/31226067
http://doi.org/10.1109/TPAMI.2019.2903401
http://doi.org/10.1109/TPAMI.2019.2893965
http://www.ncbi.nlm.nih.gov/pubmed/30668465
http://doi.org/10.1109/TPAMI.2019.2893630
http://www.ncbi.nlm.nih.gov/pubmed/30668461
http://doi.org/10.1109/TPAMI.2018.2846598
http://doi.org/10.1609/aaai.v35i3.16291
http://doi.org/10.1007/978-3-319-59072-1_32
http://doi.org/10.3390/rs15020361
http://doi.org/10.3390/electronics12020348
http://doi.org/10.1109/LGRS.2020.2988294
http://doi.org/10.1109/LGRS.2020.2976551
http://doi.org/10.3390/rs14112703
http://doi.org/10.1016/j.suscom.2022.100841
http://doi.org/10.3390/rs12122000
http://doi.org/10.3390/rs12091392


Electronics 2023, 12, 1215 17 of 17

51. Bhatnagar, S.; Gill, L.; Ghosh, B. Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog
Vegetation Communities. Remote Sens. 2020, 12, 2602. [CrossRef]

52. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

53. Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice
Lodging Identification in Multi-date UAV Visible Images. Remote Sens. 2020, 12, 633. [CrossRef]

54. Wu, C.; Ju, B.; Xiong, N.; Yang, G.; Wu, Y.; Yang, H.; Huang, J.; Xu, Z. U-net super-neural segmentation and similarity calculation
to realize vegetation change assessment in satellite imagery. arXiv 2019, arXiv:1909.04410. [CrossRef]

55. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [CrossRef]

56. Heryadi, Y.; Irwansyah, E.; Miranda, E.; Soeparno, H.; Herlawati; Hashimoto, K. The Effect of Resnet Model as Feature Extractor
Network to Performance of DeepLabV3 Model for Semantic Satellite Image Segmentation. In Proceedings of the 2020 IEEE
Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 7–8 December
2020; pp. 74–77. [CrossRef]

57. Zeng, F.; Yang, B.; Zhao, M.; Xing, Y.; Ma, Y. MASANet: Multi-Angle Self-Attention Network for Semantic Segmentation of
Remote Sensing Images. Teh. Vjesn. 2022, 29, 1567–1575. [CrossRef]

58. Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An Accurate Vegetation and Non-Vegetation Differentiation
Approach Based on Land Cover Classification. Remote Sens. 2020, 12, 3880. [CrossRef]

59. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587. [CrossRef]

60. Wu, Q.; Luo, F.; Wu, P.; Wang, B.; Yang, H.; Wu, Y. Automatic Road Extraction from High-Resolution Remote Sensing Images
Using a Method Based on Densely Connected Spatial Feature-Enhanced Pyramid. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2021, 14, 3–17. [CrossRef]

61. Ni, Z.-L.; Bian, G.-B.; Wang, G.-A.; Zhou, X.-H.; Hou, Z.-G.; Chen, H.-B.; Xie, X.-L. Pyramid Attention Aggregation Network for
Semantic Segmentation of Surgical Instruments. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY,
USA, 7–12 February 2020; Volume 34, pp. 11782–11790. [CrossRef]

62. Zhong, Z.; Lin, Z.Q.; Bidart, R.; Hu, X.; Daya, I.B.; Li, Z.; Zheng, W.-S.; Li, J.; Wong, A. Squeeze-and-attention networks for
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 13065–13074. [CrossRef]

63. Chen, L.; Tian, X.; Chai, G.; Zhang, X.; Chen, E. A New CBAM-P-Net Model for Few-Shot Forest Species Classification Using
Airborne Hyperspectral Images. Remote Sens. 2021, 13, 1269. [CrossRef]

64. Chen, Y.; Zhang, X.; Chen, W.; Li, Y.; Wang, J. Research on Recognition of Fly Species Based on Improved RetinaNet and CBAM.
IEEE Access 2020, 8, 102907–102919. [CrossRef]

65. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoderdecoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818. [CrossRef]

66. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

67. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

68. Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Landcover classification with high-resolution remote sensing
images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [CrossRef]

69. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]
70. Zang, Y.; Wang, C.; Yu, Y.; Luo, L.; Yang, K.; Li, J. Joint Enhancing Filtering for Road Network Extraction. IEEE Trans. Geosci.

Remote Sens. 2017, 55, 1511–1525. [CrossRef]
71. Kraemer, H.C. Kappa coefficient. Wiley StatsRef Stat. Ref. Online 2014, 1–4. [CrossRef]
72. El Amin, A.M.; Liu, Q.; Wang, Y. Zoom out CNNs features for optical remote sensing change detection. In Proceedings of the 2017

2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 812–817. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs12162602
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.3390/rs12040633
http://doi.org/10.48550/arxiv.1909.04410
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/AGERS51788.2020.9452768
http://doi.org/10.17559/TV-20220421142959
http://doi.org/10.3390/rs12233880
http://doi.org/10.48550/arxiv.1706.05587
http://doi.org/10.1109/JSTARS.2020.3042816
http://doi.org/10.1609/aaai.v34i07.6850
http://doi.org/10.48550/arxiv.1909.03402
http://doi.org/10.3390/rs13071269
http://doi.org/10.1109/ACCESS.2020.2997466
http://doi.org/10.48550/arxiv.1802.02611
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.48550/arxiv.1807.06521
http://doi.org/10.1016/j.rse.2019.111322
http://doi.org/10.48550/arxiv.1412.6980
http://doi.org/10.1109/TGRS.2016.2626378
http://doi.org/10.1002/9781118445112.stat00365.pub2
http://doi.org/10.1109/ICIVC.2017.7984667

	Introduction 
	Methodology 
	Network Architecture 
	Encoder Module 
	Feature-Enhanced Attention Module 
	Decoder Module 

	Experimental Settings 
	Gaofen Image Dataset (GID) 
	Experimental Implementation Details 
	Comparative Methods and Evaluation Criteria 

	Experimental Results and Discussion 
	The Overall Results of the Classification Experiments 
	Performance on the GID Dataset 
	Performance in Vegetation Classes 

	The Results of the Comparative Experiments 
	Performance on the GID Dataset 
	Performance in Vegetation Classes 

	Effect of the CBAM 
	Performance on the GID Dataset 
	Performance in Vegetation Classes 

	Discussion 
	Analysis of Misclassification 
	Potential application value of VEDAM 


	Conclusions and Future Work 
	References

