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Abstract: Presently, road and traffic control construction on most university campuses cannot keep
up with the growth of the universities. Campus roads are not very wide, crossings do not have lights,
and there are no full-time traffic management personnel. Teachers and students are prone to forming
a peak flow of people when going to and from classes. This has led to a constant stream of traffic
accidents. It is critical to conduct a comprehensive analysis of this issue by utilizing voluminous data
pertaining to school traffic incidents in order to safeguard the lives of faculty and students. In the
case of domestic universities, fewer studies have studied knowledge graph construction methods for
traffic safety incidents. In event knowledge graph construction, the reasonable release and recycling
of computational resources are inefficient, and existing entity–relationship joint extraction methods
are unable to deal with ternary overlapping and entity boundary ambiguity problems in relationship
extraction. In response to the above problems, this paper proposes a knowledge graph construction
method for university on-campus traffic safety events with improved dynamic resource scheduling
algorithms and multi-layer semantic graph convolutional neural networks. The experiment’s results
show that the proposed dynamic computational resource scheduling method increases GPU and
CPU use by 25% and 9%. On the public dataset, the proposed data extraction model’s F1 scores for
event triples increase by 1.3% on the NYT dataset and by 0.4% on the WebNLG dataset. This method
can help the relevant university personnel in dealing with unexpected traffic incidents and reduce
the impact on public opinion.

Keywords: public opinion; knowledge graph; graph convolutional neural network; resource
scheduling; traffic safety

1. Introduction

Along with the increasing number of students and faculty in schools at home and
abroad, schools have entered a period of rapid development. In the case of domestic uni-
versities, the expansion in the number of university teachers and students also introduces
complex traffic safety risks [1–4]. If there is a traffic accident, it will not only hurt people,
but also make it harder to control online public opinion [5]. Traffic safety events happen
quickly, and the approaches by which they are managed are marked by diversity, multifac-
toriality, and variability. Traditional decision makers may be hampered by their reliance on
prior emergency response experience, poor timeliness, and insufficient understanding of
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theoretical decision making. Therefore, responding to campus traffic emergencies with con-
ventional management techniques is a challenge. There has been an exponential increase in
current news and information regarding traffic safety incidents that occur on university
campuses [6–8]. To improve the intelligent emergency management of on-campus traffic
safety incidents at universities, it is important to know how to look at the issue using a lot
of unstructured on-campus traffic safety event data. Intelligent decision management is
important to ensure the life safety of students and teachers at universities [9].

In university on-campus traffic safety events, knowledge graphs are a significant
source of technical support for fusing heterogeneous data from numerous sources. A knowl-
edge graph is essentially a heterogeneous network graph composed of entity nodes and
edges, which can show the complex relationship between entities and exhibit rich semantic
structure information [10,11]. Knowledge graph application scenarios mainly include user
profiles, intelligent retrieval, event-assisted decision making, and inference. The problem
of semantic ambiguity and information irregularity has been a difficult task to overcome
in the past in the semantic retrieval of campus traffic safety events and incident decision
making. However, knowledge graphs for the construction of domain knowledge and
the representation of graph learning are effective solutions to the aforementioned issues.
Recently, academics have focused more on modeling knowledge graph representations
of emergency traffic events and building correlation links between events. For example,
Zhu et al. target the limited intelligence and accuracy of current emergency event evolution
prediction algorithms. They proposed a method for anticipating municipal rail transit emer-
gencies using knowledge graphs and relational graph neural networks, which ultimately
supports rail transit emergency management decision making [12]. Sun et al. targeted the
fact that existing methods have difficulty recognizing traffic events and are ineffective at
extracting event-associated features. They proposed that the traffic knowledge graph and
target detection method be used to recognize traffic events on Weibo. This method can help
a city’s traffic management department identify traffic problems and quickly inform people
about them. It can also help people make decisions [13].

The current project of constructing a knowledge graph for university traffic safety
events has three problems: (a) Knowledge graph construction requires many modeling
algorithms and a large amount of computational resources [14]. Data capture and entity–
relationship co-extraction model training require more memory and computation. How to
understand the variation in the demand for resources during the construction of a knowl-
edge graph of on-campus traffic safety events, while achieving the reasonable release and
recycling of resources, poses a new challenge. (b) Little research has been conducted on
how to construct knowledge graphs for events that promote traffic safety on university
campuses. Very few studies have been conducted on how to make ontological models for
knowledge graphs of on-campus traffic events. This makes it difficult to construct knowl-
edge graphs of on-campus traffic events [15]. (c) The core contents of knowledge graph
construction of on-campus traffic safety events in higher education are entity–relationship
triples. Existing methods for extracting both entities and relationships do not perform well
at dealing with triple overlap problems and the blurring of entity boundaries in relation-
ship extraction. This can lead to errors in the extraction process, redundant knowledge
information, and other problems.

In dealing with the above problems, the three main parts of the innovations we propose
include the following:

1. Targeting the dynamic demand of resources for multi-scenario tasks during knowl-
edge graph construction. For problem (a), we propose a resource management and
scheduling technique based on virtualization technology using Kernel-based Virtual
Machine–Quick Emulator (KVM-QEMU) and Kubernetes technology. KVM-QEMU
virtualization technology enables the virtualization of hardware resources and im-
proves the efficiency of resource utilization. Kubernetes container orchestration
technology has a united scheduling feature that can use Graphics Processing Unit
(GPU) resources at the same time to make scheduling work well with different types



Electronics 2024, 13, 11 3 of 18

of resources, like Central Processing Unit (CPU) and GPU. The proposed dynamic
computational resource scheduling method increases GPU and CPU use by 25%
and 9%.

2. To improve the accuracy and standardization of information extracted from online
social media for on-campus traffic safety events, we propose a general ontology model
for knowledge graphs of traffic safety events in universities to solve problem (b).
The model can provide standard definitions and construct multi-source knowledge
structures so that knowledge graphs regarding traffic safety events in universities
can be made. In addition, the methodology takes full account of the dynamic spatial
and temporal information between events. We construct a knowledge graph ontology
model of university traffic events based on multi-source heterogeneous data.

3. To adapt to the needs of online public opinion scenarios, for problem (c), we propose
a joint extraction method for entity relations based on graph convolutional neural
networks. The method first fuses the global semantic dependency analysis graph
embedding information with syntactic analysis graph embedding information to
further improve the accuracy of the recognition of distant entities. Next, a multi-layer
semantic graph convolutional neural network is constructed to find deeper, semanti-
cally hidden knowledge about how entities are related. Finally, a multi-feature fusion
attention mechanism is designed to enhance the accuracy of model triple classification.
The method effectively enhances the problem of entity boundary ambiguity in triple
overlapping and relation extraction. Among them, the F1 values were improved by
1.3% and 0.4% on the NYT and WebNLG English datasets, respectively.

2. Related Work
2.1. Virtualization Management and Scheduling Technology

Virtualization, as a method of provisioning resources, abstracts and transforms various
physical resources (Servers, Storage, Networks, etc.). To run numerous virtual machines
on physical servers, we employ KVM-QEMU virtualization technology and Kubernetes
container technology [16]. These servers then help with big computer jobs like graph
computation and knowledge triple extraction [17]. Among them, KVM-QEMU is a kernel-
level virtualization technology that can better utilize different operating systems and
hardware resources effectively and improve the performance of hardware virtualization.
Libvirt is designed as a driver-oriented architecture consisting of Libvirtd services, API
libraries, and Virsh command-line management tools. It enables effective management of
different types of VMs by calling idle API libraries, and different types of VMs are logically
separated from each other. Kubernetes container technology is a container orchestration
platform for scheduling, deploying, and managing containers, among other things [18].
Kubernetes container technology facilitates the detection and allocation of GPU resources.
The hot-plugging feature of kubernetes is used to access and manage GPU resources using
a plug-in extension mechanism. Then, kubernetes technology is used to determine the
scheduling result of the pod based on the user’s GPU request and finally allocate computer
storage resources to it.

2.2. Ontology Modeling Methodology

In recent years, there has been an increase in the number of studies conducted by
both domestic and foreign researchers, with the aim of constructing a knowledge graph
of security incidents. The event knowledge graph application perspective encompasses
several types of events, such as aviation security events, flooding events, city train traf-
fic events, and financial emergencies. Knowledge graphs can help improve the quality
of ontology construction by providing basic information at the data layer for ontology
construction. However, there are fewer studies on the construction of knowledge graph
ontologies for traffic safety events in universities. Constructing ontologies is used a lot
in fields like knowledge graphs, information retrieval, and more. Based on what they
cover, ontology model construction can be divided into two groups: general ontology
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construction and domain ontology construction [19,20]. Previous studies have mostly
focused on domain knowledge graph ontology modeling, so this paper proposes a way for
constructing a domain ontology. Two basic methods of domain ontology construction exist:
human construction using domain expert knowledge and automatic or semi-automatic
construction using AI techniques. Wang et al. utilized ontology technology to extract, struc-
ture, and depict textual knowledge related to fire emergency management, with the aim of
assisting in fire emergency management. In turn, an ontology model for fire emergency
management, Fire Emergency Ontology (FEO), is constructed. Intelligent management and
fire emergency response speed are improved by the model [21].

2.3. Entity Relationship Joint Extraction Model

The role of entity–relationship co-extraction is to recognize entities and correspon-
dences in a particular text. The traditional pipeline approach has problems extracting
long-distance relational dependencies between entities and attenuating feature information
between subtasks, resulting in redundant entities and not enough extracted relationships.
This study focuses on exploring the prevailing deep learning approaches used to simultane-
ously extract entities and relations [22–24]. The traditional pipeline approach shortcomings
can be solved this way. Zhu et al. target existing approaches to problems with nested
entities and overlapping relationships. He proposed a single-stage joint entity relationship
extraction method based on an enhanced sequence labeling strategy. The method improved
NYT and WebNLG F1 values by 0.5–2.1% [25]. Clara Vania et al. presented a systematic
study on the use of natural language inference to improve document-level relational ex-
traction with distant supervision. This method reduces pricey annotations. Results show
that the natural language inference filtering method improves relational extraction. This
method reduces the F1 value metric gap by 2.3%, as compared to model training on a man-
ually labeled dataset [26]. Document-level relationship extraction methods by Ding et al.
do not properly incorporate sentence context, document topic, and entity pair similarity
when generating nodes, resulting in low performance. She proposed a document-level
relationship extraction model for enhanced entity representation, which is implemented
better than existing models [27]. This experiment enhances the latest model by utilizing a
graph-based convolutional neural network, resulting in an improvement in the extraction
accuracy of triple groups.

3. Methodology

The technical flowchart for the construction of the knowledge graph of traffic safety
events in university is shown in Appendix A.1.

This part deals with the enhancement of three modules: the Dynamic Computing
Resource Algorithm Optimization Design Module, the Event Ontology Design Module,
and the Event Information Extraction Design Module. The strategies for improvement are
outlined as follows.

3.1. Virtualized Resource Management and Scheduling Design

The section on the Virtualized Resources and Scheduling Technology Architecture
flowchart is shown in Appendix A.2.

Existing methods have not been able to effectively use GPU and CPU computing re-
sources. We virtualize hardware using KVM-QEMU and kubernetes to optimize computing
resources for model training.

The original kubernetes default scheduling algorithm leads to a balanced utilization
of GPU and CPU resources that needs to be improved [28]. It does not accurately reflect
node resource utilization, and the final node score does not account for how resource
usage affects scheduling priority. To solve this problem, this paper proposes an improved
dynamic resource scheduling method. In a kubernetes cluster, the yaml file for every pod
defines the resource allocation. This study classifies pods as GPU- and CPU-consuming,
based on the GPU and CPU usage of resources.
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As an example, the resource e(Re) on a node that is consumed by this pod is calculated
as follows Equation (1):

Re =
Ee

Te
(1)

where Ee is the pod’s request for resource e(Re), Te is the total amount of resources on a
particular node e. Resource e(Re) includes both GPU and CPU resources, and Re yields the
percentage of consumption of GPU or CPU resources.

The node with a high score is selected as the deployment node of the pod, and the
formula is as follows Equations (2) and (3):

α + β = 1 (2)

Score = 10 − |αUgpu − βUcpu| ∗ 10 (3)

where Ugpu and Ucpu represent the average utilization of the node’s GPU and CPU, re-
spectively, over a certain period of time. Equations (2) and (3) adjust the resource load
usage of a node by introducing the weight parameters α and β. To reflect the GPU and
CPU resource loads of this node for different consumption types of pods. When Score is
larger, it shows that the difference between the GPU and CPU use of the node for the pod
is smaller. After deploying the pod, the node’s GPU and CPU use balance, so the pod’s
priority increases.

3.2. Ontology Modeling Design

In this study, the ontology model is used to construct a knowledge graph of traffic
safety events in universities [29–31]. This is accomplished by combining the distinct
characteristics of the information about these events. Consider the elements involved
in a traffic incident as an organic, dynamic whole. A top-down method is also used to
construct a conceptual model for the knowledge graph of traffic safety events on university
campuses [32]. The knowledge graph ontology of university traffic safety events includes
entity type O(E), attribute type O(S) and relationship type O(R), as shown in Equation (4).

HKG = {O(E), O(R), O(S)} (4)

The ontology for traffic safety events at the university is constructed as shown in
Figure 1. It shows a knowledge graph of university traffic safety events. It is made up of
four main parts: basic event characteristics, accident types, modeling methods, and event
handling measures. In turn, semantic knowledge associations between its core elements are
constructed. First, the four groups listed above were divided at the ontological level. Then,
domain-specific splits were made based on the perceptual level of each ontological class.
In this paper, the ontology layer composition is as follows: (1) find the event ontology’s
specialization domain; (2) use the top-down method to define the event ontology hierarchy;
(3) define event category properties; and (4) create instances.

Subsequently, formulate the entities and attributes of the knowledge graph pertaining
to road safety incidents occurring within the university. Firstly, in this paper, the knowledge
graph of university traffic safety events is mainly designed with seven kinds of entities and
attribute labels. The various entities and attribute labels are defined as shown in Table A1.
Table A1 content details in Appendix A.3. Then, 10 relational mappings were designed,
as shown in Table A2. Table A2’s content is detailed in Appendix A.4. Secondly, through
the definition of entities, attributes, and relationships, unstructured data originating from
WeChat’s official public numbers, Weibo, etc., is transformed into the structured format
required for the construction of event knowledge graphs. Lastly, inter-entity relationships
and characteristics can be used to create a single identification of traffic safety knowledge
in the university. This will make it easier to connect the different pieces of knowledge about
traffic events that happen at the university.
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Figure 1. Ontology layer segmentation of the knowledge graph for traffic safety events at the
university.

3.3. Event Extraction Model Design

Most of the existing knowledge graph triple extractions deal with text in terms of
characters. However, the semantics of a single character are compared to a word. The char-
acter method contains different semantic information, which is prone to ambiguity and
overlapping problems with the extracted triples. Texts often include many triples that
overlap, making extraction difficult. If the model cannot handle triple group overlapping
problems, it will not adapt to many datasets, resulting in serious limits and extraction
errors. The extraction effect of event triples has a significant correlation with entity distance,
and weak correlation between distant entities can lead to fuzzy entity boundaries and
low relation extraction recall. Thus, this study uses the OneRel model [33] as the basis
model. We propose the event extraction model Multi-Layer Semantic Graph Convolu-
tional Entity-Relationship Joint Extraction (MLSRel) for the university on-campus traffic
safety event knowledge graph. The model design of this paper is shown in Figure 2. First,
the crawler technique is used to process the unstructured data information as an input to
the MLSRel model. Second, based on the OneRel model, the global dependency semantics
and syntactic graph embedding representation of sentences are incorporated in the initial
vector generation stage. Additionally, Bidirectional Encoder Representations from Trans-
formers (BERT) and Bi-directional Long Short-Term Memory (Bi-LSTM) networks were
used to extract semantic information from the original text [34,35]. This stage improves
relational extraction by learning the spanning sentence syntactic structure features. Next,
a multilayer semantic graph convolutional neural network, Multilayer Graph Convolution
Network (MultiGCN), is constructed to learn global semantic and syntactic graph embed-
ding representation information to capture deeper semantic hidden information about
entity relations [36]. Immediately after that, the learned graph embedding semantic vector
Ge and the original text vector He are spliced to obtain a new sequence vector Vn. The new
sequence vectors go through a graph mixing and pooling layer to capture the global range
of semantic information. A multi-feature fusion attention mechanism is then designed to
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enhance the accuracy of model triple classification. This method is able to assign a high
weight to the candidate entities in the entity extraction stage. This method improves the
accurate recognition of entities at a distance. Finally, it goes through the so f tmax() layer to
improve the accuracy of recognizing triples and reduce the problem of overlapping triples
and blurring of entity boundaries in the extraction process.

Figure 2. MLSRel overall model diagram.

Definition: first, given a training sentence S = {w1, w2, w3, . . . , wL}, L in the training
sentence S represents the length of the sentence sequence. Assume that the sentence
receives a set Y of target triples as:

Y = {(h1, r1, t1), . . . , (hn, rn, tn)|hn, rn ∈ E, rn ∈ R} (5)

In Equation (5), hn, tn represents the n-th head entity and tail entity. rn represents the
n-th relationship between entity pairs, E and R denotes the set of entities and relationships.

Input Sequence Encoding: In this paper, we first encode this training phrase with
the BERT model to obtain the word vector representation corresponding to the sentence,
as shown in Equation (6):

He = [h1, h2, h3, . . . , hL] = BERT[w1, w2, w3, . . . , wL]{hL ∈ Rd} (6)

where L in Equation (6) represents the number of characters contained in the sentence, d
denotes the embedding dimension. BERT represents the pre-trained model, which contains
12 hidden layers. Each of which has a size of 768. The training sentence S is encoded to
obtain the input vector He.

3.3.1. Graph Embedding Representation Improvement

In this paper, we first use the Harbin Institute of Technology (HIT) Language Technol-
ogy Platform (LTP) tool to preprocess the input sentences [37], and then obtain the word
labeling information and syntactic dependency information of the preprocessed sentence
sequences. Syntactic dependency analysis can identify the syntactic structure of a sentence
or the dependencies between words in a sentence. More textual feature information can
be captured through the construction of global semantic dependency syntactic graphs.A
semantic–syntactic dependency graph is defined as Gg = {V1, V2, E1, E2}, where V1 and V2
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represents the set of semantic and syntactic nodes in the graph, and E1 and E2 represent
the set of edges in the semantic and syntactic graphs.

3.3.2. Multi-Layer Semantic Graph Convolutional Network Design

A multilayer semantic graph convolutional neural network is constructed to learn the
topology in the global semantic and syntactic dependency graph which, in turn, yields the
embedding vector representation of the text Ge. The computational process is shown in
Equation (7):

Ge = MultiGCN(WS(hM + hN) + bS) (7)

In Equation (7), WS and bS represent the weight parameter matrix and trainable pa-
rameter matrix. MultiGCN() represents a multilayer graph convolutional neural network,
which captures higher-order neighborhood information between word nodes. hM and hN
represent the embedding representation vectors of semantic dependency analysis graphs
and syntactic analysis graphs. The structure of the multilayer semantic graph convolutional
neural network is shown in Figure 3:

Figure 3. Structure of multilayer semantic graph convolutional neural network.

The resulting global semantic and syntactic dependency representation Ge is then
spliced with the input vector He obtained from Equation (6) to obtain the spliced sequence
representation vector Vn, as shown in Equation (8).

Vn = [Ge; He] (8)

However, in different relationships, words and triples in a sentence are more relevant.
Therefore, a hybrid graph pooling operation is used to capture the global scope information
to obtain the vector representation Hg.

Hg = (MaxPooling(V1, V2, . . . , Vn) +
1
|n| ∑

n∈Gg

Vn)/2 (9)

where V1, V2, . . . , Vn in Equation (9) represents the embedded representation of the text.
MaxPooling() represents maximum pooling, and the second half of Equation (9) represents
mean pooling.

3.3.3. Multi-Feature Fusion Attention Mechanism Design

Also, to remove noisy data and improve classifier accuracy, we assign corpus text
weight coefficients using an attention method guided by word-level features and tex-
tual and syntactic dependence fusion features. In the case of the k-th layer, the feature
representations are obtained as Zk and Mk, respectively.

r = Vi(so f t max(ωT tanh(Vi)))
T (10)

Zk = tanh(r) (11)
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where the tanh function is used in Equation (11) to transform the spliced vectors to be-
tween [−1, 1], ω represents the trained parameter vectors, and the so f tmax() function
is normalized.

Li
k = tanh(wk[Vi, Hg

k] + bk) (12)

αi
k =

exp(Li
k)

∑
i

exp(Li
k)

(13)

Mk = ∑
i

αi
kVi

T (14)

In Equations (12)–(14), wk and bk represent the model parameters learned by the k − 1-
th layer of the attention mechanism. Vi and Hg

k denote the inputs of the k − 1-th layer of
the attention mechanism, and stands for the i-th fused feature and the output of the k − 1-th
layer of the fused feature. Finally, drawing on the gating mechanism, the multi-feature
vector fusion is denoted as Dk to achieve the purpose of complementary advantages.

C = σ(Wl
1 tanh(Wl

2Zk + Wl
3Mk)) (15)

Dk = C · Zk + (1 − C) · Mk (16)

The above Equations, (15) and (16), represent the sigmoid activation function, Wl ,
representing the weight parameters learned by the self-training of the model. The vector
C has the same number of dimensions as Zk and Mk. This vector can dynamically assign
weights to different features, thus avoiding information redundancy. Finally, the output
layer uses so f tmax to obtain the label of each character of the sentence, and outputs the
final result. Due to sparsity in the training dataset, this study computes loss during training
using the cross-entropy loss function at the global semantic and syntactic dependency
graph embedding representation layer and the multi-feature attention mechanism layer.
Weights are then assigned to each layer of loss, after which the modeled losses are summed
up and calculated, as shown in Equation (17):

Losstotal = Lossg + αLossa (17)

In this case, the Adam optimization algorithm is used in Equation (17), which is able
to adapt to the problem of sparse gradient or large noise in the gradient. Lossg represents
the loss of the embedding representation layer of the global semantic syntactic dependency
graph. α represents the weight of the loss of the multi-feature attention mechanism layer.
Lossa represents the loss of the multi-feature attention mechanism layer.

4. Experiment
4.1. Experimental Datasets and Evaluation Metrics

Experimental dataset: in order to evaluate the performance of the method in this paper,
two publicly available datasets, NYT [38] and WebNLG [39], are used in the experiments to
validate the effectiveness of the MLSRel model, as shown in Table 1.

Table 1. Statistics of the dataset.

Dataset
Number of

Samples in the
Training Set

Number of
Samples in the
Validation Set

Test Set Sample
Size

Types of
Predefined

Relationships

NYT 56,195 5000 5000 24
WebNLG 5019 500 703 171

NYT dataset: This is derived from the corpus labeled by the New York Times. The re-
lationships between the entities in the dataset are found by linking and referring to re-
lationships in the external Freebase knowledge base, along with a remotely supervised
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relationship extraction algorithm. It contains 56,195 sentences in the training set, 5000 sen-
tences in the validation set, 5000 sentences in the test set, and 24 predefined relations in
the dataset.

WebNLG dataset: The WebNLG dataset is constructed for natural language generation
tasks. The WebNLG training set contains 5019 sentences, the validation set contains
500 sentences, the test set contains 703 sentences, and the dataset contains 171 predefined
relations.

Resource scheduling method test environment: this paper uses two kubernetes 1.22.0
servers for application deployment and scheduling experiments on the two servers de-
ployed Ubuntu 20.04.2, Docker 20.10.14, the number of GPU cards is two, the memory
is 256 GB.

Evaluation metrics: The experiments in this paper use the commonly used entity-
relationship joint extraction evaluation metrics to evaluate the performance of the involved
models, and the evaluation metrics mainly include the precision rate P, the recall rate R,
and the F1 score. The calculation equations are shown in (18)–(20):

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

F1 =
2 × P × R

P + R
(20)

In Equations (18)–(20), TP represents the number of correctly predicted triples, FP
represents the number of incorrectly predicted triples, and FN represents the number
of true triples that were not correctly predicted. P represents the degree of accuracy of
prediction in the results of positive samples. R represents the probability that a positive
sample will be predicted as a positive sample. The F1 score represents the harmonic mean
between P and R. In this paper, a triple is predicted correctly only when it is formed.

4.2. Experimental Environment Setting

The experimental development environment used in this paper is a Windows oper-
ating system with central processing (CPU) using an Intel (R) CoreTM i5-7200U CPU at
2.50 GHz and 12 GB of memory. Experiment running environment: Ubuntu operating
system, graphics processor (GPU) using NVIDIA Tesla V100, 24G RAM. The experimental
development framework is Pytorch, a deep learning framework, and the programming
language is Python.

4.3. Experimental Comparison Model

The study compares its pairs to the newest joint extraction model of entity relations to
demonstrate the model’s efficacy. The comparison model is: CopyMTL [40], WDec [41],
CasRel [42], TpLinker [43], SPN4RE [44], ENPAR [45], OneRel [33].

4.4. Experimental Results and Analysis

The experimental data for the improved dynamic resource scheduling method is
shown in Table 2. Most of the environments where the models attempted in this paper
are run experimentally are GPUs, so the tests are performed with Pod as the GPU type.
This means that more GPU resources are needed than CPU resources. The experimental
proof demonstrates that the use of the improved scheduling algorithm results in a notable
reduction in the overall resource imbalance within the cluster. Additionally, there is a more
equitable distribution of GPU and CPU resource utilization.
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Table 2. Comparative effectiveness of resource utilization before and after improvements.

Node Type Resource Type Default Algorithm Resource Utilization Improved Algorithm Utilization

Master
GPU 50% 75%
CPU 18% 27%

Random access memory (RAM) 6% 18%

Node1
GPU 50% 50%
CPU 31% 26%

Random access memory (RAM) 12% 21%

The comparative effectiveness of the model proposed in this paper with the baseline
model mentioned above is demonstrated in Table 3 using the NYT and WebNLG English
datasets. The majority of the baseline model results are obtained from the relevant literature.
“-” is used to indicate the absence of a corresponding result for the model, while bold font
highlights the best result.

Table 3. Comparative effectiveness of models on NYT and WebNLG English datasets.

Model NYT Datasets WebNLG Datasets
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

CopyMTL 0.727 0.692 0.709 0.578 0.601 0.589
WDec 0.843 0.764 0.802 - - -
CasRel 0.897 0.895 0.896 0.934 0.901 0.918

TpLinker 0.913 0.925 0.919 0.918 0.920 0.919
SPN4RE 0.933 0.917 0.925 0.931 0.936 0.934
ENPAR 0.936 0.920 0.928 0.934 0.916 0.925
OneRel 0.928 0.929 0.928 0.941 0.944 0.943

Ours 0.958 0.924 0.941 0.945 0.951 0.947

As can be seen in Table 3 above, the model shown in this paper excavates deeper feature
information after the multi-layer semantic syntactic dependency graph convolutional
neural network and multi-feature fusion attention mechanism. This makes the model
better at expressing itself compared to other models. On the NYT dataset and WebNLG
dataset, the F1-value of the model proposed in this paper improves by 1.3% and 0.4%,
respectively, compared to the baseline model OneRel. Our proposed model, MLSRel, has
better performance improvement for entity-relationship triple group extraction in sentences.
It is easier to deal with the problem of overlapped triples with the model. The experiment
results are also looked at to show that the model proposed in this study does not enhance
the NYT dataset as much as the other models. It is possible that this is due to the fact that
the BERT model has a low representational learning ability on this dataset, which causes
errors spread among the training tasks. This, in turn, leads to the joint extraction of triples,
which does not result in an improvement in performance, but instead causes error triples
to appear.

4.5. Ablation Experiment

In this paper, we base our model on OneRel et al. [33]. Ablation experiments are
performed on the NYT and WebNLG datasets for the method proposed in this paper. The
results are shown in Table 4. Row 1 of Table 4 shows the experimental results for the baseline
model, rows 2 and 3 show the experimental results with the addition of global semantic
dependency vectors and syntactic dependency vectors, row 4 shows the experimental
results with the addition of the multi-feature attention mechanism, and row 5 shows the
experimental results with the addition of global semantic syntactic dependency vectors
and the multi-feature attention mechanism.
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Table 4. Comparative results of ablation experiments.

Model NYT Datasets WebNLG Datasets
F1 (%) F1 (%)

Baseline 0.928 0.943
+GS 0.930 0.936
+GY 0.933 0.940

+AMF 0.940 0.946
+GS+GY 0.937 0.945

+GS+GY+AMF 0.941 0.947

After adding the Global Semantic Dependency Vector (+GS), Global Syntactic De-
pendency Vector (+GY), and Multi-Feature Attention Mechanism (+AMF), respectively,
the model’s value on two of the datasets improved. However, it decreased on the WebNLG
dataset. The reason for this analysis may be that, although the global semantic features of
the English characters in the sentence are fully considered, it is not sufficiently characterized
when mining the association information of multiple semantics of head/tail entities at a
deeper level. It can bring noisy information to the model and affect the performance of
triple extraction. After adding the Global Semantic Dependency Vector (+GS) and Global
Syntactic Dependency Vector (+GY) at the same time, the F1-values on the two datasets are
93.7%, 94.5%, respectively, and the F1-values are all improved. It shows that the proposed
fused global semantic and syntactic dependency graph embedding vectors can effectively
improve the extraction triples. Finally, after adding Global Semantic Dependency Vector
(+GS), Global Syntactic Dependency Vector (+GY), and Multi-feature Attention Mechanism
(+AMF) at the same time, the values on the two datasets are improved by 1.3%, 0.4%,
respectively. It is shown that the proposed fusion of global semantic and syntactic depen-
dency graph embedding vectors and a multi-feature attention mechanism can help the
baseline model improve English triples extraction. The reason for this analysis may be that
semantic and syntactic dependency analysis is able to uncover semantic features between
word granularity and provide deeper information about the dependencies between words.
The constructed multi-feature attention mechanism is able to capture the correlation be-
tween the word granularity level and the target entity to further mine the sentence-level
semantics. The above strategy can effectively solve the problems of triples overlapping and
the existence of entity boundary ambiguity in relation extraction.

4.6. Question Analysis

In this paper, we have designed a knowledge Q&A system based on the campus traffic
event knowledge graph, which can quickly and effectively assist the managers on the
university campus to deal with traffic safety events and improve the level of intelligent
emergency management. The Q&A system can also adopt different answer selection
strategies according to different types of events.

4.7. Graph Visualization

Based on the risk keywords (university traffic accidents, etc.), taking the universi-
ties in Henan Province as an example, we collected and organized real textual informa-
tion about university on-campus traffic risk events from the official government website,
Weibo, and Baidu news webpage. We constructed a comprehensive knowledge graph
of on-campus traffic safety events to assist the relevant departments in their oversight.
The visualization diagram of the knowledge graph part of the university traffic safety
events is shown in Figure 4.
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Figure 4. Visualizing the knowledge graph of traffic safety events in universities.

5. Conclusions

The frequent occurrence of campus safety events has brought serious security risks
to the safety of teachers and students. This paper proposes a knowledge graph construc-
tion method for campus traffic events for the safety of students and teachers, in which
the proposed event knowledge ontology model provides a canonical definition for the
construction of university traffic safety event knowledge graphs, the improved MLSRel
model effectively solves the triples overlapping problem and the fuzzy entity boundary
problem in relationship extraction, and the method is able to protect the safety of students
and teachers. However, this paper’s model has limitations. For example, complex logical
relationships between multiple events (cause and effect, inversion, etc.) express the need
for consideration. The constructed knowledge graph of traffic safety events on university
campuses lacks explainability. We will keep working to make the model structure better so
it can handle complex relational situations. We will also look into event knowledge graph
methods that are easy to understand.
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Appendix A

Appendix A.1. Architecture Design of Knowledge Graph Construction for Traffic Safety Events
in University

The detailed model architecture of this paper is shown in Figure A1. The graph has
physical, computing, storage, virtualization, and graph construction layers. The physical
resource layer is the hardware server. The computing and storage resource layer mainly
includes Mysql, Neo4j databases, GPU and CPU computing resources. Mysql stores struc-
tured data, and Neo4J stores knowledge-based triple-group graph data [46]. GPU and
CPU computing resources can provide computing support for data acquisition, ontology
construction, and entity and relationship extraction model training [47]. The virtualization
layer manages and schedules resources using KVM-QEMU, and kubernetes. It boosts
resource efficiency and overcomes model training’s memory shortage on a single device.
Containerization technology can effectively reduce the difficulty for users to construct
knowledge graphs. The graph construction layer is mainly for data processing and obtain-
ing knowledge about graph triples, etc.

Figure A1. Architecture diagram of knowledge graph construction for traffic safety events at university.

Appendix A.2. Architecture Design of Virtualized Resources and Scheduling Technology

As shown in Figure A2, we first use KVM-QEMU technology to achieve complete
virtualization of hardware resources. Specifically, you need to configure a virtualized
resource pool environment for KVM-QEMU. KVM is loaded into the Libvirt kernel in the
form of a driver module, making the Libvirt kernel an efficient virtual machine monitor and
QEMU for device virtualization. Loading the hypervisor and Hyper-visor controls virtual
resources after constructing the virtualized resource pool [48]. Immediately following
this, the Device plugin enables kubernetes to properly schedule pods to GPU and CPU
resource nodes based on constraints. Every pod can contain one or more containers. When
kubelet finds that a successfully scheduled pod requests GPU (CPU) resources, it makes an
allocation request to the device plugin to allocate GPU (CPU) resources for the pod.
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Figure A2. Architecture diagram of virtualized resources and scheduling technology.

Appendix A.3. Design of Knowledge Graph Entities and Attribute Labels for Traffic Safety Events
in the University

Table A1. Design of knowledge graph entities and attribute labels for traffic safety events in the
university.

Serial Number Entity and Attribute
Tag Name

Entity and Attribute
Label Meaning Example

1 Location Geographic location of
the event

A university in a city in
a province

2 Time Time of event November 2010

3 Source of information
Relevant websites

where the event was
reported

Dahe Network

4 Event subject People information Third-year
university student

5 Event data

Number of persons
involved in the event,
reasons for the event,

etc.

1 victim, car driving
against traffic, etc.

6 Emergency solutions
Emergency response
plan for traffic safety

events

Ambulance rescue,
police vehicle response,

etc.

7 Model methodology
Modeling methods that
are relevant to the study
of traffic safety events

Machine learning and
other methods
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Appendix A.4. Relationship Types and Samples of Knowledge Graphs for Traffic Safety Events in
the University

Table A2. Relationship types and samples of knowledge graphs for traffic safety events in the university.

Serial Number Relationship Type Name Example

1 Published content
<Dahernet, Published Content, Detailed
Information on Traffic Safety Events on

University Grounds>
2 Date of occurrence <An event, Time of occurrence, November 2010>

3 Place of occurrence <An event, Place of occurrence, A university in a
city in a province>

4 Event objects <An event, Object of the event, Member of the
community/student>

5 Cause of occurrence <An event, The reason for it, A car driving
against the traffic>

6 Type of accident <An event, Type of accident, Automobile
accident>

7 Processing department
<An event, Handling department, Public Security

Bureau>, <An event, Handling department,
Hospital>

8 Result <An event, The result of the process, The arrest of
the suspect>

9 Reference plan <An event, A reference plan, A measure to deal
with a past case>

10 Model methodology <An event, Modeling methods, Machine learning,
Statistical analysis, etc.>

Appendix A.5. NYT and WebNLG Dataset Download Links

NYT: https://github.com/davidsbatista/Annotated-Semantic-Relationships-Datasets/
blob/master/datasets/DataSet-IJCNLP2011.tar.gz (accessed on 16 June 2023).

WebNLG: https://github.com/fuzihaofzh/webnlg-dataset (accessed on 15 June 2023).
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4. Cvitković, I.; Vilke, S.; Krpan, L.; Brlek, P. Removing regulatory features of traffic control in school zones. Transp. Res. Procedia

2022, 60, 228–234. [CrossRef]
5. Yan, S.; Su, Q.; Gong, Z.; Zeng, X. Fractional order time-delay multivariable discrete grey model for short-term online public

opinion prediction. Expert Syst. Appl. 2022, 197, 116691. [CrossRef]
6. Sayed, A. Use of Machine Learning and Natural Language Processing to Enhance Traffic Safety Analysis. Ph.D. Thesis, The

University of Wisconsin-Milwaukee, Milwuakee, WI, USA, 2022.
7. Zhang, X.; Zhang, J. Classification and topic tracking of college students’ cybersecurity education based on the internet. J. Comput.

Methods Sci. Eng. 2023, in press.
8. Telima, M.; El Esawey, M.; El-Basyouny, K.; Osama, A. The use of crowdsourcing data for analyzing pedestrian safety in urban

areas. Ain Shams Eng. J. 2023, 14, 102140. [CrossRef]
9. Schwalbach, J.; DeAngelis, C.A. School sector and school safety: A review of the evidence. Educ. Rev. 2022, 74, 882–898. [CrossRef]
10. Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [CrossRef]
11. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef]
12. Zhu, G.; Zhang, M.; Xi, Y. Knowledge graph-based prediction of evolutionary outcomes of urban rail transit emergencies. J.

Electron. Inf. 2023, 45, 949–957.
13. Sun, X.; Mengm Y.; Wang, W. Recognition of microblog traffic events based on knowledge graph and target detection. Data Anal.

Knowl. Discov. 2020, 4, 136–147.

https://github.com/davidsbatista/Annotated-Semantic-Relationships-Datasets/blob/master/datasets/DataSet-IJCNLP2011.tar.gz
https://github.com/davidsbatista/Annotated-Semantic-Relationships-Datasets/blob/master/datasets/DataSet-IJCNLP2011.tar.gz
https://github.com/fuzihaofzh/webnlg-dataset
http://doi.org/10.1016/j.cjtee.2019.07.004
http://www.ncbi.nlm.nih.gov/pubmed/31506232
http://dx.doi.org/10.1016/j.aap.2022.106589
http://www.ncbi.nlm.nih.gov/pubmed/35151095
http://dx.doi.org/10.1016/j.ocecoaman.2023.106660
http://dx.doi.org/10.1016/j.trpro.2021.12.030
http://dx.doi.org/10.1016/j.eswa.2022.116691
http://dx.doi.org/10.1016/j.asej.2023.102140
http://dx.doi.org/10.1080/00131911.2020.1822789
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1109/TNNLS.2021.3070843


Electronics 2024, 13, 11 17 of 18

14. Song, Y.; Li, W.; Dai, G.; Shang, X. Advancements in Complex Knowledge Graph Question Answering: A Survey. Electronics 2023,
12, 4395. [CrossRef]

15. Munir, S.; Jami, S.I.; Wasi, S. Towards the modelling of Veillance based citizen profiling using knowledge graphs. Open Comput.
Sci. 2021, 11, 294–304. [CrossRef]

16. Ge, Y.; Tian, Y.C.; Yu, Z.G.; Zhang, W. Memory sharing for handling memory overload on physical machines in cloud data centers.
J. Cloud Comput. 2023, 12, 1–20. [CrossRef]

17. Li, J.Y.; Du, K.J.; Zhan, Z.H.; Wang, H.; Zhang, J. Distributed differential evolution with adaptive resource allocation. IEEE Trans.
Cybern. 2022, 53, 2791–2804. [CrossRef] [PubMed]

18. Carrión, C. Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]
19. ALshalabi, H.; Tiun, S.; Omar, N.; Ali Alezabi, K.; Al-Aswadi, F.N. The Effectiveness of Arabic Stemmers Using Arabized Word

Removal. Int. J. Inf. Sci. Manag. 2022, 20, 87–102.
20. Spoladore, D.; Sacco, M.; Trombetta, A. A review of domain ontologies for disability representation. Expert Syst. Appl. 2023,

228, 120467. [CrossRef]
21. Wang, F.; Yang, J.; Xu, L.L. Research on ontology construction for fire emergency management. J. Intell. 2020, 39, 914–925.
22. Wang, T.; Zheng, L.; Lv, H.; Zhou, C.; Shen, Y.; Qiu, Q.; Li, Y.; Li, P.; Wang, G. A distributed joint extraction framework for

sedimentological entities and relations with federated learning. Expert Syst. Appl. 2023, 213, 119216. [CrossRef]
23. Upadhyay, P.; Balalau, O.; Manolescu, I. Open Information Extraction with Entity Focused Constraints; Findings of the Association for

Computational Linguistics; EACL: Dubrovnik, Croatia, 2023; pp. 1255–1266.
24. Yang, J.; Wu, Z.; Wu, R. Micro-Expression Spotting Based on VoVNet, Driven by Multi-Scale Features. Electronics 2023, 12, 4459.

[CrossRef]
25. Zhu, X.; Zhou, G.; Chen, J.; Lu, J.; Xiang, Y. A single-stage joint entity relationship extraction method based on enhanced sequence

labeling strategy. Comput. Sci. 2023, 50, 184–192.
26. Lee, C.V.G.E.; Pierleoni, A. Improving Distantly Supervised Document-Level Relation Extraction Through Natural Language

Inference. DeepLo 2022, 2022, 14.
27. Ding, X.; Zhou, G.; Lu, J.; Chen, J. Research on document-level relationship extraction methods for enhanced entity representation.

Comput. Sci. 2023, 50, 157–162.
28. Omotehinwa, T.O. Examining the developments in scheduling algorithms research: A bibliometric approach. Heliyon 2022,

8, e09510. [CrossRef] [PubMed]
29. Abbasi, R.; Martinez, P.; Ahmad, R. An ontology model to represent aquaponics 4.0 system’s knowledge. Inf. Process. Agric. 2022,

9, 514–532. [CrossRef]
30. Polenghi, A.; Roda, I.; Macchi, M.; Pozzetti, A.; Panetto, H. Knowledge reuse for ontology modelling in Maintenance and

Industrial Asset Management. J. Ind. Inf. Integr. 2022, 27, 100298. [CrossRef]
31. Li, Z.; Liu, X.; Wang, X.; Liu, P.; Shen, Y. Transo: A knowledge-driven representation learning method with ontology information

constraints. World Wide Web 2023, 26, 297–319. [CrossRef]
32. Agrawal, G.; Deng, Y.; Park, J.; Liu, H.; Chen, Y.-C. Building Knowledge Graphs from Unstructured Texts: Applications and

Impact Analyses in Cybersecurity Education. Information 2022, 13, 526. [CrossRef]
33. Shang, Y.M.; Huang, H.; Mao, X. Onerel: Joint entity and relation extraction with one module in one step. In Proceedings of the

AAAI Conference on Artificial Intelligence 36, Vancouver, BC, Canada, 22 February–1 March 2022; pp. 11285–11293.
34. Liu, Y.; Wei, S.; Huang, H.; Lai, Q.; Li, M.; Guan, L. Naming entity recognition of citrus pests and diseases based on the

BERT-BiLSTM-CRF model. Expert Syst. Appl. 2023, 234, 121103. [CrossRef]
35. Bokolo, B.G.; Liu, Q. Deep Learning-Based Depression Detection from Social Media: Comparative Evaluation of ML and

Transformer Techniques. Electronics 2023, 12, 4396. [CrossRef]
36. Ali, A.; Zhu, Y.; Zakarya, M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows

prediction. Neural Netw. 2022, 145, 233–247. [CrossRef] [PubMed]
37. Yang, X.; Li, W.; Chen, Y.; Guo, Y. Construction of a COVID-19 Pandemic Situation Knowledge Graph Considering Spatial

Relationships: A Case Study of Guangzhou, China. ISPRS Int. J.-Geo-Inf. 2022, 11, 561. [CrossRef]
38. Lai, T.; Cheng, L.; Wang, D.; Ye, H.; Zhang, W. RMAN: Relational multi-head attention neural network for joint extraction of

entities and relations.Appl. Intell. 2022, 52, 3132–3142. [CrossRef]
39. Zhao, K.; Xu, H.; Cheng, Y.; Li, X.; Gao, K. Representation iterative fusion based on heterogeneous graph neural network for joint

entity and relation extraction. Knowl.-Based Syst. 2021, 219, 106888. [CrossRef]
40. Zeng, D.; Zhang, H.; Liu, Q. CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning.

In Proceedings of the AAAI Conference on Artificial Intelligence 34, New York, NY, USA, 7–12 February 2020; pp. 9507–9514.
41. Nayak, T.; Ng, H.T. Effective modeling of encoder-decoder architecture for joint entity and relation extraction. In Proceedings of

the AAAI Conference on Artificial Intelligence 34, New York, NY, USA, 7–12 February 2020; pp. 8528–8535.
42. Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; Chang, Y. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction. In

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Seattle, WA, USA, 5–8 July 2020;
pp. 1476–1488.

43. Wang, Z.; Yang, L.; Yang, J.; Li, T.; He, L.; Li, Z. A Triple Relation Network for Joint Entity and Relation Extraction. Electronics
2022, 11, 1535. [CrossRef]

http://dx.doi.org/10.3390/electronics12214395
http://dx.doi.org/10.1515/comp-2020-0209
http://dx.doi.org/10.1186/s13677-023-00405-x
http://dx.doi.org/10.1109/TCYB.2022.3153964
http://www.ncbi.nlm.nih.gov/pubmed/35286273
http://dx.doi.org/10.1145/3539606
http://dx.doi.org/10.1016/j.eswa.2023.120467
http://dx.doi.org/10.1016/j.eswa.2022.119216
http://dx.doi.org/10.3390/electronics12214459
http://dx.doi.org/10.1016/j.heliyon.2022.e09510
http://www.ncbi.nlm.nih.gov/pubmed/35663729
http://dx.doi.org/10.1016/j.inpa.2021.12.001
http://dx.doi.org/10.1016/j.jii.2021.100298
http://dx.doi.org/10.1007/s11280-022-01016-3
http://dx.doi.org/10.3390/info13110526
http://dx.doi.org/10.1016/j.eswa.2023.121103
http://dx.doi.org/10.3390/electronics12214396
http://dx.doi.org/10.1016/j.neunet.2021.10.021
http://www.ncbi.nlm.nih.gov/pubmed/34773899
http://dx.doi.org/10.3390/ijgi11110561
http://dx.doi.org/10.1007/s10489-021-02600-2
http://dx.doi.org/10.1016/j.knosys.2021.106888
http://dx.doi.org/10.3390/electronics11101535


Electronics 2024, 13, 11 18 of 18

44. Sui, D.; Zeng, X.; Chen, Y.; Liu, K.; Zhao, J. Joint entity and relation extraction with set prediction networks. IEEE Trans. Neural
Netw. Learn. Syst. 2023, in press. [CrossRef]

45. Wang, Y.; Sun, C.; Wu, Y.; Zhou, H.; Li, L.; Yan, J. ENPAR: Enhancing entity and entity pair representations for joint entity relation
extraction. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics,
Kyiv, Ukraine, 19–23 April 2021; pp. 2877–2887.

46. Sun, L.; Dou, Y.; Yang, C.; Zhang, K.; Wang, J.; Philip, S.Y.; He, L.; Li, B. Adversarial attack and defense on graph data: A survey.
IEEE Trans. Knowl. Data Eng. 2022, 35, 7693–7711. [CrossRef]

47. Liang, C.; Yang, J.; Du, R.; Hu, W.; Tie, Y. Non-Uniform Motion Aggregation with Graph Convolutional Networks for Skeleton-
Based Human Action Recognition. Electronics 2023, 12, 4466. [CrossRef]

48. Monteil, J.B.; Iosifidis, G.; DaSilva, L.A. Learning-based Reservation of Virtualized Network Resources. IEEE Trans. Netw. Serv.
Manag. 2022, 19, 2001–2016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2023.3264735
http://dx.doi.org/10.1109/TKDE.2022.3201243
http://dx.doi.org/10.3390/electronics12214466
http://dx.doi.org/10.1109/TNSM.2022.3144774

	Introduction
	Related Work
	Virtualization Management and Scheduling Technology
	Ontology Modeling Methodology
	Entity Relationship Joint Extraction Model

	Methodology
	Virtualized Resource Management and Scheduling Design
	Ontology Modeling Design
	Event Extraction Model Design
	Graph Embedding Representation Improvement
	Multi-Layer Semantic Graph Convolutional Network Design
	Multi-Feature Fusion Attention Mechanism Design


	Experiment
	Experimental Datasets and Evaluation Metrics
	Experimental Environment Setting
	Experimental Comparison Model
	Experimental Results and Analysis
	Ablation Experiment
	Question Analysis
	Graph Visualization

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5

	References

