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Abstract: Power factor correction (PFC) can be achieved by a single-ended primary inductor converter
(SEPIC) operating in boundary conduction mode (BCM) with conventional constant on-time (COT)
control, but it is challenging to achieve low total harmonic distortion (THD) and high-power factor
(PF), particularly at high input voltage. A variable on-time (VOT) control strategy for BCM SEPIC
PFC converter without input voltage feedforward and multiplier circuits is proposed to realize unity
PF in this paper. By using a variable slope sawtooth generator whose slope is controlled by the duty
cycle of the main switch to adjust the conduction time of the main power switch of the converter, the
proposed VOT control scheme can use a simple and easy-to-implement circuit to enhance the PF and
decrease the THD significantly, especially at high input voltage. The simulation model and 100W
experimental prototype are built to verify the feasibility of the suggested control method. Simulation
and experiment results demonstrated that the novel VOT control scheme remarkably enhances PF
and decreases THD without affecting the efficiency by contrast with the conventional COT control.

Keywords: boundary conduction mode; SEPIC converter; power factor correction; variable on-time
control; variable slope sawtooth generator

1. Introduction

In recent years, the demands for power supplies with power factor correction (PFC)
converters have increased to realize low input current harmonic and high-power factor (PF)
to conform to the necessary harmonic limits standards, e.g., IEEE STD 519 and IEC61000-
3-2 [1–5]. To realize PFC, many different PFC circuit topologies, including Buck, Boost,
Cuk, Buck-Boost etc., have been researched to satisfy different application condition re-
quirements [6–12]. The input current ripple of the Boost converter is small because of the
series connection of the inductor at the input side, so the Boost converter can realize high
PF and has been widely used [8–10]. However, Boost PFC topology cannot achieve the
output voltage, which is lower than the magnitude value of AC input voltage. It is hard to
handle high input inrush current and short output protection during starting up. To meet
applications where the output voltage is lower than the input voltage Buck PFC converter
is researched in [6,7], it is easy to achieve short output protection, but it is hard to realize
high PF because there is a large input current dead time when the output voltage is higher
than the instantaneous input voltage of each AC line period. To achieve a voltage between
the maximum and minimum input voltage range, Buck-Boost and Cuk PFC converters
are investigated in [11–14], but applications of Buck-Boost and Cuk PFC are limited since
the output voltage is negative. Similar to the Boost converter, the current ripple at the
input terminal of a single-ended primary inductor converter (SEPIC) is small because the
converter has an inductor connected in series at the input terminal, so the SEPIC converter
is suitable to achieve PFC [15,16]. Compared to Boost, Buck, Buck-boost, and Cuk PFC
converters, SEPIC PFC converter can easily achieve positive polarity output voltage, short
output protection, more comprehensive output voltage range [16–18]. Therefore, SEPIC
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PFC converter has gained more and more applications such as light emitting diode driving
circuits, onboard chargers for plug-in electric vehicles, brushless DC motor drives, air-craft
power supplies etc. [19–31].

According to whether the freewheeling diode is always conducting during the power
switch of the SEPIC converter is turned off in a switching cycle, SEPIC topology can
operate in discontinuous conduction mode (DCM), boundary conduction mode (BCM)
and continuous conduction mode (CCM) [24–28]. For CCM operation mode, the SEPIC
PFC converter usually requires an outer voltage control loop and an inner current control
loop to control the shape of the input current and pre-regulate the output voltage. Fur-
thermore, the additional multiplier is usually required to handle rectified input voltage
sensing signal and error signal of output voltage, which increases the complexity of the
control circuit [16,17,25,26]. On the other hand, the SEPIC PFC converter operating in DCM
can achieve PFC using a simple voltage follower with one voltage control loop [27–32].
However, the efficiency is poor due to the large RMS current and peak current of the power
switch and diode, which limits its application in higher output power. Compared with
DCM, the SEPIC PFC converter operating in BCM can use a single voltage control loop to
achieve PFC. However, it has higher efficiency, especially for higher output power applica-
tions [23,24]. Therefore, SEPIC PFC converters operating in BCM have been increasingly
widely used.

It is well known that a Boost PFC converter operating at BCM with constant on-time
(COT) control can obtain perfect sine-wave input current and unity PF. Therefore, many
researchers use COT control as the control strategy for SEPIC PFC converters operating in
BCM [20,24,33]. As shown in the test data of [20], PF is 0.97 with 200 V forward voltage and
350 mA rated current LED load at 220 Vac input voltage; as shown in the test data of [24],
PF is 0.91 with 1.4 A rated output current and 60 W output power LED load at 230 Vac input
voltage; as shown in the test data of [33], with 264 Vac input voltage and 210 W output
power, PF and total harmonic distortion (THD) are 0.924 and 18.1% respectively. Therefore,
from experimental data and waveforms in [20,24,33], the BCM SEPIC PFC converter with
COT control scheme results in a slightly distorted input current, low PF, and high THD,
especially with high input voltage. To achieve unity PF and reduce the THD of the PFC
converter with the COT control method, a variable on-time (VOT) control method has been
proposed for BCM Flyback or Buck PFC converter [6,34–36].

Moreover, a VOT control method for SEPIC PFC converter operating in BCM is
proposed to achieve unity [37]. The method uses output and input voltage to calculate and
adjust the on-time of the power switch. From experimental results in [37], the PF maintains
to be bigger than 0.995 with 100 W output power at 90~265 Vac entire input voltage. With
these VOT control strategies mentioned in [6,34–37], the PF and input current harmonic
are ameliorated. Still, the extra multiplier, input voltage feedforward, and operational
amplifier circuits make the control circuit complicated and expensive.

This paper proposes a novel VOT control strategy for SEPIC PFC converter operating
in BCM without input voltage feedforward and multiplier circuits to realize unity PF. By
using a variable slope sawtooth generator whose slope is controlled by the main power
switch’s duty cycle to adjust the main power switch’s on-time, the proposed control scheme
can use a simple and easy-to-implement circuit to achieve unity PF at the entire input
voltage range. The operation principles and performance comparison of VOT and COT
control schemes for SEPIC PFC converter operating in BCM are investigated and developed.
Finally, the simulation and test results based on the 100 W prototype are presented to
validate the feasibility of the proposed VOT control and the correctness of the performance
comparison analysis.

This paper consists of 6 sections as follows. Section 2 analyses the SEPIC PFC converter
operating in BCM with a traditional COT control scheme. In Section 3, a variable-on-time
control scheme with a variable slope sawtooth generator for SEPIC PFC converter operating
BCM is proposed and analyzed. Utilizing the proposed control scheme, the performance
of PF and THD can be improved. Section 4 analyses performance comparisons of the two
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control schemes’ input current, power factor, output voltage ripple, switching frequency,
and current stress. In Sections 5 and 6, experimental verification results and a conclusion
are given, respectively.

2. Boundary Conduction Mode SEPIC Power Factor Correction Converter with
Constant-On-Time Control

Figure 1a presents the circuit diagram of SEPIC DC-DC converter topology, which is
consisted of input capacitor Cin, inductors L1 and L2, main switch S1, freewheeling diode
D1, middle capacitor C1, output capacitor C2 [38,39]. When the SEPIC converter operates
at BCM mode, the SEPIC converter has two operation modes. Equivalent circuits of two
operation modes and operation waveforms of the circuit are presented in Figure 1b–d.
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Figure 1. The circuit diagram, equivalent circuits, and key waveforms of BCM SEPIC DC-DC
converter. (a) Circuit diagram of SEPIC DC-DC converter topology; (b) Equivalent circuit when S1 is
on; (c) Equivalent circuit when S1 is off; (d) Key waveforms during a switching cycle.

Operation mode A: The main power switch S1 is switched on at the start of each
switching cycle, diode D1 is reverse-biased, SEPIC converter works at operation mode A
when S1 is on. Figure 1b,d shows the equivalent circuit and key waveforms for mode A.
In operation mode A, the voltage of vS1 is zero because S1 is on; Cin, L1, and S1 form a
current loop, the input voltage Vin applies to inductor L1, the inductor current iL1 ramps
up with the slope of Vin/L1 from the initial value iL1_0; C1, S1, and L2 form a current loop,
the middle capacitor voltage vB applies to inductor L2, the inductor current iL2 ramps up
with the slope of vB/L2 from the initial value iL2_0; Output capacitor C2 and output load RL
form a current loop, output capacitor C2 provides energy to load resistor; Both inductor
currents of L1 and L2 flow through switch S1, the currents flowing through S1 ramp up
from zero [38,39].

Operation mode B: When the turn-on time reaches the target value, S1 is turned off,
operation mode A ends, and the converter enters operation mode B Figure 1c,d show the
equivalent circuit and key waveforms for mode B. In operation mode B, S1 is turned off,
and D1 is forward-biased, which makes both inductors L1 and L2 release energy to the
middle capacitor C1 and output load through diode D1. In operation mode B, the voltage
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of vS1 is Vin + VO because D1 is forward-biased and vB is equal to Vin; Cin, L1, C1, D1, C2,
and RL form a current loop, the output voltage VO applies to inductor L1, the inductor
current iL1 decreases with the slope of VO/L1 from the peak value; L2, D1, C2, and RL
form a current loop, the output voltage VO applies to inductor L2, the inductor current iL2
decreases with the slope of VO/L2 from the peak value; Both inductor currents of L1 and L2
flow through diode D1, when the current iD1 decreases to zero, S1 is turned on, the next
switching cycle is started again [38,39].

The block diagram of the SEPIC PFC converter operating in BCM with the conventional
COT control is presented in Figure 2a. It consists of rectifier bridge DRec, inductors L1 and
L2, main switch S1, freewheeling diode D1, middle capacitor C1, output capacitor C2, error
amplifier EA, comparator CMP, sawtooth generator, zero current detection, SR flip-flop etc.
In addition, Lf and Cf are used as low-pass input filters.
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Figure 2. Block diagram and main waveforms of SEPIC PFC converter operating in BCM with the
traditional COT control scheme. (a) Block diagram; (b) Key waveforms during half AC line period.

Figure 2b presents the operation waveforms of the SEPIC PFC circuit working in BCM
with traditional COT control during half AC line period. At the start of each switching
cycle, S1 is turned on; when the voltage vSaw of the sawtooth generator at the positive input
terminal of comparator CMP increases to Vcomp, S1 is turned off. According to Figure 2b,
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the output voltage Vcomp of the error amplifier maintains constant in half the AC line
period because the bandwidth of the control loop is usually much lower than the AC line
frequency for the PFC converter [34,35]. Furthermore, since the slope of the sawtooth
generator of COT control is fixed, the on-time of S1 is almost fixed when the converter
operates in a steady state with a stable input voltage and output load.

By analyzing the operation principle, the inductor current peak-to-peak ripple of L1
and L2 of SEPIC PFC converter operating in BCM can be given by

∆iL1(t) =
VM|sin(ωt)|Ton

L1
(1)

∆iL2(t) =
vB(t)Ton

L2
(2)

where VM and vB(t) is the amplitude of input voltage and the voltage of the middle capacitor
C1 respectively, Ton is the on-time of S1. In the derivation of the following equation, iL1_0(t)
and iL2_0(t) are the initial values of L1 and L2 currents for each switching cycle, respectively,
iL1_avg(t) and iL2_avg(t) are the average values of the current flowing through L1 and L2.

During the steady operation, the average voltage of middle capacitor C1 in one switch-
ing cycle is equal to the rectified input voltage [33], so there is.

vB(t) = VM|sin(ωt)| (3)

Because the rectified input current is equal to the average current of the inductor L1,
the input current iin(t) can be expressed as follows.

|iin(t)| = iL1_avg(t) = iL1_0(t) +
∆iL1(t)

2
(4)

The SEPIC converter operates in BCM. Once the current of D1 decreases to zero, S1 is
turned on, and the initial current of main switch S1 should be zero, so there is.

iL1_0(t) + iL2_0(t) = 0 (5)

The charge balance of the middle capacitor C1 in a switching period can be expressed as(
∆iL1(t)

2
+ iL1_0(t)

)
Td(t) =

(
∆iL2(t)

2
+ iL2_0(t)

)
Ton (6)

where Td(t) is the time that diode D1 is forward biased, and Td(t) can be obtained as

Td(t) =
VM|sin(ωt)|Ton

VO
(7)

According to (1), (2), (3), (5), (6), and (7), iL1_0(t) can be expressed as

iL1_0(t) =
TonVM|sin(ωt)|

2(VO + VM|sin(ωt)|)

(
VO

L2
− VM|sin(ωt)|

L1

)
(8)

From (1), (4), and (8), the input current iin(t) can be obtained as

iin(t) =
TonVM sin(ωt)

2(1 + K1|sin(ωt)|)

(
1
L1

+
1
L2

)
(9)

where K1 = VM/VO.
Equation (9) shows that the input current is not an ideal sine-waveform. Therefore,

with the traditional COT control, unity PF cannot be achieved except with extreme condition
K1 = 0.
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3. Variable-On-Time Control Scheme

Observing Equation (9), the denominator of the equation contains (1 + K1sin(ωt)),
which prevents the input current from being sinusoidal. Based on (9), suppose Ton can be
controlled to be proportional to (1 + K1sin(ωt)), the unity PF may be achieved. Figure 3
illustrates a detailed block diagram for the developed procedure from COT control to VOT
control, which can explain how the VOT control with variable slope sawtooth generator
is proposed.
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By analyzing (9) and Figure 3, to realize sinusoidal input current, the on time of S1 is
supposed as

Ton(t) = KTon(1 + K1|sin(ωt)|) (10)

where KTon is a constant parameter about turning on the time control circuit. Combining
(9) and (10), the input current can be written as

iin(t) =
KTonVM sin(ωt)

2

(
1
L1

+
1
L2

)
(11)

Observing (11), it can be seen that the ideal sinusoidal input current can be achieved if
the on-time of S1 can be varied, as in equation (10).

Combing definition of K1 and SEPIC converter operation theory [38,39], Equation (10)
can be written as

Ton(t) = KTon

(
VO + VM|sin(ωt)|

VO

)
=

KTon

D(t)
(12)

D(t) is the duty cycle of S1. Based on Equation (12) and the turn-on time circuit of COT
control, it is conceivable to use a variable slope sawtooth generator to produce variable
turn-on time, as shown in Figure 3. The variable slope sawtooth generator consists of a
charging current iCHG, a voltage-controlled current source (VCCS), a timing capacitor CT, a
reference voltage source V1, a low pass RC filter comprised of R3 and C3, and three signal
switches S2~S4 etc.

Therefore, using a variable slope sawtooth generator to produce variable turn-on time,
a novel VOT control scheme for SEPIC PFC converter operating in BCM, which can get
unity PF, is proposed. Figure 4 illustrates the block diagram and key operation waveforms
of the SEPIC PFC converter operating in BCM with VOT control. Compared to the COT
control strategy shown in Figure 2a, only an additional variable slope sawtooth generator,
shown in the blue dashed line of Figure 4a, is required in the VOT control strategy.
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Figure 4. Block diagram and main waveforms of BCM SEPIC PFC converter with VOT control.
(a) Block diagram; (b) Key waveforms during half line cycle.

According to the circuit of the variable slope sawtooth generator in Figure 4a, the
signal switch S4 is controlled by gate drive signal Q of S1, and the signal switch S2 and
S3 are controlled by the inverting drive signal Q. Hence, the turn-on time of the signal
switches S4 and S3 are Ton(t) and Ts(t)-Ton(t) respectively. The low pass RC filter comprised
of R3 and C3 filters out the switching frequency so that the control voltage vC3 of the VCCS
remains stable during a switching period. Therefore, the charging current iCHG(t) of the
sawtooth generator can be expressed by

iCHG(t) = g1vC3(t) =
g1V1Ton(t)

TS(t)
= g1V1D(t) (13)

where g1 is the control ratio of the VCCS iCHG, Ton(t), TS(t), and D(t) are the turn-on time,
the switching period, and the duty cycle of S1 respectively. According to Equation (13) and
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Figure 4, the slope of the sawtooth generator in the proposed converter is variable with
D(t) of S1. Therefore, the turn-on time of switch S1 can be expressed as

Ton(t) =
VcompCT

iCHG(t)
=

VcompCT

g1V1D(t)
(14)

Since the SEPIC PFC converter operates in BCM, there are

TS(t) = Ton(t) + Td(t) (15)

D(t) =
Ton(t)
TS(t)

(16)

According to (1), (2), (3), (5), (6), (7), (15), and (16), the initial inductor current iL1_0(t)
of L1 for the proposed VOT control scheme can be obtained as

iL1_0(t) =
D(t)VM|sin(ωt)|Ton(t)

2

(
1
L2
− 1

L1

VM|sin(ωt)|
VO

)
(17)

From (1), (4), (17), the input current iin(t) with VOT control can be derived as

iin(t) =
VM sin(ωt)Ton(t)D(t)

2

(
1
L1

+
1
L2

)
(18)

By substituting (14) into (18), the input current iin(t) with VOT control can be ob-
tained as

iin(t) =
VcompCTVM sin(ωt)

2g1V1

(
1
L1

+
1
L2

)
(19)

During operating at a steady state, the error signal Vcomp keeps almost constant during
half line period because of the quite narrow control loop bandwidth. For a given converter,
the timing capacitor CT of the sawtooth generator and the control ratio g1 of the VCCS iCHG
are constant. Therefore, define KTon in (11) as

KTon =
VcompCT

g1V1
(20)

According to (11), (19), and (20), Equations (11) and (19) are the same. Therefore,
the input current with VOT control is an ideal sine-waveform. Hence the proposed VOT
control scheme can achieve the theoretical unity PF of the SEPIC PFC converter operating
in BCM.

4. Performance Comparison
4.1. Comparison of Input Current and Power Factor

According to (1), (2), and Figure 2, the peak current through D1 of COT control can be
given as

iD1 _PK_COT(t) = ∆iL1_COT(t) + ∆iL2_COT(t) = VM|sin(ωt)|Ton_COT(
1
L1

+
1
L2

) (21)

where Ton_COT is the turn-on time of S1 with COT control.
The average current flowing through D1 during each switching period with COT

control can be derived as

iD1_AVG_COT(t) =
iD1_PK_COT(t)Td_COT(t)

2TS_COT(t)
(22)
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where Td_COT(t) and TS_COT(t) is the forward bias time of diode D1 and the switching
period of COT control.

As the average current of diode D1 is equal to the output current IO in half line cycle,
the output current IO with traditional COT control can be given as

IO =
1
π

∫ π

0
iD1_AVG_COT(t)d(ωt) =

K2VM
2Ton_COT

2πVO
(

1
L1

+
1
L2

) (23)

where

K2 =
∫ π

0

sin2(ωt)
(1 + K1|sin(ωt)|)d(ωt) (24)

From (9) and (23), the input current of COT control can be obtained as

iin_COT(t) =
πVO IO sin(ωt)

K2VM(1 + K1|sin(ωt)|) (25)

In the same way, the input current of VOT control can be derived as

iin_VOT(t) =
2VO IO sin(ωt)

VM
(26)

To conveniently compare the input currents of both control schemes, the normalized
input currents with the base of (2VOIO)/VM can be expressed as

i∗in_COT(t) =
π sin(ωt)

2K2(1 + K1|sin(ωt)|) (27)

i∗in_VOT(t) = sin(ωt) (28)

According to (27) and (28), Figure 5 shows both control schemes’ normalized input
currents waveform with different K1 in half-line cycles. Observing Figure 5, the input
current of the VOT control scheme is in shape with sinusoidal, but the input current
waveform of COT control deviates from sinusoid, especially when K1 is large.
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According to (25), the PF of COT control can be derived as

PFCOT =

√
2Pin_COT

VM Iin_RMS_COT
=

√
2

π∫
0

sin2(ωt)
1+K1|sin(ωt)|d(ωt)

√
π

√
π∫
0

(
sin(ωt)

(1+K1|sin(ωt)|)

)2
dt

(29)
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According to (26), (29), and the circuit parameters listed in Table 1 of Section 5, the
comparison of the PF of COT and VOT control schemes with the variation of input voltage
can be depicted in Figure 6. Therefore, it can be known that compared with COT control,
the SEPIC PFC converter operating BCM with the proposed VOT control scheme based on
variable slope sawtooth generator can improve the PF and realize theoretical unity PF.
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4.2. Comparison of Output Voltage Ripple

The instantaneous power imbalance between the output and input of the PFC con-
verter leads to a double-line frequency ripple of output voltage [34]. By analyzing the
circuit of Figure 2, the double line frequency output voltage ripple is produced by the
second-order harmonic current of iD1 flowing into output capacitor C2.

According to the Fourier series formula, the second-order harmonic current’s magni-
tude of D1 with COT control, I2nd

D1_COT, can be derived as

I2nd
D1_COT =

∣∣ 2
π

∫ π
0 iD1_AVG_COT(t) cos(2ωt)d(ωt)

∣∣
=

VM
2Ton_COT
πVO

( 1
L1

+ 1
L2
)
∣∣∣∫ π

0
sin2(ωt) cos(2ωt)
(1+K1|sin(ωt)|) d(ωt)

∣∣∣
= K3 IO

(30)

where

K3 =

∣∣∣∣∣∣
2
∫ π

0
sin2(ωt)

(1+K1|sin(ωt)|) cos(2ωt)d(ωt)∫ π
0

sin2(ωt)
(1+K1|sin(ωt)|)d(ωt)

∣∣∣∣∣∣ (31)

According to (23), (24), and (30), the output voltage ripple of COT can be derived as

∆VO_COT =
I2nd
D1_COT

2π fLC2
=

K3 IO

2π fLC2
(32)

In the same way, the output voltage ripple of VOT can be presented as

∆VO_VOT =
IO

2π fLC2
(33)

According to (32), (33), and the key parameters listed in Table 1 of Section 5, the
output voltage ripple of both control schemes with different input voltage can be plotted in
Figure 7. It can be known that compared with COT control, the output voltage ripple with
the VOT control scheme is slightly larger.
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4.3. Comparison of Switching Frequency

From (23), the turn-on time of S1 with COT control can be given as

Ton_COT =
2π IOVO

K2VM
2( 1

L1
+ 1

L2
)

(34)

From (7) and (15), the switching frequency of COT can be derived as

fS_COT(t) =
K2VM

2

2πVO IO(1 + K1|sin(ωt)|) (
1
L1

+
1
L2

) (35)

In the same way, the turn-on time, and the switching frequency of S1 of VOT control
can be given respectively as

Ton_VOT(t) =
4VO IO(1 + K1|sin(ωt)|)

VM
2( 1

L1
+ 1

L2
)

(36)

fS_VOT(t) =
VM

2

4VO IO(1 + K1|sin(ωt)|)2 (
1
L1

+
1
L2

) (37)

As the peak currents of the inductors L1 and L2 occur at ωt = π/2, it is important to
analyze the switching frequencies of both control schemes at ωt = π/2 during designing
both inductors L1 and L2. According to (35), (37), and the parameters listed in Table 1 of
Section 5, the switching frequency of COT and VOT control at ωt = π/2 with the variation
of RMS input voltage can be obtained in Figure 8.
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From (35) and (37), with the base of VM
2

4VO IO
( 1

L1
+ 1

L2
), the normalized switching frequen-

cies with both control schemes are derived as

f ∗s_COT(t) =
2K2

π(1 + K1|sin(ωt)|) (38)

f ∗s_VOT(t) =
1

(1 + K1|sin(ωt)|)2 (39)

From (38) and (39), the normalized switching frequency variations curves with COT
and VOT control schemes during half AC line period can be plotted in Figure 9.
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Figure 9. Comparison of the normalized switching frequency curves with COT and VOT control
schemes during half AC line period.

Figure 8 shows that the switching frequency of both control schemes increases with the
increase of the RMS value of input voltage at ωt = π/2. According to Figures 8 and 9, with
the same RMS input voltage, the switching frequency of VOT is lower than that of COT
control when the transient input voltage is near the peak value, i.e., when ωt is π/2; the
switching frequency of VOT is greater than that of COT when the transient input voltage is
near the zero crossing. This is because the range of the VOT control’s switching frequency
variation is wider than that of the COT control. Hence, compared with COT control, the
cut-off frequency of the input low-pass filter of VOT control is lower. Moreover, to avoid
extremely high switching frequency, both BCM SEPIC PFC converters with COT and VOT
control schemes should limit the main power switch’s maximum switching frequency or
minimum turning-off time.

4.4. Comparison of Peak Current of Main Switch

From the operation principle of SEPIC PFC converter operating in BCM, the peak
currents of main switch S1 and freewheeling diode D1 are the same, so only the peak
current of S1 is analyzed in this section.

According to (1), (2), (5), (34), and (36), the peak currents flowing through main switch
S1 with COT and VOT control can be obtained as

iS1_PK_COT(t) =
2π IOVO|sin(ωt)|

K2VM
(40)

iS1_PK_VOT(t) =
4IOVO|sin(ωt)|(1 + K1 sin(ωt))

VM
(41)
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For the PFC converter, the peak current flowing through the main power switch
S1 reaches a maximum when ωt is π/2. Therefore, according to (40), (41), and the key
parameters listed in Table 1 of Section 5, the comparison of maximum peak currents flowing
through S1 with both control schemes under different RMS input voltage can be depicted
in Figure 10.
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Figure 10. Comparison of the maximum peak current of S1 under different RMS input voltage.

According to (40) and (41), with the base of (4IOVO)/VM, the peak current of main
switch S1 with COT and VOT control is normalized as

i∗S1_PK_COT(t) =
π|sin(ωt)|

2K2
(42)

i∗S1_PK_VOT(t) = |sin(ωt)|(1 + K1|sin(ωt)|) (43)

According to (24), (42), and (43), the normalized peak current curve of S1 of COT and
VOT control during half AC line period is depicted in Figure 11. It is indicated that for the
same RMS input voltage, compared with COT control, the peak current flowing through S1
of VOT control is higher when the transient input voltage is close to the peak value, the
peak current flowing through S1 of VOT control is smaller when the transient input voltage
is near zero crossing.
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Figure 11. Comparison of the normalized peak current curves of S1 with COT and VOT control
during half line cycle.
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4.5. Comparison of RMS Current of Main Switch

According to (1), (2), (5), (7), and (34)–(37), the RMS current of S1 with COT and VOT
control can be obtained as

IS1_RMS_COT =

√√√√√√√ 1
π

π∫
0

Ton_COT∫
0

(VM|sin(ωt)|( 1
L1

+ 1
L2
)u)

2
du

TS_COT(t)
dωt =

2IOVO

VM

√
π

3K2
(44)

IS1_RMS_VOT =
4VO IO

VM

√√√√√ π∫
0
(1 + K1|sin(ωt)|) sin2(ωt) dωt

3π
(45)

From (44), (45), and the key parameters listed in Table 1 of Section 5, the comparison
of RMS currents of the main power switch with COT and VOT control under different
RMS input voltages is given in Figure 12. Figure 12 shows that the RMS currents flowing
through the main power switch with both control schemes are almost the same.
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Figure 12. RMS currents of the main switch with VOT and COT control under different RMS
input voltage.

As mentioned above, when the instantaneous input voltage approaches the magnitude,
the peak current flowing through S1 of COT control is smaller than that of VOT control,
but the switching frequency of COT control is higher than that of VOT control; when the
instantaneous input voltage approaches zero crossing point, the switching frequency of
VOT control is higher than that of COT control, but the peak current of S1 of VOT control is
smaller than that of COT control. Moreover, the RMS current of S1 of both control schemes
is almost the same. Consequently, the power loss, including conduction loss and switching
loss of the main power switch of both COT and VOT control, should be almost the same,
and the efficiency of both control schemes should be almost the same.

5. Analysis of Simulation and Experimental Results
5.1. Analysis of Simulation Results

With the use of PSIM software, a simulation environment for power conversion and
motor control, a computer simulation model shown in Figure 13 is designed to evaluate
whether the VOT control of the SEPIC PFC converter operating at BCM is feasible. The
specification and key circuit parameters are shown in Table 1. The differential probes are
put at the AC input voltage terminal, and the output load terminal and the current probe
are put in a series of AC input sources. After the RUN simulation model with PSIM, as
shown in Figure 13, the simulation waveforms of input voltage, input current, and output
voltage can be presented in Simview’s waveform windows of PSIM.
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Table 1. Key Circuit Parameters.

Key Parameters VOT and COT

AC Input Voltage Range Vin_RMS 90–265 V
Output Voltage VO 100 V
Line Frequency f L 50 Hz

Rated Output Current IO 1 A
Output Filter Capacitor CO 680 µF

Middle capacitor C1 1 µF
Inductor L1 800 µH
Inductor L2 300 µH

Main switch S1 FCPF190N60
Freewheeling diode D1 RHRP1560

Figure 14 gives the simulation waveforms of output voltage, input voltage, and input
current at rated load current with 110 Vac and 220 Vac input voltage. As the simulation
data indicates, the PF of COT with 110 Vac and 220 Vac is 0.991 and 0.977, respectively,
while the PF of VOT with 110 Vac and 220 Vac is 0.999 and 0.995. The THD of COT when
operating at 110 Vac and 220 Vac is 13.5% and 19.5%, respectively, while the THD of VOT
when operating at 110 Vac and 220 Vac is 2.2% and 4.3%, respectively. The simulation
results show that the input current of VOT is closer to the ideal sine-wave than that of COT,
the THD of VOT is smaller than COT control, and the output voltage ripple of VOT is just a
little larger than that of COT. The simulation results match the theoretical analysis results.
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Figure 14. Simulation waveforms at rated load current with 110 Vac and 220 Vac input voltage.
(a) COT with 110 Vac; (b) VOT with 110 Vac; (c) COT with 220 Vac; (d) VOT with 220 Vac.

5.2. Experimental Results

The experimental verifications of both COT and VOT control methods are performed
to prove the feasibility of the suggested VOT control for BCM SEPIC PFC converter and
the theoretical performance comparison analysis results of both control schemes. The
major parameters and specifications of the experimental board are shown in Table 1. The
experimental prototype and platform are shown in Figures 15 and 16, respectively. The
block diagram of the experimental platform is presented in Figure 17. In the experimental
platform, the programmable AC source Chroma 61602 provides an AC input voltage source
to the BCM SEPIC PFC converter, the programmable electronic load Chroma 6314 A and
63,115 A provides the adjustable load for the SEPIC PFC converter, the power analyzer
Yokogawa WT1800 measures the PF, THD, input current harmonic, and input power, the
digital oscilloscope DPO3014 and its current and voltage probes measure voltage and
current waveform of the SEPIC PFC converter, network analyzer Bode100 is used to test
the loop stability of the converter.
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The experimental comparison waveforms, including input current, output voltage
with 110 Vac and 220 Vac input voltage and rated load, are shown in Figure 18a–d. The
experimental comparison waveforms with 0.1 A and 0.5 A output load and 110 Vac input
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voltage are shown in Figure 19a–d. The input current waveforms of VOT control are more
sinusoidal and nearly ideal sine-wave when compared to that of COT control, particularly
with higher output power. With the rated load current, the output voltage ripple ∆VO of
COT and VOT control with 110 Vac input voltage is 4 V and 4.6 V, respectively, ∆VO of
COT and VOT control with 220 Vac input voltage is 3.8 V and 4.6 V, respectively, ∆VO of
COT control is slightly smaller than that of VOT control, which is the same as the analysis
result of Figure 7 and simulation result of Figure 14.
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Figure 20a–d show the experimental waveforms of the sawtooth waveform vSaw, the
control voltage vC3 of the VCCS, the rectified input voltage vREC, and gate driver signal vg
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of a main switch for the proposed VOT control with 110 Vac input voltage and rated output
current. Figure 20b–d is the zoom-in waveforms of Figure 20a at different transient rectified
input voltage. Comparing with Figure 20b–d, it can be known that with the transient
rectified input voltage decreasing from peak to valley, the control voltage vC3 of the VCCS
and the slope of the sawtooth generator increase, the turn-on time of S1 decreases, which is
the same as the analysis result in Figure 4.
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in waveform at 120 V transient rectified input voltage; (d) zoom in waveform near zero-cross point of
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Figures 21 and 22 show both inductor currents iL1 and iL2, the rectified input voltage
vREC, and gate driver signal vg of the main switch of COT and VOT control with 110 Vac
input voltage and rated output current. According to Figure 21b,c, it can be shown that the
turn-on time of the main power switch S1 of COT control with different transient rectified
input voltage is maintained at 8.8 µS. However, from Figure 22b,c, it can be shown that
the turn-on time values of S1 of the proposed VOT control are 9.6 µS and 6.6 µS near the
peak of the transient rectified input voltage and the zero-cross point of the input voltage,
respectively. Therefore, it is verified that the turn-on time of S1 of COT control maintains
constant, but the turn-on time of S1 of VOT control reduces with the transient rectified
input voltage decreasing.
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vRec is 155 V; (c) zoomed-in waveform around zero-cross point of input voltage, vRec is 50 V.
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Figure 22. Experimental waveforms of vREC, vg, iL1, and iL2 of VOT control with 110 Vac input
voltage and rated current load. (a) overall waveform; (b) zoomed-in waveform at ωt = π/2, i.e., vRec

is 155 V; (c) zoomed-in waveform around zero-cross point of input voltage, vRec is 50 V.

Figures 21b and 22b show that the switching frequencies of COT and VOT control at
ωt = π/2 are 44.5 kHz and 42 kHz, respectively, almost the same as the analysis result of
(35), (37) and Figure 8. Figures 21c and 22c show that the switching frequencies of COT
and VOT control with 50 V transient rectified input voltage are 75.2 kHz and 91.7 kHz,
respectively. Therefore, compared with COT control, the switching frequency of VOT
control is lower when ωt is π/2, and the switching frequency of VOT control is higher
when ωt is near zero, which is the same as the analysis result of Figure 9.

Figures 21b and 22b also show that the maximum peak currents of S1 of COT and VOT
control are 6.4 A and 7.3 A, respectively. Experimental results prove that the maximum
peak currents of S1 of VOT control are slightly bigger than that of COT control, which
almost matches the analysis result in Figure 10.

Figure 23 shows the experimental waveforms of the rectified input voltage vREC, L1
inductor current iL1, and L1 inductor voltage vL1 with VOT control at 110 Vac input voltage
and rated output current. Figure 24 shows the experimental waveforms of the rectified
input voltage vREC, L2 inductor current iL2, and L2 inductor voltage vL2 with VOT control at
110 Vac input voltage and rated output current. From Figures 23 and 24, when the rectified
input voltage is near 155 V and 50 V, the inductors’ L1 and L2 voltage is also around 155 V
and 50 V, respectively. While S1 is switched on, the voltage of inductors L1 and L2 always
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maintain 100 V during S1 is turned off. Therefore, Figures 23 and 24 can verify that the
voltage of both inductors L1 and L2 are equal to the rectified input voltage when S1 is
switched on, the voltage of both inductor L1 and L2 are equal to output voltage when S1 is
turned off during the whole line period, which is the same as the operation theory analysis.
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(c) zoomed-in waveform around zero-cross point of input voltage, vRec is 50 V.
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and rated current load. (a) overall waveform; (b) zoomed-in waveform at ωt = π/2, i.e., vRec is 155 V;
(c) zoomed-in waveform around zero-cross point of input voltage, vRec is 50 V.

The bode diagram of the closed-loop gain of the whole system with the controller
can be used to judge the stability of the PFC converter [40,41]. To analyze the stability, the
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bode diagram of the closed-loop gain of the SEPIC PFC prototype operating in BCM with
VOT control is tested by network analyzer Bode 100. The loop gain test result with 110 Vac
input voltage and rated output current load is shown in Figure 25. For the PFC converter,
the bandwidth should be lower than 20 Hz. Otherwise, the twice-line frequency 100 Hz
output voltage ripple will be coupled into the voltage control loop. As a result, the input
current control signal becomes distorted, creating a third harmonic current in the input
current [34,37,42]. The phase margin of the power converter should be bigger than 45◦ to
ensure the converter’s stability [41–44]. According to Figure 25, it can be observed that
the bandwidths, which is the frequency of 0 dB gain magnitude and the phase margin of
the whole loop, which is the phase of 0 dB gain magnitude, are 13.26 Hz and around 90◦

respectively, so the proposed prototype can work stably.
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Figure 25. Loop gain test result of VOT control scheme with 110 Vac and rated output current load.

To verify the performance with the variation of different input voltage, the experimen-
tal comparison results of efficiency, PF, and THD with COT and VOT control at 90~265 Vac
input voltage and rated 1 A output current are presented in Figure 26. To verify the perfor-
mance with the different load currents, the experimental comparison results of efficiency,
PF, and THD of COT and VOT control with 110 Vac input voltage and 0.1~1 A output
current are shown in Figure 27. From both figures, it can be shown that the PF of VOT
control is higher than that of COT control, THD of VOT control is lower than that of COT
control over the entire input voltage range and output load current range. Especially with
higher output current load, the proposed VOT control scheme can almost achieve unity PF.
From the above experimental data, the PF of the VOT control is enhanced significantly, the
THD of the VOT control is reduced remarkably, and the efficiency of both controls is almost
the same. Therefore, compared to COT control, VOT control enhances the performance of
PF and THD without reducing efficiency.

The comparison results of IEC61000-3-2 Class C requirements and the input current
harmonic of both control schemes with a rated output current, 110 Vac and 220 Vac input
voltage, are shown in Figure 28. It shows that the input current harmonic of VOT control
is lower than that of COT control. Although both control schemes can meet the harmonic
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standard limit of IEC61000-3-2 Class C, the VOT control scheme will be easier to meet the
applications with stricter input current harmonic requirements.
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Figure 26. Experimental comparison of PF, Efficiency, and THD data with 90~265 Vac input voltage
and rated 1 A output current. (a) PF and efficiency; (b) THD.
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Figure 27. Experimental comparison of PF, Efficiency, and THD data with 0.1~1 A output current
and 110 Vac input voltage. (a) PF and efficiency; (b) THD.
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Figure 28. Input current harmonic content comparison data with rated 1 A output current. (a) 110 Vac
input voltage; (b) 220 Vac input voltage.

6. Conclusions

To enhance the PF and decrease the THD of SEPIC PFC converter operating in BCM, a
novel VOT control scheme which can almost realize unity PF is proposed. This novel VOT
control scheme doesn’t need input voltage feedforward and multiplier circuits required
by many PFC control strategies. The proposed VOT control scheme uses a simple and
easy-to-implement variable slope sawtooth generator whose slope is controlled by the
duty cycle of the main switch to modulate the turn-on time of the main switch. Based
on performance analysis, simulation, and experiment comparison results of the 100 W
prototype, it is verified that the proposed VOT control scheme with variable slope sawtooth
generator remarkably enhances the performance of PF and THD without affecting the
efficiency by contrast with the conventional COT control.
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Abbreviations
AC Alternating Current
BCM Boundary Conduction Mode
CCM Continuous Conduction Mode
COT Constant On-Time
DC Direct Current
DCM Discontinuous Conduction Mode
PFC Power Factor Correction
PF Power Factor
RMS Root Mean Square
SEPIC Single Ended Primary Inductor Converter
THD Total Harmonic Distortion
VOT Variable On-Time
VCCS Voltage-Controlled Current Source



Electronics 2023, 12, 1807 30 of 32

Notation
C Capacitance
D(t) The duty cycle of the main power switch S1
f L Line frequency of AC input power source
f S_COT Switching frequency of COT control
f S_VOT Switching frequency of VOT control
f *

S_COT Normalized switching frequency of COT control
f *

S_VOT Normalized switching frequency of VOT control
g1 Control ratio of voltage-controlled current source iCHG
iCHG Charge current for capacitor CT
iD1 Current flowing through diode D1
iD1_AVG_COT Average current flowing through diode D1 with COT control
iD1_PK_COT Peak current flowing through diode D1 with COT control
I2nd
D1_COT Input current

iin The amplitude of second-order harmonic current of D1 with COT control
iin_COT Input current with COT control
Iin_RMS_COT RMS value of input current with COT control
iin_VOT Input current with VOT control
i*in_COT Normalized input current with COT control
i*in_VOT Normalized input current with VOT control
iL1 Current flowing through inductor L1
iL1_0 Initial value of iL1 when the main switch S1 starts to turn on
iL1_avg The average value of the current flowing through L1
iL2 Current flowing through inductor L2
iL2_0 Initial value of iL2 when the main switch S1 starts to turn on
IO Output current of SEPIC PFC converter
iS1 Current flowing through S1
iS1_PK_COT Peak current of S1 with COT control
iS1_PK_VOT Peak current of S1 with VOT control
i*S1_PK_COT Normalized peak current of S1 with COT control
i*S1_PK_VOT Normalized peak current of S1 with VOT control
IS1_RMS_COT RMS current of S1 with COT control
IS1_RMS_VOT RMS current of S1 with VOT control
L Inductance
PFCOT Power factor with COT control
PFVOT Power factor with VOT control
Pin_COT Input power with COT control
R Resistance
Td Time of diode D1 forward bias
Td_COT Time of diode D1 forward bias with COT control
Ton Turn-on time of main power switch S1
Ton_COT Turn-on time of S1 with COT control
Ton_VOT Turn-on time of S1 with VOT control
TS Switching period
TS_COT Switching period with COT control
V1 Voltage source V1 in variable slope sawtooth generator shown in Figure 4
vB Voltage of the middle capacitor C1
Vcomp Output voltage of error amplifier
vC3 The voltage of C3
vg Driving signal of S1
vin Input voltage
VM Amplitude of AC input power source
VO Output voltage
vREC Rectified AC input voltage
vSaw The voltage of sawtooth generator at the positive input terminal of comparator
∆iL1 Inductor current ripple of L1
∆iL1_COT Inductor current ripple of L1 with COT control
∆iL2 Inductor current ripple of L2
∆VO Output voltage ripple
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∆VO_COT Output voltage ripple with COT control
∆VO_VOT Output voltage ripple with VOT control
ω Angular frequency of AC input power source
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