
Citation: Alazab, A.; Khraisat, A.;

Singh, S.; Bevinakoppa, S.; Mahdi,

O.A. Routing Attacks Detection in

6LoWPAN-Based Internet of Things.

Electronics 2023, 12, 1320. https://

doi.org/10.3390/electronics12061320

Academic Editor: Baris Aksanli

Received: 17 January 2023

Revised: 7 March 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Routing Attacks Detection in 6LoWPAN-Based Internet
of Things
Ammar Alazab 1,* , Ansam Khraisat 2, Sarabjot Singh 1 , Savitri Bevinakoppa 1 and Osama A. Mahdi 1

1 School of Information Technology and Engineering, Melbourne Institute of Technology,
Melbourne, VIC 3000, Australia

2 School of Information Technology, Deakin University, Geelong, VIC 3125, Australia;
ansam.khraisat@deakin.edu.au

* Correspondence: aalazab@mit.edu.au

Abstract: The Internet of Things (IoT) has become increasingly popular, and opened new possibilities
for applications in various domains. However, the IoT also poses security challenges due to the
limited resources of the devices and its dynamic network topology. Routing attacks on 6LoWPAN-
based IoT devices can be particularly challenging to detect because of its unique characteristics of
the network. In recent years, several techniques have been proposed for detecting routing attacks,
including anomaly detection. These techniques leverage different features of network traffic to
identify and classify routing attacks. This paper focuses on routing attacks that target the Routing
Protocol for Low-Power and Lossy Networks (RPL), which are widely used in 6LoWPAN-based IoT
systems. The attacks discussed in this paper can be categorized as either inherited from Wireless
Sensor Networks or exploiting vulnerabilities unique to RPL (known as RPL-specific attacks). The
paper describes various RPL attacks, including Flood Attacks, Data-DoS/DDoS Attacks, Wormhole
Attacks, RPL Rank Attacks, Blackhole Attacks, Version Attacks, and Sinkhole Attacks. In this paper,
a novel Hybrid Intrusion Detection System (HIDS) that combines a decision tree classifier and a
one-class Support Vector Machine classifier is proposed to detect routing attacks. The HIDS draws on
the strengths of both a Signature Intrusion Detection System (SIDS) and an Anomaly-based Intrusion
Detection System (AIDS) to identify routing attacks with a high degree of accuracy and a low false
alarm rate. The routing dataset, which features genuine IoT network traffic and various kinds of
routing attacks, was used to test the proposed HIDS. According to the findings, the hybrid IDS
proposed in this study outperforms SIDS and AIDS approaches, with higher detection rates and
lower false positive rates.

Keywords: anomaly detection; network attack; routing attack; IoT attacks; machine learning;
intrusion detection system

1. Introduction

The Internet of Things (IoT) is a network of sensors that facilitates the exchange of
data between various types of smart devices, such as mobile phones, refrigerators, watches,
fire alarms, locks, bicycles, medical sensors, fitness trackers, and security systems. As more
and more homes and businesses adopt IoT devices, a significant number of interconnected
devices transforms the way data are utilized and consumed. While the popularity of IoT
continues to rise, the risks related to its security are increasing [1].

The field of IoT is expanding quickly, enabling devices to communicate and share
information. Among the trending technologies employed in IoT, IPv6 over Low-Power
Wireless Personal Area Network (6LoWPAN) is particularly noteworthy as it offers an
affordable and energy-efficient networking solution for IoT devices. Despite its benefits,
6LoWPAN is susceptible to security risks, particularly routing attacks, which can cause con-
siderable harm to IoT systems by interrupting communication between devices, exposing
data confidentiality and integrity, and triggering device malfunctions [2].
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Detecting attacks on the routing system of 6LoWPAN-based IoT devices can be difficult
due to several factors such as the limited resources of the devices, the constantly changing
network topology, and the different ways in which an attack can occur. To address this
issue, various techniques such as anomaly detection, intrusion detection, and machine
learning-based methods have been developed in recent years. These methods use different
features of the network traffic, such as routing metrics, packet header information, and
traffic patterns, to identify and classify routing attacks. This article specifically focuses on
RPL protocol, which is a target of routing attacks. The attacks on RPL can be divided into
two categories: those inherited from WSNs and those that exploit vulnerabilities unique to
RPL (known as RPL-specific attacks). These attacks mainly target layer 3 of the OSI model,
and this article describes several RPL attacks including Flood Attacks, Data-DoS/DDoS
Attacks, Wormhole Attacks, RPL Rank Attacks, Blackhole Attacks, Version Attacks, and
Sinkhole Attacks [3].

The Intrusion Detection System (IDS) technology has initially been designed for
conventional networks, and thus the existing methods of developing IDSs for IoT are unable
to identify various types of intrusions for the following reasons. First, the recent IDSs protect
against known as security threats, so they are beaten by the new types of malware used by
cybercriminals as they can escape conventional systems [4,5]. For example, a high quantity
of Distributed Denial-of-Service (DDoS) attacks uses methods that trick source IP addresses
to conceal attacks; therefore, they become unnoticeable by conventional IDSs. Second,
IoT systems become extremely diverse in terms of devices, platforms, communication
techniques, and protocols [6]. Thirdly, one more significant matter is the feature related
to IoT network design. In conventional networks, the devices are entirely connected to
specific device sensors that are responsible for sending packets to the endpoints. In contrast,
the IoT system connects with various devices and actuators to achieve various checking
and management tasks. There are substantial additional kinds of IoT sensors and many
forms of networks other than conventional networks. Consequently, using conventional
IDSs in an IoT system is difficult because of their limited features, such as restricted source
devices and network needs.

In recent years, numerous incidents involving IoT (Internet of Things) devices, such
as brute-force attacks, privilege escalation attacks, IoT ransomware, IoT botnets, and DNS
threats. To counteract such threats, Intrusion Detection Systems (IDSs) have been developed
as an additional layer of protection against abnormal activity. However, deploying a tradi-
tional IDS system directly onto IoT networks is not feasible due to the unique characteristics
of IoT networks. IoT devices are typically resource-constrained, with limited power, com-
puting, communication, and storage capabilities. Therefore, existing security techniques
need to be simplified, optimized, and adapted to suit IoT networks. Additionally, IoT
networks use different protocol stacks and standards, which require the development of
corresponding security mechanisms [7].

There are various dangers associated with IoT devices, and protecting them requires
identifying when they are being attacked. Intrusion detection is necessary for such sit-
uations. For instance, a hacker may infiltrate an IoT device in a hospital network and
insert malware to gain access to the sensitive medical, personal, and financial information
of patient’s data. In another example, the Black Energy malware targets industrial con-
trol systems (ICSs). Hackers may use the fixed network on a flight to gain control of an
airplane’s network, or even use light bulbs as an entry point to a corporate network. Unfor-
tunately, in such scenarios, these devices cannot determine whether they are under attack,
and may process or discard the packets they receive without any knowledge of whether
they are legitimate or malicious. Static networks are particularly vulnerable because there
are only a few IP addresses to exploit. Since IoT devices are regularly targeted and can
serve as a gateway to other devices on the network, proper intrusion detection is of the
utmost importance.

The hybrid Intrusion Detection System (IDS) is created to overcome the limitations of
Single IDS (SIDS) and Aggregation IDS (AIDS) when detecting routing attacks. The goal of



Electronics 2023, 12, 1320 3 of 19

the hybrid IDS is to use the advantages of both techniques and address the limitations of
SIDSs, while also leveraging the lower processing cost of AIDS. Since traditional IDSs are
insufficient in detecting various attacks in IoT systems and consume a considerable amount
of memory and processing resources, our approach employs AIDS to identify zero-day
routing attacks and SIDS to recognize known attacks. By combining the strengths of both
techniques, our approach aims to produce a more resilient IDS. To achieve higher accuracy,
the boosting technique is utilized to combine multiple classifiers. SIDS is based on the
popular C4.5 decision tree classifier, which employs nodes to form a directed tree structure.
Conversely, AIDS is based on a one-class Support Vector Machine that employs known
attacks on data to build profiles of normal behavior. The contributions of this paper are
as follows:

• The simulation of several attacks on the IoT to identify if packet drop along with
energy consumption constraints are suitable features for identifying routing attacks
on IoT;

• A novel intelligent IDS is used to identify IoT attacks with high detection accuracy
and low false alarm rates;

• An experiment to show how several types of intrusion functionality and attack tech-
niques affect power consumption;

• This paper proposes a dataset of routing attacks that contains normal IoT network
traffic in conjunction with several kinds of attacks. The reliability of the routing dataset
using well-known machine learning techniques is assessed;

• An investigation on IoT malware functionality and techniques, and how these RPLs
can be used for successful intrusion detection.

The structure of this document is as follows: The background is covered in Section 2.
Section 3 discusses relevant work. In Section 4, our strategy for developing models for the
study is presented. The experimental design and outcomes are described in Section 5. The
evaluation of approaches is discussed in Section 6. In Section 6, the conclusion is offered.

2. Background
2.1. Routing Protocol for Low-Power and Lossy Networks (RPL)

The Routing Protocol for Low-Power and Lossy Networks (RPL) is a protocol that
is specifically designed for low-power and lossy networks (LLNs) to route messages
with minimal power consumption. In this protocol, the network topology is formed as a
Destination-Oriented Directed Acyclic Graph (DODAG), with a root node at the top and
leaf nodes at the bottom [2].

Nodes in the network maintain routing tables and communicate with their neighbors
to find the best path to the root node. RPL uses a metric known as Expected Transmission
Count (ETX) to evaluate the link quality between two nodes. The nodes with better links
are ranked higher in the DODAG and are used for routing [2].

To help save power in the network, RPL includes several features. Nodes can enter
sleep mode to conserve energy when they are not actively participating in routing. They
can additionally indicate to their neighbors that they are low on energy and should not be
used for routing. RPL uses various message types to maintain the network topology and
update routing tables. The root node broadcasts a DAG Information Object (DIO) to update
the network regarding the current state of the DODAG. Nodes respond with Destination
Advertisement Objects (DAOs) to advertise their presence and update their parent node in
the DODAG. Lastly, the DODAG Information Solicitation (DIS) message is used to request
DIO messages from the root node when a node joins the network or loses its parent [8].

In Figure 1, the process of forming the Destination-Oriented Directed Acyclic Graph
(DODAG) begins with the root node. The structure formed can be in the shape of a tree,
and there may be one or more root nodes. The root node starts advertising information
by sending out a DAG Information Object (DIO) message. Neighboring nodes receive
and process the message to determine whether to join the network or not. This process
continues from the root to the parent nodes and leaf nodes in the network. Each node
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selects a parent node from its neighboring nodes. The root node has a rank of 0, and the
ranks of nodes increase based on the Objective Function (OF). To prevent possible packet
loss, no loops should be formed, unlike traditional routing [9].
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Routing in RPL begins at the root node and routes are distributed to other proto-
cols connected through the Destination Advertisement Object (DAO) message. RPL is
more applicable in IoT where power supply is a regular constraint in low-energy and
lossy networks.

2.1.1. Sinkhole Attack

A Sinkhole Attack is an internal assault in which an impacted node attempts to attract
network traffic by propagating bogus routing updates. An attacker launches an attack
on a network by adding bogus nodes. The objective of this attack is to reroute traffic
from a certain region across a malicious node that appears to be highly appealing to the
surrounding nodes [10].

2.1.2. Selective Forwarding Attack

A Selective Forwarding Attack is a security threat wherein an attacker manipulates
network traffic by selectively forwarding or dropping packets. The attacker gains control
over one or more nodes in the network and selectively forwards packets to some nodes
while dropping or delaying packets to others. This disrupts the communication between
the nodes and can compromise the security of the network. The attacker can selectively
drop packets containing critical information, leading to data loss and the disruption of the
communication between nodes. This type of attack can be particularly harmful in WSNs
and IoT networks where nodes have limited resources and rely on efficient and reliable
communication. To ensure network security and reliability, effective defense mechanisms
must be developed to detect and prevent selective forwarding attacks.

2.1.3. Sybil Attack

A Sybil Attack is a type of attack in which a malicious actor creates multiple fake
identities or nodes in a network to gain control and manipulate the network. This type of
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attack is particularly dangerous in peer-to-peer networks and distributed systems where
trust is critical. In the context of RPL, a Sybil attack involves a malicious node creating
multiple fake identities or nodes that can participate in the network and influence the
routing process. These fake nodes can cause routing loops, interfere with routing decisions,
and lead to network congestion, which can ultimately result in denial of service (DoS)
attacks [11].

2.1.4. Blackhole Attack

A Blackhole Attack is a security threat that disrupts the routing process by selectively
forwarding or dropping network packets. The attacker pretends to have the shortest
path to the destination node, causing legitimate nodes to forward packets to the attacker
instead of the actual destination. Once the attacker has control over the packets, they can be
selectively dropped or forwarded to other nodes, resulting in severe damage to the network.
The consequences of a Blackhole Attack can be significant, including communication
disruption, data loss, and network failures. In RPL, which is commonly used in IoT
networks, a blackhole attack can be particularly damaging since many IoT devices have
limited resources and rely on reliable and efficient communication to function properly [12].

2.2. Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) is a crucial component in the field of cybersecurity
that helps to detect and prevent unauthorized access to computer networks and systems.
The IDS is designed to identify potential security breaches and intrusions that could
compromise the confidentiality, integrity, and availability of data and system resources.
The primary function of an IDS is to monitor network traffic and system activity, looking
for anomalous or malicious behavior that may indicate an attack. The IDS operates by
analyzing traffic patterns and comparing them to known attack signatures or deviations
from established patterns of normal behavior. Once an intrusion is detected, the IDS can
alert security personnel or take automated action to block or mitigate the attack. The
IDS is used in various settings such as enterprise networks, cloud infrastructure, and IoT
devices, and it can be deployed in different forms including network-based, host-based,
or hybrid IDS. With the increasing sophistication and frequency of cyber-attacks, IDS is
becoming an increasingly vital component in protecting the security of digital systems and
infrastructure [7,13,14].

IDS systems have two main approaches: Signature Intrusion Detection Systems (SIDSs)
and Anomaly Intrusion Detection Systems (AIDSs).

Signature Intrusion Detection Systems (SIDS) are based on pattern-matching tech-
niques to find a known attack; these are also known as Knowledge-based Detection or
Misuse Detection. In other words, an alert is raised when a recognized intrusion meets
a malicious string database. For well-known attacks, SIDS frequently produces positive
detection outcomes. The second approach is Anomaly Intrusion Detection Systems (AIDS),
which identify unusual behaviors on a computer system. They are categorized into several
sub-categories based on the learning approaches applied, such as statistical techniques,
data mining, artificial neural networks, and genetic algorithms [15]. The main benefit of an
anomaly-based scheme is that it can potentially detect attacks even when detailed prior
information of the attack does not exist and can be used to obtain signature information
used by misuse-based IDS.

Researchers are aware of this potential to identify a zero-day attack, AIDSs have
captured the attention of numerous studies. AIDSs can identify unusual computer user
behavior. This method is predicated on the idea that malicious user behavior is distinct from
benign user activity. AIDSs use a combination of chosen features plus machine learning
techniques to build a behavioral profile of typical user activity. Then, they compare the new
data’s behaviors to the predetermined normal behavior profile to look for abnormalities.
Users who exhibit odd activity are flagged as potential attackers. In general, the AIDS
contains two stages: the training stage and a testing stage. In the training stage, the normal
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activity profile is categorized using data that identify normal behavior; in the testing stage,
the new data set are examined based on the profile that has been built in the first stage.

Many researchers use a variety of machine-learning techniques and algorithms to
detect anomalies. These techniques include both supervised and unsupervised learning
approaches to address different pattern recognition problems. In supervised learning, a
model is built from labeled training data wherein each trained data point is associated with
a class label. During the training phase, a classifier model is developed, which can classify
additional examples based on learned class labels. Several machine learning structures have
been employed with A-NIDS, and some of the most prominent structures are described
below, including their main strengths and limitations [16].

Decision trees: A decision tree is a tree-like model wherein each node represents a
feature or attribute, each branch represents a decision rule, and each leaf node represents a
predicted outcome or class label. The algorithm works by recursively partitioning the data
based on the values of the features, to create pure leaf nodes where all instances in a leaf
node belong to the same class or have the same predicted value.

There are many different decision tree algorithms, including ID3 [17], C4.5 [18], and
CART [19]. The decisions are often simple attribute tests that isolate the data using one
attribute at a time. By using categories established at lower nodes, new data can be
classified. Quinlan (1993) promoted using a decision tree technique, and C4.5 is the most
recent version of Quinlan’s model [20,21].

Bayesian Networks: To model an uncertain domain, a Bayesian network is used widely
and applied in various ways to treat AIDSs. The Bayesian intrusion detection system has
been applied to learning an attack strategy to relate alerts, and it expects possible upcoming
attacks in a connected system. A Bayesian network is a graphical model that consists of a
directed acyclic graph (DAG). In this graph, each node represents a random variable, and
the edges represent probabilistic dependencies between these variables. The structure of
these networks shows how the variables are related to each other. The relationships are
represented by the conditional probability distributions between the nodes. The probability
distribution of a node is determined based on the values of its parent nodes in the graph.
This approach allows us to make inferences about the joint probability distribution of all
the variables in the network, given certain evidence or observations.

One Support Vector Machine (SVM): The one-class Support Vector Machine (SVM) is
a type of machine learning algorithm is used for detecting anomalies. Unlike traditional
SVMs that separate data into two classes, the one-class SVM works with a single class of
data, which are usually the expected or normal data. The purpose of the one-class SVM
is to identify typical patterns of normal data, and any data that deviate from this pattern
are considered an anomaly. The algorithm first maps the input data to a high-dimensional
feature space and finds a hyperplane that separates the normal data from the rest of the
data. This hyperplane is defined as the decision boundary, and any data that falls on the
other side of the hyperplane is considered an anomaly.

Multilayer Perceptron (MLP): An MLP is an artificial neural network used in machine
learning that has several layers of nodes or artificial neurons arranged in a feedforward
fashion. The input layer, which accepts the input data, is the first layer, while the output
layer is the last layer, which generates the output. In the middle, there may be one or more
hidden layers that perform computations. Each neuron receives input from the previous
layer, applies an activation function to the input, and produces an output that is sent to
the next layer. During a training process, a backpropagation algorithm is used to learn the
weights of the connections between neurons, which are adjusted based on the error between
the predicted output and the actual output. MLPs are mostly used for supervised learning,
such as classification and regression. They can learn complex non-linear relationships
between inputs and outputs and support various activation and loss functions. However,
they may be prone to overfitting and require the careful tuning of hyperparameters to
achieve optimal performance.



Electronics 2023, 12, 1320 7 of 19

3. Related Works

Cho et al. introduced a technique for detecting botnet attacks by analyzing packet
length at the border router between physical and network devices, but they did not provide
details on how they developed a normal behavior profile or how the method would perform
on IoT nodes with limited resources [22].

Raza et al. proposed a new intrusion detection system called SVELTE, designed for IoT
networks to detect routing attacks such as spoofing, Sinkhole, and Selective Forwarding.
They implemented SVELTE in the Contiki OS and evaluated it, showing that it can detect
all malicious nodes in simulated scenarios with some false alarms, while having minimal
overhead that enables it to be deployed on constrained nodes with limited resources [23].

Rathore et al. proposed a semi-supervised fuzzy learning-based distributed attack
detection framework for IoT and evaluated it using the NSL-KDD dataset, which has
similar dataset-related issues to those mentioned previously [24].

To identify DDoS and DoS assaults against genuine IoT network traffic, Hodo et al.
used an Artificial Neural Network (ANN). The suggested ANN model was tested against
the simulated IoT network.

Diro et al. proposed a new approach to cybersecurity that uses deep learning to detect
attacks in the Social Internet of Things (IoT). The paper compares the performance of
the deep learning model with traditional machine learning approaches and evaluates a
distributed attack detection system against a centralized detection system. The experiments
show that the distributed attack detection system using deep learning outperforms cen-
tralized detection systems, and that the deep learning model is more effective in detecting
attacks compared to shallow counterparts [25].

To identify aberrant activity in various botnet attempts against the Domain Name Sys-
tem (DNS), Hyper Text Transfer Protocol (HTTP), and Message Queue Telemetry Transport,
Moustafa et al. suggested an ensemble of IDSs (MQTT) [26]. Their ensemble approaches
are based on the AdaBoost learning approach, and they evaluated their approach using
three machine learning techniques: Artificial Neural Networks (ANN), Decision Trees (DT),
and Naive Bayes (NB) [26]. Performance overhead is impacted by the planned IDS.

Using Artificial Neural Networks (ANN) to identify Distributed Denial of Service
(DDoS/DoS) attacks, Hoda et al. presented a threat analysis of IoT devices. Using web
packet traces for training, a multi-level perceptron, a form of supervised ANN, is evaluated
on its capacity to prevent (DDoS/DoS) attacks [27]. The likelihood of implementing the
suggested IDS in the IoT ecosystem with low-capacity devices was not taken into account
by Hoda et al. Their testing revealed that the technology has a 99.4% accuracy rate for
DDoS/DoS. However, no information on the dataset was offered.

IDSs were suggested by Cervantes et al. for 6LoWPAN for the IoT to detect Sinkhole
Attacks. Their IDS strategy combines anomaly detection with signatures, supported by
a Support Vector Machine (SVM). Each IDS agent learns the SVM as part of their IDS’s
training process, and a majority voting decision is made to identify the infected nodes [28].
According to their simulation results, their IDS can detect sinkholes up to 92% of the time
in a stationary situation, and 75% of the time in a mobile scenario. Their strategy has not
been tested against other IoT attack types either.

Khraisat et al. combined a C5 classifier with a one-class Support Vector Machine
classifier to create a hybrid Intrusion Detection System (HIDS). The Bot-IoT dataset, includ-
ing realistic IoT network traffic and a variety of attacks, is used to evaluate the proposed
HIDS [7]. Table 1 shows the summary of the proposed research on IDSs for IoT.



Electronics 2023, 12, 1320 8 of 19

Table 1. Summary of the proposed research on IDSs for IoT.

Key References Placement Strategy Detection
Techniques Security Threat Validation Strategy

Cho, Kim and Hong [22] Centralized AIDS Botnet Simulation

Raza, Wallgren and Voigt [23] Hybrid, centralized,
and distributed Hybrid Routing attacks Simulation

Rathore and Park [24] Distributed AIDS Network attack Empirical (NSL-KDD
Dataset)

Diro and Chilamkurti [25] Distributed AIDS Network attack Empirical (NSL-KDD
Dataset)

Moustafa, Turnbull and Choo [26] Distributed Hybrid The botnet, Man in
the Middle

Empirical
(UNSW-NB15)

Hodo, Bellekens, Hamilton,
Dubouilh, Iorkyase, Tachtatzis and

Atkinson [27]
Centralized AIDS DoS attack Simulation

Cervantes, Poplade, Nogueira and
Santos [28] Distributed Hybrid Sinkhole attacks Simulation

4. Proposed Combination Approach for an IoT Intrusion Detection System

Hybrid IDS was proposed to overcome the limitations of SIDS and AIDS by combining
them to detect both known and unknown attacks. Innovative methods were utilized to
merge the results of SIDS and AIDS. In our methodology, AIDS was used to identify
zero-day attacks, while SIDS was used to detect known attacks. The boosting method
was employed to combine the classifiers and reduce the combined model’s bias. The
Hybrid IDS comprises two stages: the SIDS stage and the AIDS stage, as shown in Figure 2.
The objective of AIDS is to create profiles of normal node activity and raise an alarm if
the difference between regular requests exceeds a predefined threshold for a particular
observation. The profiles of nodes were generated by utilizing benign action records. The
system then observes the traffic’s behavior and compares the new records with the built
profiles to identify any anomalies. When a malicious request is detected, the system stores
it in the signature database to protect against similar attacks in future malicious activities.
In other words, SIDS will have a suitable history of previously known attacks.
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4.1. Feature Selection and Extraction

The IoT is composed of smart devices that have limited processing power, memory,
energy, and communication range. One of the main challenges for IDS in this ecosystem
is dealing with numerous irrelevant features that can cause overhead on the system. It
is widely known that redundant and irrelevant features can lead to a low detection rate.
Therefore, the objective of feature selection is to identify the most significant features that
can be used in the IDS to detect various attacks effectively. The features are analyzed
for both normal and abnormal behaviors using the extracted labels, and an information
gain method is applied for feature selection. The information gain technique has a fast
execution time, and it extracts the best-performing feature set for the specific type of model.
In previous studies, information gain has been regularly used to assess how well each
distinct attribute separates the given dataset. The overall entropy “I” of a given dataset “S”
is calculated using this method.

According to Gray’s work from 2010, the total entropy, denoted as I, of a particular
set of data, S, can be defined as follows. The following formula represents the entropy
of a system S, where c is the number of classes in the system, and pi is the proportion of
elements belonging to the ith class. The entropy measures the uncertainty or randomness
of the system, and this is defined as the sum of the probabilities of each class multiplied by
their logarithm base 2.

I(S) = −
c

∑
i=1

pilog2 pi

IG(S, A) = I(S)− ∑
vεA

|SA,v|
|S| I(Sv)

This formula represents the information gain (IG) of feature A concerning a set of data
S in a decision tree. It is calculated by subtracting the sum of the weighted entropies of the
possible subsets of S that result from splitting S on feature A from the entropy of S.

• (S) is the entropy of set S. It measures the impurity of set S. The higher the entropy,
the more mixed the labels are in the set;

• A is the feature being considered for splitting the data;
• v is a possible value of feature A;
• S_(A,v) is the subset of S in which feature A has value v;
• S_v is the subset of S in which feature A takes value v, and I(S_v) is the entropy of S_v.

The formula can be interpreted as the reduction in entropy achieved by splitting the
data on feature A. It selects the feature with the highest information gain as the root of the
decision tree and recursively applies the same procedure to the subsets resulting from the
split until a stopping criterion is met.

4.2. Stage One: SIDS Stage

The SIDS phase involved using the C4.5 decision tree classifier to generate a decision
tree. Once the tree is constructed, it can be used to classify other samples with varying
degrees of success, depending on how well it models the dataset. The decision tree can
then be used as a set of rules for identifying whether a test sample is a malicious or benign
software. For unknown traffic, pattern matching was used to determine if it represented
normal or abnormal behavior. If the request matched an attack signature from the database,
an alarm was raised indicating it was a malicious sample. If it did not match, the traffic was
passed to the next stage of the framework, which was AIDS, designed to detect unknown
attacks, such as zero-day attacks, as depicted in Figure 2.

4.3. Stage Two: AIDS Stage

To improve the identification of unknown attacks, the SIDS stage’s output is utilized to
train the AIDS stage in recognizing abnormal behaviors. By training with benign samples,
one-class SVM is used to teach AIDS how to differentiate activities that do not appear
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normal, which are commonly exhibited by malware. With one-class SVM, benign activities
are learned, and this kind of classifier can accurately identify normal activities, as normal
class training data are abundant. On the other hand, zero-day attacks are uncommon,
so few or even none of these attacks may be present in the training datasets. Therefore,
in the second stage, normal behavior is recognized, and any activities that are outside
the usual behavior are classified as zero-day attacks. One-class classification methods
attempt to build models when the malware class is not present, has a poor sample, or is
not well defined. Unlike traditional multi-class classification, in one-class classification,
normal behavior is effectively defined by the training data, while unknown malware has
no examples.

4.4. Stage Three: Stacking of the Two Stages

To overcome the limitations of both SIDS and AIDS, a hybrid approach is suggested
that combines both methods through an ensemble of classifiers. Ensemble techniques
are often used in machine learning to improve the accuracy of predictions. However, it
is challenging to determine the optimal ensemble configuration for identifying zero-day
attacks. A two-stage approach is applied, with a C4.5 classifier in the first stage and a
one-class SVM in the second stage, to create an ensemble of classifiers that improves the
accuracy of the IDS.

4.5. Centralized IDS Deployment

The IDS is situated either on a dedicated host, such as a cluster head node, or on the
root node, such as a border router, and monitors the traffic passing through it to detect
attacks. Typically, the central node of the IDS sends periodic requests to the monitored
network for updates. This model collects data from different sources within the network
and transmits them to a central location for analysis and correlation to identify potential
security threats. This deployment model offers several advantages, such as enhanced
visibility and control of network traffic, simplified management of security infrastructure,
and centralized policy management. However, it also poses some challenges, such as the
potential for a single point of failure and the need for a high-speed network connection to
transmit data to the central system.

5. Experiment Setup and Results
5.1. Experiment Setup

Contiki OS was used to create an adaptive intrusion detection system that is dis-
tributed. This operating system supports the IP for sensor networks and was initially built
on the foundation of IPv4. Later, when the 6LoWPAN specification was established, IPv6
functionality was introduced. The RPL now supports IPv6 implementation, which was
previously lacking [29]. Contiki was chosen because it supports IPv6 and RPL. To test and
simulate the system, the Cooja simulator was employed, which is a Java-based simulator
that supports Contiki OS on multiple levels. It has different interfaces that are used to
collect various types of information. The RPL protocol implementation is available in the
Contiki source code, and default parameters have been used, including a wake-up interval
of 125 ms. The mote output window in Figure 3 records packet information, such as packet
length and type of information being exchanged. Power Tracker, available in Cooja, is used
to record power usage in the motes and display radio communications between nodes,
including RX and TX signals.
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Figure 3. Cooja network simulator used to compute the performance metrics.

The power utilization in motes is shown in Figure 4 above, and once the simulation
has run for 120 s, it can be observed that it is eminently reasonable. Every mote uses less
than 5% of the available power. The fundamental cause of the low power consumption is
that, because fewer DIS packets are being transmitted across the network, the motes do not
need to be turned on all the time. The nodes use less energy as a result.
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The following diagram shows the network and the mote power usage with the mali-
cious mote in the network.

Figure 5 to the right of the screen displays a network that includes the malicious node
11 as well as other nodes. Figure 5 on the right shows the network’s power utilization.
On the left side of Figure 5, it can be observed that the network’s power consumption is
significantly more than 15%. RX is high for typical sensor nodes. This is because a DIO
packet from within the malicious mote is continuously received by the nodes. TX and RX
are both high in the malicious mote. This is because they are transmitting and receiving
high multicast packets simultaneously.
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5.2. Analysis of the Captured Data

The nodes’ power consumption was recorded and stored in a file. The CSV file
identified the network’s power consumption as normal traffic, whereas the IoT network’s
power consumption with a malicious node was classed as an attack. After that, machine
learning software was used to examine the data.

There are seven different fields in the Power Tracker file, and these are listed in Table 2.

Table 2. Attributes of Power Tracker file.

Mote_ID: The ID of the Mote in the IoT Network

monitored_time:

The simulation’s duration and interval in seconds are displayed
in this field. Given that this simulation was run for 120 s, its

maximum value is 120. If there was activity at a specific moment
on the IoT network, that time interval will be present. Therefore,

in this field, 1 represents the first second, and 2 represents the
second.

on_time:
This represents how long the mote was on overall for each session.

This field would have a value of 3 if the mote were turned on
three times in a second.

tx_time:
This is the total amount of time the mote spent transmitting a

packet during each interval. This field for the mote would have a
value of 4 if the mote sent four packets in 15 seconds.

rx_time:

This field displays the total number of packets the mote received
throughout the course of the particular period. For instance, the

mote’s value for such a field would also be 6 if it collected six
packets within the 6th second.

int_time: Timer for trickle time reset

Class:

This field serves as the data classification field. Data coming from
an IoT network without a malicious mote are categorized as

normal, whereas data coming from a network with a malicious
mote are categorized as an attack.

Cooja is employed, which is a simulation tool from the Contiki OS that is popular
among academics studying the IoT ecosystem. The major goal of using Cooja is to determine
how to make use of it to evaluate the impacts of attacks and create more effective security
solutions. In this paper, the effects of insider threats on RPL-based IoT sensor nodes are
examined. Based on the seven different scenarios, values from the mote were obtained
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during the experiment and saved in data collection (DC) files named “DC1”, “DC2”,
“DC3”, “DC4”, “DC5”, “DC6”, and “DC7”. There are various totals for attack and normal
motes/nodes in each instance. In the simulation, new members of the community introduce
themselves by transmitting their identification number with signal strength alongside a
“Hello” message to their closest neighbors. Every node then modifies its routing tables and
broadcasts individual messages. Malicious nodes frequently send out “Hello” messages in
Sinkhole, Hello Flood, DDoS/DoS, Wormhole, Blackhole, or RPL Rank Attacks by sending
out DIS packets that make them appear to be neighbors. As a result, they are the node
that other nodes may reach the easiest. As a result, they make their neighbors spend time
and resources coping with pointless data packets. The average amount of DIO, DIS, and
DAO messages a node sends out each day increases with level or rank. A message takes
longer to get through the system when there are more hops between both the root and any
additional node. For instance, the first-rank malicious node transmits 40 bytes of data for
each packet, or 320 bytes for a packet of 40 bytes. The actual bandwidth is 10 Kbytes per
second, or 10,240 bits each second.

After the simulation begins, the IoT routing dataset, which contains both attack
and normal nodes, is created. Table 3 shows the Characteristics of the Cooja simulator.
The final routing dataset provided in Table 4 includes upwards of 6893 instances with
46 characteristics.

Table 3. Characteristics of the Cooja simulator.

Node Info Graph

(1) Reboots, (2) Node, (3) Received, (4) Max Inter Packet Time (5)
Dups, (6) LPM Power, (7) Lost, (8) Hops, (9) Transmit Duty Cycle,
(10) Rtmetric, (11) ETX, (10) Churn, (12) Listen Power, (13) Beacon

Interval, (14) Transmit Power, (15) Avg inter-packet Time, (16)
Power, (17) CPU Power, (18) On-Time, (19) Listen Duty Cycle, (20)

Min Inter-Packet Time

Power-based Graph (1) Average Power, (2) Radio Duty Cycle, (3) Instantaneous Power,
(4) Power History

Network Graph

(1) Received (Per Node), (2) Latency, (3) Received (Over Time), (4)
Lost (Over Time), (5) Avg Routing Metrix (Over Time), (6) ETX
(Over Time), (7) Next Hop (Over Time), (8) Network Hops (Per

Node), (9) Routing Metric (Over Time), (10) Neighbors, (11)
Beacon Interval, (12) Network Hops (overtime)

Topological Graph (1) Serial Console, (2) Node Control, (3) Network Graph

Sensors Graph (1) Average Temperature, (2) Temperature, (3) Battery Voltage, (4)
Battery Indicator, (5) Relative Humidity, (6) Light 1, (7) Light 2

Table 4. Dataset collection of simulation in real-time.

Data Type Number of Received Samples

Without Attacks Data 2200

Hello Flood Attack, 130

Data-DoS/DDoS Attack 150

Wormhole Attack 130

RPL Rank Attack 120

Blackhole Attack 200

Version Attack 140

Sinkhole Attack 120

Nodes within the range of the malicious node experienced a significant increase in
energy consumption, with the percentage difference between energy consumed during
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the attack simulation and the reference simulation being approximately 2000%. Nodes in
close proximity to the malicious node can consume up to 20 times more energy. The attack
directly affects nodes within the range of the malicious node, and there is a correlation
between attacker–victim distance and power consumption. All power markers, except for
Low-Power Mode, showed significant increases with slight variations depending on the
distance of the node to the malicious node.

5.3. Experiment Discussion

An attack on the Routing Protocol for Low-Power and Lossy Networks (RPL) can
have a significant impact on the power usage of the nodes in the network. RPL is designed
for low-power and lossy networks, such as those found in Internet of Things (IoT) devices,
where nodes often have limited resources and rely on efficient communication to conserve
battery life. An attack on the RPL routing protocol can lead to nodes taking longer routes,
which can result in higher power consumption due to increased data transmission and
reception. Additionally, if the routing protocol is compromised, nodes may be forced to
repeatedly transmit data packets, which can further drain their batteries. This can lead to
reduced network lifetime, as nodes may run out of power and fail.

Furthermore, if a malicious node is introduced into the network, it may consume
more power than other nodes by participating in attacks, such as Selective Forwarding
and Blackhole Attacks. This can further exacerbate the power consumption issues and
reduce the overall network efficiency. Therefore, it is crucial to develop effective security
mechanisms to prevent attacks on the RPL routing protocol in order to ensure the longevity
and reliability of the network.

5.4. Model Results and Evaluation

Table 5 reveals the confusion matrix for a two-class classifier. The instances in a
predicted class are represented in each column of the matrix, while the occurrences in an
actual class are represented in each row.

Table 5. Confusion matrix for an anomaly detection system.

A
ct

ua
lC

la
ss Predicted Class

Normal Anomaly

Normal True Negative (TN) False Positive (FP)

Anomaly False Negative (FN) True Positive (TP)

This model will be evaluated based on the following standard performance measures.
True Positive Rate (TPR), also known as Detection Rate (DR) or Sensitivity, is deter-

mined by dividing the number of accurately identified attacks by the total number of
attacks. Achieving a TPR of 1, which means all intrusions are detected correctly, is highly
unlikely for an IDS. In summary, TPR is given by the following formula:

TPR =
TP

TP + FN

False Positive Rate (FPR) is computed by dividing the number of normal instances
identified as attacks by the total number of normal instances. Mathematically, FPR can be
expressed as follows:

FPR =
FP

FP + TN
When an anomaly is not detected by the system and is mistakenly classified as normal,

it is referred to as a false negative. The False Negative Rate (FNR) is calculated as follows:

FNR =
FN

FN + TP
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The Classification Rate (CR) or Accuracy of an IDS refers to the ability of the system to
correctly identify both normal and abnormal traffic behavior. It is computed by dividing
the total number of correctly classified instances based on the baseline behavior features by
the total number of instances, expressed as a percentage. In other words, the CR can be
defined mathematically as:

Accuracy =
TP + TN

TP + TN + FP + FN

The F-measure (FM) is an evaluation metric that provides a single accuracy measure
for a given threshold by calculating the harmonic mean of the Precision and Recall at that
threshold. It is particularly useful when only one accuracy metric is needed to evaluate the
performance of the system.

F−measure =
2 ∗ Recall ∗ Precision

Recall + Precision

Table 6 displays the confusion matrix for a two-category classifier. The matrix is
arranged such that the rows represent the instances that belong to each actual class, while
the columns represent the examples that belong to each predicted class.

Table 6. Confusion matrix for different classification algorithms.

Classification Algorithm C4.5 Multilayer Perceptron SVM Naïve Bayes

classified as a b a b a b a b

a = normal 1031 69 1067 33 1100 0 1100 0

b = anomaly 86 1114 251 949 416 784 401 799

To evaluate the performance of the system in this study, the dataset was divided into
“k” distinct parts using the k-fold cross-validation method. In each cycle of this process, one
fold was selected randomly for testing, while the other (k-1) folds were used for training.
To achieve low bias, low variance, low overfitting, and accurate error estimation, k was
set to 10 for each experiment. The dataset was partitioned into ten distinct folds, each
representing the entire dataset. The learning process was executed ten times on different
training sets, and the resulting error rates were averaged to obtain an estimate of the overall
error. The accuracy measures used to evaluate the performance of the classifiers and the
confusion matrix, which present examples that belong to a predicted class and the instances
that belong to an actual class, are displayed in Table 7, including TP, FP, FN, and TN.

Table 7. Accuracy in detection using different algorithms.

C4.5 Multilayer Perceptron SVM Naïve Bayes

TP Rate 0.933 0.877 0.819 0.826

FP Rate 0.067 0.116 0.166 0.160

Accuracy 93.26% 87.65% 81.91% 82.56%

5.4.1. Stage One: SIDS Results

The proposed technique’s performance is evaluated using the confusion matrix, with
the results for the C4.5 classifier in the first stage shown in Table 7. Table 7 also details the
accuracy of each of the classifiers, revealing that the C4.5 classifiers performed significantly
better than the rest of the classifiers used in the study. The C4.5 classifier has the highest
accuracy, with a score of 93.2609%, followed by Multilayer Perceptron, Naive Bayes, and
SVM, in that order.
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Table 8 provides a detailed analysis of the accuracy of the C4.5 decision tree classi-
fication. The table breaks down the accuracy of the C4.5 decision tree into more specific
categories, which enables a more thorough evaluation of the model’s performance.

Table 8. Detailed accuracy of the C4.5 classifier.

TP Rate FP Rate F-Measure Class

0.937 0.072 0.93 Normal

0.928 0.063 0.935 Attack

0.933 0.067 0.933 Avg.

5.4.2. Stage Two: AIDS Results

The One-class SVM with RBF kernel was implemented through the use of LIBSVM,
and the results obtained have been presented in the form of a confusion matrix for stage
two, which, as can be seen in Tables 9 and 10, provides accuracy measures of SVM.

Table 9. Confusion matrix for one-class SVM.

Classification Algorithm One Class SVM

classified as a b

a = normal 1100 0

b = anomaly 416 784

Table 10. Detailed accuracy of SVM.

TP Rate FP Rate F-Measure Class

1 0.347 0.841 Normal

0.653 0 0.79 Attack

0.819 0.166 0.815 Avg

5.4.3. Stage Three: The Combination of the Two Stages

The proposed hybrid IDS approach employs a combination of the C4.5 classifier in
the first stage and one-class SVM in the second stage. A stacking ensemble method is used
to integrate the results of the two stages. Table 11 displays the confusion matrices for the
combined classifiers in stage three. The accuracy of stage three is detailed in Table 12.

Table 11. Confusion matrix using HIDS.

Classification Algorithm HIDS

classified as a b

a = normal 1953 199

b = anomaly 142 9556

Table 12. Detailed accuracy of HIDS.

TP Rate FP Rate F-Measure Class

0.908 0.015 0.92 Normal

0.985 0.092 0.982 Attack

0.971 0.078 0.971 Avg
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According to Figure 6, the malware detection accuracy with the IoT intrusion dataset
was 93.26% in stage one and 81.91% in stage two. However, in stage three, the accuracy
improved to 97.1%. Therefore, the proposed framework provides a higher detection
accuracy and a lower false alarm rate compared to using only a single stage of detection.
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6. Conclusions

In conclusion, routing attacks pose a significant threat to the security and reliability
of 6LoWPAN-based IoT networks. Various types of routing attacks, such as Blackhole,
Selective Forwarding, and Sybil Attacks, can compromise the network’s integrity and
disrupt communication between the nodes. An attack on the Routing Protocol for Low-
Power and Lossy Networks (RPL) can have a significant impact on the power usage of the
nodes in the network. The RPL protocol is designed to ensure efficient communication to
conserve the battery life of these resource-constrained nodes. If the RPL routing protocol
is attacked, nodes may take longer routes, resulting in increased power consumption
due to greater data transmission and reception. Additionally, nodes may be forced to
re-transmit data packets, which can further deplete their batteries. This can ultimately lead
to a reduction in the network lifetime as nodes run out of power and fail. In addition, the
presence of a harmful node in the network can lead to increased power consumption due to
its involvement in various attacks, including Selective Forwarding and Blackhole Attacks.
As a result, the overall network efficiency may decrease, and power consumption issues
may become more severe.

Therefore, it is crucial to develop effective defense mechanisms to detect and prevent
routing attacks in IoT networks. This article has introduced a new Intrusion Detection
System (IDS) for IoT infrastructure that utilizes a feature set specifically designed to detect
various types of routing attacks. The proposed system is based on a hybrid IDS approach
that combines two stages of detection using a stacking ensemble method, resulting in
improved detection accuracy. The experimental results demonstrate that the hybrid IDS,
which uses an ensemble of C4.5 and one-class SVM in two cascaded stages, outperforms
other individual techniques and approaches reported in previous studies in terms of
accuracy and false alarm rate. This implies that the proposed technique can be valuable for
use in designing modern IDSs. Future work will involve extending the proposed IDS to
detect other types of attacks against IoT systems.

Author Contributions: Conceptualization, A.A. and A.K.; methodology, A.K.; software, S.S.; valida-
tion, A.A., A.K. and S.S.; formal analysis, A.A.; investigation, A.K.; resources, A.A.; data curation,
A.K. writing—original draft preparation, A.A.; writing—review and editing, O.A.M.; visualization,
S.S.; supervision, A.A.; project administration, S.B.; funding acquisition, A.A. All authors have read
and agreed to the published version of the manuscript.



Electronics 2023, 12, 1320 18 of 19

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alfandi, O.; Khanji, S.; Ahmad, L.; Khattak, A. A survey on boosting IoT security and privacy through blockchain. Clust. Comput.

2021, 24, 37–55. [CrossRef]
2. Mubashar, R.; Siddique, M.A.B.; Rehman, A.U.; Asad, A.; Rasool, A. Comparative performance analysis of short-range wireless

protocols for wireless personal area network. Iran J. Comput. Sci. 2021, 4, 201–210. [CrossRef]
3. Raoof, A.; Matrawy, A.; Lung, C.-H. Routing attacks and mitigation methods for RPL-based Internet of Things. IEEE Commun.

Surv. Tutor. 2018, 21, 1582–1606. [CrossRef]
4. Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy,

validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 18. [CrossRef]
5. Saaidah, A.; Almomani, O.; Al-Qaisi, L.; Alsharman, N.; Alzyoud, F. A comprehensive survey on node metrics of RPL protocol

for IoT. Mod. Appl. Sci. 2019, 13, 1. [CrossRef]
6. ur Rehman, S.; Khaliq, M.; Imtiaz, S.I.; Rasool, A.; Shafiq, M.; Javed, A.R.; Jalil, Z.; Bashir, A.K. Diddos: An approach for detection

and identification of distributed denial of service (ddos) cyberattacks using gated recurrent units (gru). Future Gener. Comput.
Syst. 2021, 118, 453–466. [CrossRef]

7. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A Novel Ensemble of Hybrid Intrusion Detection System for
Detecting Internet of Things Attacks. Electronics 2019, 8, 1210. [CrossRef]

8. Rana, A.K.; Sharma, S. Contiki Cooja Security Solution (CCSS) with IPv6 routing protocol for low-power and lossy networks
(RPL) in Internet of Things applications. In Mobile Radio Communications and 5G Networks: Proceedings of MRCN 2020; Springer:
Singapore, 2021; pp. 251–259.

9. Ioannou, C.; Vassiliou, V. Accurate Detection of Sinkhole Attacks in IoT Networks Using Local Agents. In Proceedings of the 2020
Mediterranean Communication and Computer Networking Conference (MedComNet), Arona, Italy, 17–19 June 2020; pp. 1–8.

10. Liu, Y.; Ma, M.; Liu, X.; Xiong, N.N.; Liu, A.; Zhu, Y. Design and analysis of probing route to defense sink-hole attacks for Internet
of Things security. IEEE Trans. Netw. Sci. Eng. 2018, 7, 356–372. [CrossRef]

11. Murali, S.; Jamalipour, A. A lightweight intrusion detection for sybil attack under mobile RPL in the internet of things. IEEE
Internet Things J. 2019, 7, 379–388. [CrossRef]

12. Sivaganesan, D. A data driven trust mechanism based on blockchain in IoT sensor networks for detection and mitigation of
attacks. J. Trends Comput. Sci. Smart Technol. 2021, 3, 59–69.

13. Anand, A.; Patel, B. An overview on intrusion detection system and types of attacks it can detect considering different protocols.
Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2012, 2, 94–98.
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