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Abstract: In order to improve the prediction performance of existing methods amidst multi modula-
tion coupling interference in complex electromagnetic environments, this paper introduces a novel
approach that integrates wavelet transform with a temporal convolutional network. The model
begins with a data preprocessing stage, where wavelet transform decomposes the original signal into
various scales. This step generates scale coefficients across different frequency categories, effectively
reducing the signal length. To enhance the model’s ability to capture long-term dependencies in
time series data, temporal convolutional networks are employed for feature extraction. Moreover,
the model’s performance is further refined by incorporating an attention mechanism-driven feature
fusion strategy. This strategy methodically combines high and low frequency features along with
local and global characteristics. The model’s efficacy is validated using a custom MATLAB dataset,
with simulation results confirming a significant improvement in prediction accuracy.

Keywords: receiver modeling; interference response; wavelet transform; temporal convolutional
network; feature fusion

1. Introduction

With the continuous advancement in radio frequency microwave device technology,
the electromagnetic environment faced by radio frequency microwave equipment in naval
formations has become increasingly complex [1,2], and the problem of co-frequency interfer-
ence is becoming more and more obvious. When the spectrum allocation is not appropriate,
the RF transmitting/receiving equipment between the platforms may cause mutual inter-
ference. In other words, we commonly refer to this as the electromagnetic compatibility
issue within the ship formation [3,4]. To ensure electromagnetic compatibility within the
system, it is crucial to establish a behavioral model for radio frequency devices and predict
their operational conditions under potential interference. Due to the high sensitivity of
the front-end receivers of the equipment [5,6], modeling the front-end receivers of radio
frequency microwave devices is a key step in achieving interference response prediction.
Establishing a behavioral model of the receiver to predict the receiver’s interference re-
sponse to potential interference is a key prerequisite for conducting scientific and rational
spectrum management.

The current behavior-level modeling of radio frequency microwave devices can be
divided into two approaches. One is represented by polynomial models [7–10]. Ref. [7]
established a nonlinear model of an operational amplifier based on the Volterra series.
As the memory depth and the order of nonlinearity increase, the number of coefficients
in the Volterra series grows exponentially, making the Volterra series mainly suitable
for weakly nonlinear systems. To reduce the complexity of the Volterra model and ease
computational difficulty, Refs. [11,12] discuss nonlinear behavior models based on Wiener
and Hammerstein models. However, the accuracy of these models still fails to satisfy
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researchers [13]. The other approach utilizes a neural network, with commonly used
methods including BP neural networks [14], support vector machines [15], and radial
basis neural networks [16,17], among others. However, when the input signal and the
neural network exhibit complex nonlinear characteristics, it is challenging to achieve good
modeling performance with low-complexity neural network models. This is due to the fact
that the accuracy of the neural network model is highly dependent on the quality of the
artificial features used.

In contrast, deep learning approaches eliminate the need for reliance on manually
engineered features, as they are capable of autonomously extracting and learning relevant
characteristics from the data. In recent years, deep learning methods have been vigorously
researched for predicting the nonlinear behavior of radio frequency microwave devices,
with a focus on sequence models represented by CNN [18], RNN [19], LSTM [20] and
others. In [18], researchers leveraged the weight-sharing feature of CNNs to extract features
from one-dimensional time-domain signals, establishing a nonlinear model for power
amplifiers. Ref. [21] discussed the use of Recurrent Neural Networks (RNN) for modeling
RF nonlinear devices. Ref. [19] built upon the RNN model by adding derivative information
to the training dataset, making training more efficient and achieving the same accuracy as
traditional RNNs with less data. To address the gradient vanishing issue encountered in
traditional RNN training, Ref. [20] proposed a nonlinear model based on LSTM networks,
preventing gradient disappearance through the forget gate in LSTM networks. Overall,
LSTM networks are adept at discovering and utilizing the intrinsic patterns of long sequence
data and have advantages in temporal prediction accuracy compared to CNNs and RNNs.
However, when the signal feature quantity is large [22], and there are multiple modulation
types of signal superposition in the environment, the performance of LSTM may decrease.

To overcome the limitations of existing methods and enhance nonlinear predictive
performance, we have proposed a novel approach that combines a Temporal Convolutional
Network (TCN) with wavelet transform to enhance the nonlinear predictive performance
of the receiver’s interference response prediction model. TCN employs sparse connections,
allowing for easy control of the model’s receptive field by adjusting the size of the con-
volution kernel or adding more layers. Therefore, it is widely used in the modeling and
prediction of time series [23,24]. The specific work carried out in this paper is as follows:

• The electromagnetic environment, where the receiver of radar is located, is often
riddled with various types of interference. This complexity hampers the performance
of existing models [20] in achieving effective modeling. To tackle this, we propose
a receiver behavior model extraction architecture based on TCN. This approach is
designed specifically to enhance nonlinear modeling performance under the influence
of multiple interfering signals;

• To simplify the feature extraction process, we employ wavelet transform to decompose
signals into coefficients across various frequency scales. This approach not only
diminishes the coupling among different frequency components but also condenses
the signal length, thereby facilitating more efficient feature extraction by the model.
Furthermore, to effectively integrate features across these different frequency scales,
we have incorporated a feature fusion method named attention feature fusion;

• Compared existing methods, our numerical experiments indicate that the proposed
method has a stronger generalization ability and can adapt to the complex and change-
able electromagnetic environment.

In summary, this paper proposes a radar receiver interference response prediction
model named Wavelet-TCN-AFF (Wavelet-Temporal Convolutional Network-Attention
Feature Fusion), which addresses the performance degradation of existing methods when
processing long-distance and complex time series signals. Moreover, this model can adapt
to interference signals of various typical modulation types in complex electromagnetic
environments. By collecting operational data from a typical receiver model established in
MATLAB as a dataset, the effectiveness of the proposed model in predicting typical radar
radiation interference is validated.
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2. Methods

The Wavelet-TCN-AFF model in this paper is shown in Figure 1. The model consists of
four components: a wavelet transform module, a TCN feature extraction module, a stacked
AFF feature fusion module, and a predictor. Initially, the time-domain signal from the
antenna aperture is taken as the input signal and decomposed into coefficients representing
different frequency components through the wavelet decomposition module. In the second
step, the TCN model extracts the corresponding features of each frequency component from
each layer of coefficients, which will be used as local features of the signal. Concurrently,
to avoid loss of some global features of the original signal after wavelet transformation,
we compress the input signal through pooling operations to obtain its global features.
Thirdly, the stacked AFF module is used to fuse local and global features across different
frequency scales. Finally, the predictor, consisting of fully connected layers, predicts the
time-domain signal output of the receiver’s video end based on the fused features. This
output time-domain signal is the interference response of the receiver, representing the
model’s prediction of the time domain waveform at the receiver’s video output. The
following sections provide a detailed introduction to each component of the WTA model.
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2.1. Wavelet Transform

In the field of signal processing, both high-frequency and low-frequency characteristics
of the input signal contain information about the interference response at the receiver’s
output. However, due to the coupling of signals of different frequencies in the time domain,
it poses a challenge for deep learning models to extract features. In previous studies [20],
when the input to the model is an unprocessed raw signal sequence, it is difficult for the
model to extract deep features directly from the raw sequence. Unlike Fourier transforms
that provide only frequency domain information and lose local time domain information,
wavelet transforms can obtain local time information of the signal by shifting the mother
wavelet and frequency information by scaling the wavelet. Wavelet transform is a multiscale
analysis method, where the high-frequency component decomposed by the wavelet has a
high time resolution but low-frequency resolution, whereas the low-frequency component
has low time resolution but high-frequency resolution. This characteristic makes wavelet
transform an effective method for capturing both high-frequency and low-frequency fea-
tures of a signal, thereby improving the performance of signal processing.

In wavelet decomposition, the original signal is decomposed into sub-signals of
different frequency bands through the scale function ϕ(t) and wavelet basis function ψ(t).
The wavelet approximation coefficients a0(k) and wavelet detail coefficients dj(k) of a discrete
signal s(t) with a length of M can be represented as:

a0(k) =
1
M

M

∑
m=1

s(m)ϕ0,k(m) (1)
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dj(k) =
1
M

M

∑
m=1

s(m)ψj,k(m) (2)

where the 0 in Equation (1) represents the coarsest scale level. It corresponds to the lowest-
frequency component in multi-resolution analysis. k in Equation (1) represents the discrete
time index at the current scale. M indicates the length of the signal. j in Equation (2)
represents the scale level of the detail coefficient.

It is noteworthy that the choice of wavelet series and wavelet basis is a key factor
affecting the effectiveness of wavelet decomposition. To avoid the impact of scale span
on subsequent signal processing, the selected parameters should be able to decompose
the signal into low frequency signals with clear periodicity and clean waveforms, and
high-frequency signals with distinct detail information. To this end, this study selects
Daubechies wavelets as the wavelet basis function [25].

2.2. TCN Model

Although wavelet transform converts signals into coefficients of different scales, there
still exists a problem, namely that the generated data volume remains very large, making it
unsuitable for direct use in decision making. To better handle the relationships between
interference signal sequences at different time scales, this study introduces the TCN [26] as
the feature extraction module. The TCN mainly consists of three parts: causal convolution,
dilated convolution, and residual connections. The introduction of causal convolution
ensures a causal relationship between network layers, while dilated convolution expands
the receptive field without increasing the network depth, thus better understanding the
time-domain coupling information brought by interference signals of different frequency
components in complex electromagnetic environments. The introduction of residual con-
nections helps to solve the problem of gradient vanishing or explosion that may occur due
to increased network layers. Therefore, by combining wavelet transform and TCN network,
our research aims to compress signal length through wavelet transform to reduce the com-
plexity of feature extraction and to enhance the model’s performance in processing complex
time series data through the TCN network. In summary, our method aims to address the
data volume problem in signal processing and improve the model’s performance, enabling
more effective handling of complex time series data.

The structure of the time convolutional network is shown in the Figure 2. d respects
the dilatation rate. As the depth of the network increases, the dilation factor typically
increases in an exponential manner by a factor of 2, thereby exponentially expanding the
receptive field, allowing for a broader field of view with fewer layers and extracting deeper
temporal features while accessing more distant historical data.
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Expansive convolution is the first step of TCN network. For a one-dimensional time
series x, the expansion convolution operation formula [26] is:

F(x) =
N−1

∑
i=0

f (i) · xs−di (3)

where x represents the input sequence; f is the filter; d is the dilation factor; i is the
convolution kernel position; N is the convolution kernel size; s-di refers to the s-di-th
element of the previous layer.

As the causal convolution layers and dilated convolution layers are stacked, the
introduction of residual connections prevents the gradient vanishing phenomenon that
may occur as the network deepens. The residual structure combines the input x with the
output F(x) of the convolutional network through addition operation, with the calculation
formula as follows:

TCNout = Activation(x + F(x)) (4)

where Activation(·) is the activation function.

2.3. Attention Feature Fusion

The purpose of incorporating AFF [27] is to enable adaptive amalgamation of features
from various frequency components, thus guaranteeing that the fusion of features is not
excessively biased towards particularly prominent traits. In certain research areas, such
as radar signal type identification [28–30], the core idea is to identify the most unique and
prominent features of the signal. However, in this research, unlike other classification tasks,
the signal characteristics here are unique. Some less prominent frequency components may
not equate to irrelevant signal features, as they could influence the response at the output
end after passing through the power amplifier in the receiver. Therefore, the adaptive
feature fusion of AFF is crucial for integrating both significant and less significant features.

Inspired by the work of [27], an Attention Feature Fusion (AFF) block was introduced
to fuse the features of multiscale frequency components. The AFF structure is shown in
Figure 3. The AFF module performs initial feature fusion on two input features, such
as C1 and C2, and then processes them through channel attention calculations for both
local and global features. The channel attention for local features begins with a point-
wise convolution applied to the input feature X. This convolutional step, employing a
1 × 1 kernel, primarily serves to modify the channel dimensions of the input feature map
which can be described as

X = C1 + C2 (5)

Y = PWConv1(X) (6)

where the PWConv1 stands for the point-wise convolution.
Following the convolution, the output undergoes batch normalization, a standard

process in deep learning architectures. The output of batch normalization is

Z = B(Y) (7)

where the B is batch normalization.
Subsequent to batch normalization, the Rectified Linear Unit (ReLU) activation func-

tion is applied. The output of ReLU is

W = δ(Z) (8)

where the δ stands for ReLU.
The process is then reiterated: another point-wise convolution is applied, followed by

a final batch normalization step
V = δ(W) (9)
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L(X) = B(V) (10)

The method for computing the channels of the global features is similar to that of
the local features, requiring only a global average pooling operation to be performed first
on the input data. In this study, a stacked fusion method is used to integrate the local
feature extraction results of three layers of wavelet coefficients and the global feature
extraction results. In the local features, the fusion proceeds from high-frequency features to
low-frequency features, and then the local features are fused with the global features. The
specific calculation method is illustrated in Figure 3b.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 15 
 

 

� = �������(�)  (6)

where the PWConv1 stands for the point-wise convolution. 

Following the convolution, the output undergoes batch normalization, a standard 

process in deep learning architectures. The output of batch normalization is 

� = �(�)  (7)

where the B is batch normalization. 

Subsequent to batch normalization, the Rectified Linear Unit (ReLU) activation func-

tion is applied. The output of ReLU is 

� = δ(�) (8)

where the δ stands for ReLU. 

The process is then reiterated: another point-wise convolution is applied, followed 

by a final batch normalization step 

� = δ(�) (9)

�(�) = �(�) (10)

The method for computing the channels of the global features is similar to that of the 

local features, requiring only a global average pooling operation to be performed first on 

the input data. In this study, a stacked fusion method is used to integrate the local feature 

extraction results of three layers of wavelet coefficients and the global feature extraction 

results. In the local features, the fusion proceeds from high-frequency features to low-

frequency features, and then the local features are fused with the global features. The spe-

cific calculation method is illustrated in Figure 3b. 

C1 C2 Cn Global Feature

AFF AFF AFF Output

C1

+

C2

Sigmoid

×

AFF 
Output

×

Global Pooling Poin-wise ConvReLU

(a)

(b)

+ +

 

Figure 3. AFF process of the proposed wavelet-TCN-AFF model. (a) represents the inside struct of 

AFF; (b) represent the method of feature fusion. 

  

Figure 3. AFF process of the proposed wavelet-TCN-AFF model. (a) represents the inside struct of
AFF; (b) represent the method of feature fusion.

3. Numerical Experiments and Analysis
3.1. Sample Generation Considering the Diversity of Interference Forms

The modeling subject of this study is a typical receiver, which was simulated in MAT-
LAB version 2021b. The configuration of the receiver is presented in Table 1. The following
parameters were used for setting and simulation. The input signal of the simulated re-
ceiver uses a linear frequency modulated signal to simulate echo and interference signals
superimposed in the time domain. The echo signal is simulated with a center frequency of
3.2 GHz, a bandwidth of 5 MHz, and a pulse width of 1 µs. In simulating the interference
signal, considering the variety of interference types in complex electromagnetic environ-
ments, we set up six different interference scenarios in the sample generation process.
The dataset is divided according to each type of interference, including Continuous Wave
Interference (dataset CW Jam), Linear Frequency Modulated Interference (dataset LFM
Jam), Cosine Modulated Nonlinear Frequency Modulated Interference (dataset NLFM Jam),
Binary Phase Shift Keying Interference (dataset BPSK Jam), Quaternary Phase Shift Keying
Interference (dataset QPSK Jam), and Binary Frequency Shift Keying Interference (dataset
BFSK Jam).
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Table 1. The configuration of the receiver.

Receiver Parameter Value

Center frequency 3.2 GHz
Filter bandwidth 5 MHz
Lo1 1700 MHz
Lo2 1200 MHz
Front-end gain of receiver 75 dB

The parameters of the interference signals in these datasets are as follows: The range
of the center frequency is from 3197.5 MHz to 3202.5 MHz with a sampling interval of
1 MHz. The range of the bandwidth is from 1 MHz to 5 MHz with a sampling interval
of 1 MHz. The range of the interference signal power is from −15 dBm to 15 dBm with a
sampling interval of 5 dBm. Additionally, the Nonlinear Frequency Modulation Signal uses
cosine modulation. The binary phase shift keying signal uses a 10-bit random sequence
with a roll off factor of 0.35. In the binary frequency shift keying signal, f1 = 0.5 × B and f2
is 0.5 × B, where B is the bandwidth.

The continuous wave interference dataset contains 77 samples, while each of the
other datasets contains 395 samples. We simulate the mixer process of the receiver in
MATLAB based on the interference parameters of each sample and collect the time-domain
waveforms at the input and output ends. This includes the time-domain data of the antenna
aperture signal and the time-domain data of the video end output. The parameters of
the receiver are as follows in the Table 1. Finally, we divide these collected datasets in an
8:1:1 ratio to obtain the training set, validation set, and test set required for subsequent
example analysis.

In order to evaluate the quality of the model, the determination coefficient R2 and
the normalized mean square error NMSE are used to measure the accuracy of the model
comprehensively. R-squared measures the degree of correlation between the predicted
value of the model and the actual value. The NMSE are often used as quality numbers for
comparing the performance of models. The calculation method for R2 is

R2 = 1 − ∑n
i=1
(
ypre − ytrue

)2

∑n
i=1(ytrue − ytrue)

2 (11)

where ypre represents the predicted value of the model, ytrue stands for the actual observed
value, and ytrue denotes the average of the actual observed values. The range of R2 is
(−∞, 1), and the closer R2 is to 1, the closer the predicted waveform of the model is to the
actual waveform, indicating a better prediction performance.

The calculation method for NMSE is

NMSE = 10lg

(
∑n

i=1
∣∣ypre − ytrue

∣∣2
∑n

i=1|ytrue|2

)
(12)

where ypre represents the predicted value of the model, ytrue stands for the actual observed value.

3.2. Model Verification

The operating platform of the experimental network model in this paper is a desktop
computer, the CPU is an Intel(R) Core(TM) i5-12600KF, the default frequency is 3.69 GHz,
the memory is 16.8 GB, and the GPU is an NVIDIA GeForce RTX 2060, the computing
framework is Pytorch version 1.12.0. To obtain the best configuration of hyperparameters,
after repeated testing, the hyperparameters as follows: The TCN convolutional layers are 2,
with filter numbers of 8 and 16, dilation factors of 1 and 2, kernel size of 2, and a dropout
rate of 0.2. The AFF module has 16 channels and a scaling factor of 4. The fully connected
layers have neuron counts of 16,000 and 8000 respectively. During the training process,
we used a batch size of 64, a training iteration count of 200, selected the Adam optimizer
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for network parameter optimization, and set the learning rate to 0.0005. We employed the
Mean Square Error (MSE) loss function for training and evaluation.

To evaluate the impact of the number of wavelet decomposition levels on the predic-
tive performance of our proposed model, we set the decomposition levels to 2, 3, and 4,
respectively, while keeping other parameters constant. As shown in the Figure 4, when
the number of decomposition levels is set to 3, the average coefficient of determination R2

value increases, and the accuracy of the model’s predictions is above 97%. However, when
the decomposition level is set to 4, the prediction accuracy of the model shows a slight
increase. Therefore, considering the complexity of the model and the prediction accuracy,
we consider setting the wavelet decomposition level to 3 to achieve a balance between
performance and complexity.
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To verify the effectiveness of the proposed model under different interference condi-
tions, we present in Figure 5 the time-domain waveforms of the video end output under
various interferences from (a) to (f), respectively representing NLFM, QPSK, LFM, CW,
BPSK, and BFSK interferences. The ordinate represents the amplitude of the signal, and the
ordinate represents the time. In the Figure 5, the blue solid line is the time-domain signal
(target value) which represents output from the video end of the receiver, and the red solid
line is the prediction result based on the model proposed in this paper. In order to display
the results of numerical implementation in more detail, the local interval marked by the
dotted line box is enlarged, as shown in Figures 6 and 7. The solid blue lines and dotted
red lines in Figures 6 and 7 represent the same meaning as in Figure 5. It can be seen that
the predicted results are very close to the observed results. In (a), the Nonlinear Frequency
Modulation (NLFM) interference is characterized by a central frequency offset of 3 MHz,
a bandwidth of 3 MHz, and an amplitude of 15 dBm. In (b), the Quadrature Phase Shift
Keying (QPSK) interference presents with a central frequency offset of 4 MHz, a bandwidth
of 3 MHz, and an amplitude of 5 dBm. For (c), the Linear Frequency Modulation (LFM)
interference features a central frequency offset of −5 MHz, a bandwidth of 5 MHz, and
an amplitude of 15 dBm. In (d), the Continuous Wave (CW) interference has a central
frequency offset of −3 MHz and an amplitude of 5 dBm, (e) involves the Binary Phase Shift
Keying (BPSK) interference, which has a central frequency offset of 5 MHz, a bandwidth
of 5 MHz, and an amplitude of −5 dBm. Lastly, in (f), the Binary Frequency Shift Keying
(BFSK) interference is identified with a central frequency offset of 0 MHz, a bandwidth of
5 MHz, and an amplitude of 5 dBm.
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Figure 6. The comparison between the predicted waveform and the actual waveform is described in
magnification 1. (a) Details of NLFM interference response, part 1; (b) Details of QPSK interference
response, part 1; (c) Details of LFM interference response, part 1; (d) Details of CW interference
response, part 1; (e) Details of BPSK interference response, part 1; (f) Details of BFSK interference
response, part 1.
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Figure 7. The comparison between the predicted waveform and the actual waveform is described in
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response, part 2; (c) Details of LFM interference response, part 2; (d) Details of CW interference
response, part 2; (e) Details of BPSK interference response, part 2; (f) Details of BFSK interference
response, part 2.

To validate the predictive performance of the proposed model in different electro-
magnetic interference environments, we selected four common data-driven methods for
comparative analysis. Table 2 represents the chosen model and the hyperparameters. The
RNN and LSTM was proposed by [20], where CNN is set to 1-d CNN.

Table 2. Network Structure of Different Methods.

Model Parameter Settings

RNN [20]
Num. of input neuron 8000
Hidden layer structure [8000, 8000]
Num. of output neuron 8000

LSTM [31]
Num. of input neuron 8000
Num. of neurons in the LSTM layer 8000
Num. of output neuron 8000

CNN

Num. of input neuron 8000
Num. of convolution kernels [2, 4]
Size of convolution kernels [3, 5]
Num. of output neuron 8000

TCN

Num. of input neuron 8000
Num. of convolution kernels [8, 16]
Size of convolution kernels 2
Num. of dilation size [2, 4]
Activation function ReLU
Num. of output neuron 8000
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Table 2. Cont.

Model Parameter Settings

Wavelet-TCN

Num. of Wavelet decomposition layer 3
Num. of input neuron 8000
Num. of convolution kernels [8, 16]
Size of convolution kernels 2
Num. of dilation size [2, 4]
Activation function ReLU
Num. of output neuron 8000

Wavelet-TCN-AFF

Num. of Wavelet decomposition layer 3
Num. of input neuron 8000
Num. of convolution kernels [8, 16]
Size of convolution kernels 2
Num. of dilation size [2, 4]
Activation function ReLU
Dilation factors [1, 2]
Num. of output neuron 8000

Comparing the results of TCN and Wavelet-TCN models highlights the enhancement
effect of wavelet transformation and the Attentional Feature Fusion (AFF) introduced in
this paper on predictive performance. In the Wavelet-TCN model, we concatenated features
extracted from wavelet coefficients at different scales.

Table 3 shows the results of prediction accuracy for different models on various
datasets. The first row lists the different model names, while the first column shows the
different datasets. From Table 3, it can be observed that models achieve higher prediction
accuracy more easily with continuous wave interference at a single frequency. However,
when the modulation of the interference signals becomes complex, the prediction accuracy
of the models generally shows a varying degree of decline. The model proposed in this
paper demonstrates the highest prediction accuracy across six different datasets.

Table 3. Comparison of the Performance of Different Methods.

Model RNN [20] LSTM [31] CNN TCN W-TCN Proposed

NLFM 74.20 78.40 66.36 94.68 94.75 98.49
BFSK 78.26 88.35 76.66 96.45 97.97 99.29
CW 85.40 95.70 80.86 96.21 98.63 99.58

BPSK 75.48 77.54 73.38 92.89 91.66 97.50
QPSK 75.21 78.69 69.90 92.47 92.49 97.25
LFM 85.99 90.04 86.24 96.54 98.39 99.31

In the ablation experiments designed in this paper, the predictive accuracy of TCN
network surpasses that of RNN [20], LSTM [31], and CNN networks. After wavelet
transformation, the prediction accuracy of the Wavelet-TCN model increased by about
1% compared to the TCN model. The model proposed in this paper achieved the highest
prediction results, further validating the effectiveness of the proposed model in enhancing
predictive performance.

Next, we compare the NMES of the different model predictions. It can be seen from the
results shown in Table 4 that the method proposed in this paper has the highest accuracy
on all test sets. Under continuous wave interference, the average prediction error of the
test set is the smallest, which is −26.6538 dB.

Besides, we compare the complexity of the different models with the proposed method,
as measured by the time it takes to complete the training under the same conditions. The
results are shown in Table 5. The complexity of RNN [20] and LSTM [31] models is greatly
affected by the sequence length, and the model training time is longer when the input is
long. The CNN model benefits from the sharing of convolution kernel parameters, which
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makes the operation simple and efficient, and the training time is fast. The training time
of TCN and W-TCN models is between CNN, RNN [20], and LSTM [31]. Due to the
addition of feature fusion module, the training time of the model proposed in this paper is
longer than that of TCN and W-TCN, but it is still faster than RNN [20] and LSTM [31]. In
summary, the proposed model has better prediction performance.

Table 4. NMSE (dB) Comparison of Prediction Results of Different Models.

Model RNN [20] LSTM [31] CNN TCN W-TCN Proposed

NLFM −10.4006 −11.5640 −8.3757 −13.6545 −17.0597 −22.7598
BFSK −12.2136 −14.4782 −10.6178 −14.5228 −19.5205 −25.3828
CW −12.6655 −17.4662 −10.5532 −14.3326 −19.5247 −26.6538

BPSK −10.2372 −11.7250 −9.6844 −12.6244 −11.7624 −20.3491
QPSK −10.0212 −10.4211 −8.6167 −12.9668 −12.4582 −20.0446
LFM −13.9662 −14.7934 −11.7354 −15.3819 −21.8907 −25.0067

Table 5. Comparison of Training Time of Different Models.

Model RNN [20] LSTM [31] CNN TCN W-TCN Proposed

Time 4220.63 s 5763.15 s 840.75 s 1926.25 s 2722.32 s 3717.64 s

3.3. Model Generalization Ability Analysis

In complex electromagnetic environments, the presence of multiple transmitters within
a formation can lead to the overlay of multiple interference signals. Existing methods often
improve the predictive performance of intelligent models under changing electromagnetic
interference environments by generating new datasets and updating models. However,
this approach is a significant challenge in terms of both time and personnel costs. More
importantly, it is impossible to enumerate every potential overlapping electromagnetic
interference environment. Enhancing the generalization ability of models in unlearned
interference environments holds significant practical importance. Therefore, this section
will validate the performance advantages of the proposed method under changing interfer-
ence environments by comparing the prediction accuracy of different models in unlearned
interference environments.

In this study, two types of unlearned interference environments were established:
Cosine Modulated Nonlinear Frequency Modulated with Binary Phase Shift Keying Inter-
ference (dataset NLFM + BPSK Jam) and Cosine Modulated Nonlinear Frequency Mod-
ulated with Binary Frequency Shift Keying Interference (dataset NLFMcos + BFSK Jam).
They represent typical frequency modulation interference and combinations of frequency
modulation with phase and frequency shift keying interference, respectively. The number
of test sets in each interference environment is consistent with that in Section 3.2. The
models trained under the datasets in Section 3.2, which have not learned any samples
generated under the overlay of these two types of interference, were used to predict the
interference response in the new interference environments. The average results of the
example are shown in Tables 6 and 7.

Table 6. Comparison of the Performance of Different Methods in unlearned situation.

Model RNN [20] LSTM [31] CNN TCN W-TCN Proposed

NLFM + BFSK 81.64 87.26 69.41 96.03 97.40 99.15
NLFM + BPSK 70.56 73.67 84.75 88.48 91.80 97.45
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Table 7. NMSE(dB) Comparison of Different Methods in unlearned situation.

Model RNN [20] LSTM [31] CNN TCN W-TCN Proposed

NLFM + BFSK −11.6694 −13.4606 −4.7313 −14.1272 −18.3439 −25.2874
NLFM + BPSK −4.7559 −6.0672 −10.3204 −12.5407 −10.3415 −17.6547

From Table 6, it can be seen that the Wavelet-CNN-AFF model proposed in this paper
achieved R2 values of 99.15 and 97.45 on the test sets of the new interference environments.
Furthermore, Table 7 also shows that the model proposed in this paper has the lowest
prediction error. Compared with RNN [20], LSTM [31], CNN, TCN, and Wavelet-TCN, the
proposed model has higher prediction accuracy in unlearned test sets. This means that the
proposed model is more accurate in predicting unfamiliar interference signals in changing
complex electromagnetic environments and has better generalization capabilities. This
characteristic makes the proposed model more promising for applications in predicting
interference responses in receivers within actual complex electromagnetic environments
where interference signals frequently change.

4. Conclusions

In this article, we propose a Wavelet-TCN-AFF model for predicting interference
response of radar receiver. The wavelet decomposition coefficients of different frequency
components are obtained by wavelet transform of receiver antenna aperture signal. We pro-
pose a feature extraction model based on temporal convolutional networks and introduce
an attention feature fusion mechanism for feature fusion. Finally, a simulation study is
carried out to prove the effectiveness of the proposed framework. Simulation results show
that the proposed method has excellent predictive performance for receiver interference
response prediction and is superior to the existing methods. In addition, the method has
better generalization ability for unlearned new interference scenes and is more in line with
the requirements of the complex and changeable electromagnetic environment.
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