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Abstract: Addressing the issue of reduced system inertia and significantly increased risk of system
frequency deviation due to high penetration of renewable energy sources, this paper proposes a
power system disturbance frequency trajectory prediction method based on light gradient boosting
machine (LightGBM) Spearman to provide data support for advanced system stability judgment
and the initiation of stability control measures. Firstly, the optimal cluster is determined by com-
bining the K-means clustering algorithm with the elbow method to eliminate redundant electrical
quantities. Subsequently, the Spearman coefficient is used to analyze feature correlation and filter
out electrical quantities that are strongly correlated with frequency stability. Finally, a frequency
trajectory prediction model is built based on LightGBM to achieve accurate prediction of disturbed
frequency trajectories. The method is validated using a case study on the New England 10-machine
39-bus system constructed on the CloudPSS 4.0 full electromagnetic cloud simulation platform, and
the results show that the proposed method has high accuracy in frequency trajectory prediction.

Keywords: electric power system; frequency stability; trajectory prediction; ensemble learning;
feature selection

1. Introduction

Driving the transformation of the energy structure is a core task in building a new
type of power system [1]. Under the incentive of multiple policies, the scale of new
energy installations in China has climbed year by year [2]. By the end of 2022, China’s
new energy installations, mainly wind and solar, reached 750 million kW, becoming the
second main source of power after thermal power. It is expected that, by 2060, China’s
new energy installation capacity could exceed 5 billion kW. With the surge in renewable
energy installation capacity, the new type of power system faces more severe challenges in
frequency stability [3].

The “Guidelines for Power System Security and Stability” national standard
GB 38755-2019 [4] has added definitions and regulations regarding system frequency stabil-
ity compared to its 2001 version, which stipulate the maintenance and recovery performance
of system frequency after the power system endures major and minor disturbances [5]. It is
evident that the criteria for frequency stability judgment and stability boundaries of the new
type of power system have not changed substantially. However, the large-scale integration
of a high proportion of renewable energy and the significant reduction in system inertia
can lead to more severe frequency deviations when the system is disturbed [6,7]. Therefore,
by proactively judging the trajectory of system frequency deviation to provide necessary
data support [8] and implementing stability control measures early in destabilizing scenar-
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ios, the risk of system instability can be reduced, enhancing the dynamic stability of system
frequency [9].

Traditional methods for predicting the dynamic frequency trajectory of a power system
after disturbances are mostly based on physical models, including simplified frequency
models and linearized modeling methods that incorporate wide-area measurement infor-
mation. The former often utilize simplified models such as the average system frequency
(ASF) [10] and system frequency response (SFR) [11], which equivalize the system to a sin-
gle machine and focus on dynamic components that are closely related to system frequency,
thereby reducing modeling complexity. Reference [12] combines wide-area measurement
information and considers the DC power transmission equation to establish and solve the
system state-space equation, achieving high accuracy and rate of prediction for dynamic
frequency trajectories in AC/DC grids. To achieve frequency stability, reference [13] pro-
poses a model predictive current and power (MPCP) control scheme and a model predictive
voltage and power (MPVP) control method, predicting current, voltage, and power by mod-
eling the state space of the system. However, with the continuous integration of new energy
sources, these physical model-based prediction methods encounter difficulties in modeling
and fail to balance computational speed and accuracy when dealing with large-scale new
power systems [14]. With the development of artificial intelligence technology in recent
years, machine learning methods have also been gradually applied to the task of predicting
dynamic frequency trajectories after disturbances, such as the use of deep belief networks
for post-disturbance frequency curve prediction in reference [15] and the prediction of
AC/DC grid frequency curves based on SVM in reference [16]. For secondary frequency
control, a back-propagation neural network (BPNN) is used in reference [17]. These meth-
ods have achieved good results in prediction accuracy and computation speed due to the
excellent learning ability of machine learning technology for complex mappings between
system inputs and outputs, but they still face difficulties in model training convergence,
lack robustness, and have poor interpretability, with the effects on practical applications
needing further validation. Unlike common machine learning methods, the LightGBM
method in ensemble learning [18–20] adopts the gradient-boosting tree algorithm, inte-
grating multiple decision trees to accomplish prediction tasks. It significantly improves
prediction accuracy and generalization ability while greatly reducing training difficulty
and exhibiting strong robustness, maintaining good predictive performance even with
small datasets or large noise. Moreover, the feature importance assessment function of
LightGBM enables researchers to analyze the impact of different input features on the
prediction results, providing better interpretability of the method. Therefore, this paper
implements fast and accurate prediction of the dynamic frequency trajectory of power
systems after disturbances, based on the LightGBM method.

Feature engineering enhances data-driven model performance by constructing a more
effective feature set through processes such as feature extraction, feature selection, and fea-
ture transformation. Power system data analysis involves a large amount of correlated
data, and using all as input increases model computational complexity, causing feature
redundancy and reducing model training efficiency and accuracy [21]. Feature selection
algorithms are now widely used in power system analysis [22–24], with reference [25]
building a critical feature subset of the power grid based on analyzing key power flow
sections and feature combination effects. Reference [26], based on the SHAP method and
explainable artificial intelligence theory, proposes a key feature selection method based
on feature cumulative contribution rate and explainable artificial intelligence, improving
the prediction accuracy of transient stability margin. Reference [27] combines normalized
mutual information with the particle swarm optimization algorithm to select features
strongly related to transient stability in stages. Compared to deep learning methods that
require extensive pre-training, correlation coefficients that conform to statistical rules are
simple to use, have a wide application range, and do not require pre-training, making them
common tools for feature selection. Reference [28,29], based on the Spearman correlation
coefficient, differentiates faults inside and outside new energy station areas, achieving



Electronics 2024, 13, 597 3 of 13

longitudinal protection for outgoing lines. The issue of feature selection is rarely consid-
ered in existing dynamic frequency prediction problems. This paper uses the Spearman
coefficient to filter sub-feature sets, reducing the model input dimension, while ensuring
model generalizability and accuracy.

The main contributions of this paper are as follows:

(1) A frequency trajectory prediction method for low-inertia systems’ frequency risk
is proposed, which integrates the K-means clustering algorithm and the Spearman
coefficient, obtaining electrical quantities that are strongly correlated with the system’s
frequency stability;

(2) Based on key electrical quantities, a frequency trajectory prediction model is built
using LightGBM. This model achieves accurate prediction of disturbed frequency
trajectories. The effectiveness of the proposed method is verified on the New England
10-machine 39-bus system, constructed on the CloudPSS full-electromagnetic cloud
simulation platform.

2. Dynamic Frequency Trajectory Prediction Based on LightGBM

After a high proportion of new energy integration, the system exhibits a significant
low-inertia characteristic. Following disturbances, the dynamic frequency of the system
is more susceptible to substantial impacts. Obtaining dynamic frequency trajectories
through predictive models in advance can provide the necessary data foundation and
action time for system frequency stability assessment and the initiation of stability control
measures. This has the potential to greatly optimize the operational capability of the
system’s frequency stability.

The primary task of dynamic frequency trajectory prediction in power systems is to
characterize the system’s evolutionary path based on operational data and disturbance
information. This is achieved through methods such as time-domain simulations [30–33].
However, constrained by the mutual trade-off between prediction accuracy and computa-
tional efficiency, model-driven approaches are currently mostly applied in tasks within the
power system domain, such as calculations and planning, where timeliness is less critical.

To address the timeliness requirements of online dynamic frequency trajectory predic-
tion tasks in power systems, this paper proposes a data-driven LightGBM (Light Gradient
Boosting Machine) frequency trajectory prediction model. This model represents an en-
hanced approach to Boosting ensemble learning, with its core idea involving the sequential
construction of decision tree models. By aggregating the performance of multiple weak
decision tree predictor models, it forms a predictive model with strong generalization
performance and high prediction accuracy.

The LightGBM algorithm builds a new decision tree in each iteration, and the con-
struction of each new tree is based on the completion of the preceding tree ensemble.
The objective of each new tree is to correct the prediction errors of the previous tree
ensemble. Therefore, the predicted values at each moment can be represented by

ŷ(0)i = 0
ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)

ŷ(k)i = f1(xi) + · · ·+ fk(xi) = ŷ(k−1)
i + fk(xi)

, (1)

where ŷ(k)i represents the prediction for sample xi in the k-th round and fn(xi) denotes the
prediction for sample xi by the n-th decision tree.

The objective function of the decision tree constructed in the k-th round is

L(k) =
n

∑
i=1

l(yi, ŷ(k−1)
i + fk(xi)) + Ψ( fk), (2)



Electronics 2024, 13, 597 4 of 13

where L(k) represents the objective function for the k-th round, indicating the error between
predicted values and actual values. A smaller value of L(k) is preferable. C(k) represents
the complexity of the k-th decision tree, and it is directly proportional to the parameters in
the decision tree model.

Substituting Equation (1) into Equation (2) yields

L(k) =
n

∑
i=1

l(yi, ŷ(k−1)
i + fk(xi)) +

k−1

∑
j=1

Ψ( f j)+Ψ( fk), (3)

where n represents the total number of samples to be predicted.
To minimize the objective function in the k-th round, analysis reveals that the second

term in Equation (3) is a constant and can be ignored in the objective function, simplifying
it to

L(k) =
n

∑
i=1

l(yi, ŷ(k−1)
i + fk(xi))+Ψ( fk) (4)

Expanding Equation (4) to the second order, using Taylor series and neglecting the
constant term, we obtain

L(k) =
n
∑

i=1
[l(yi, ŷ(k−1)

i ) + ∂l(yi, ŷ(k−1)
i ) fk(xi)

+ 1
2 ∂2l(yi, ŷ(k−1)

i ) f 2
k (xi)] + Ψ( fk)

=
n
∑

i=1
[gi fk(xi) +

1
2 hi f 2

k (xi)] + Ψ( fk)

, (5)

where gi and hi represent the first and second derivatives of the residual in the Taylor
expansion, respectively. These are both known during the training of the tree generated in
the k-th round.

The complexity of the model can be expressed as

Ψ( fk) = γT +
1
2

λ
T

∑
j=1

w2
j , (6)

where Wj represents the values of the leaf nodes in decision tree j; T denotes the number of
leaf nodes; and w and v represent the weights of the number of leaf nodes and the values
of the nodes, respectively, in terms of model complexity.

By substituting the leaf nodes and weights of each decision tree into Equation (5), it
can be expressed as

L(k) =
T

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ] + γT (7)

Let Equation (7) contain
∑

i∈Ij

gi = Gj

∑
i∈Ij

(hi + λ) = Hj
(8)

Equation (7) can then be rewritten as

L(k) =
T

∑
j=1

[Gjwj +
1
2

Hjw2
j ] + γT (9)
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Equation (9) is a quadratic function with respect to Wj. It attains its minimum value if
and only if

wj = −
Gj

Hj + λ
(10)

At this point, the objective function L(k) attains its minimum value:

min L(k) = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (11)

Therefore, from Equations (10) and (11), it can be deduced that, to minimize the
objective function of the current constructed decision tree, it should first obtain the bias,
first derivative, and second derivative of the previous k − 1 decision trees. By substituting
these into Equations (10) and (11), the selection criteria for the current node’s decision tree
value can be obtained.

While the aforementioned approach allows us to obtain rules for setting tree param-
eters and to minimize the objective function, when considering computational efficiency
issues, it becomes challenging to traverse the combinatorial space of extremely large tree
structures within a limited time. The LightGBM algorithm employs a histogram algorithm
to accelerate the construction speed, effectively reducing the search space for tree structures
and focusing on splitting comparisons for feature values that are deemed worthwhile to try.

Defining the system feature values and second-order gradient statistics as the basis for
tree structure splitting in the k-th round can be formally represented as the set Dk. This can
be expressed as

Dk = {(x1k, h1), (x2k, h2) · · · (xnk, hn)} (12)

A rank function can be defined for the set Dk:

rk(z) =
1

∑(x,h)∈Dk
h ∑

(x,h)∈Dk ,x<z
h, (13)

where rk(z) represents the proportion of numbers smaller than z, and it can serve as the
basis for decision tree splitting selection.

Assuming the split point is si
k, according to Formula (13), the rule for selecting the

split point is determined:
|rk(sk,j)− rk(sk,j+1)| < ϕ

s.t.sk1 = min
i

xik
(14)

where ϕ represents an approximate value of the interval width; 1/ϕ is used as an approxi-
mation coefficient for points within the interval range.

Combining the classification nodes from Equation (14) with the histogram algorithm,
and by taking the difference between discrete plots of each node, LightGBM can obtain
histograms of its sibling leaves with extremely low computational cost. This ensures
a reduction in the search space for the tree structure while maintaining the predictive
accuracy of the entire model. Therefore, in this study, LightGBM is adopted to construct a
model for predicting the dynamic frequency trajectory of power system disturbances.

3. Feature Selection of Dynamic Frequency Prediction Based on Spearman Coefficient

After a major disturbance in the power system, the frequencies of various units in
the system deviate from steady state, entering a dynamic fluctuation process. The system
frequency during dynamic fluctuations is closely coupled with global system information.
Therefore, it is necessary to comprehensively consider the combined impact of all generator
units and busbars. However, the operating parameters of generators are diverse, and busbar
information is complex and coupled. Using LightGBM to construct a dynamic frequency
trajectory prediction model may lead to overfitting due to the high input dimensions.
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To address this, a feature selection method for dynamic frequency prediction in disturbed
systems based on the Spearman coefficient is proposed. This method aims to ensure
the training accuracy of the LightGBM model while reducing training time by selecting
relevant features.

3.1. Feature Selection for Dynamic Frequency Prediction in the System

The overall system dynamic frequency is the rate of change of rotational speed caused
by unbalanced power. It reflects the dynamic equilibrium state of energy exchange among
various components such as generators, loads, and transmission lines in the power system.
The center of inertia frequency of the system, denoted as ωCOI , is defined as shown in
Equation (15):

ωCOI =
n

∑
i=1

(Miωi)

/
n

∑
i=1

Mi, (15)

where Mi represents the inertia time constant of the i-th generator, ωi is the angular
frequency of the i-th generator, and n is the number of generator units in the system.

The classical second-order generator model is{ dδ
dt = ωNω
dω
dt = 1

M [PM − PE(δ)− Dω]
, (16)

where δ is the rotor angle of the generator, ωN is the rated angular frequency of the generator,
ω is the angular speed deviation, PM and PE are the mechanical and electromagnetic power
of the generator, and D is the damping coefficient of the generator.

Substituting the system center of inertia frequency ωCOI into Equation (16), the dy-
namic frequency equation for a multi-machine system is

Msys
dωCOI

dt
=

n

∑
i=1

PMi −
n

∑
i=1

PEi −
n

∑
i=1

Dωi (17)

From the results, it is evident that the electromagnetic power and mechanical power
of each generator are the main factors influencing ωCOI . Further considering the rela-
tionship between the response of generator units and ωCOI , additional input features are
incorporated as

fi =
PMi(0+)− PEi(0+)

Mi
−

n
∑

i=1
PMi(0+)−

n
∑

i=1
PEi(0+)

Msys
(18)

To complement the remaining features, a total of 20 input features are selected, as
shown in Table 1 in this paper.

Table 1. Input features of dynamic frequency prediction.

Feature Number Feature Description

f1 System load level

f2 Post-disturbance system power deficit value

f3 Degree of each generator’s response to dynamic frequency

f4 Root mean square of bus voltages after disturbance

f 5–6 Mechanical power of generators before and after disturbance

f 7–9 Total mechanical power of the system before and after disturbance

f 9–10 Electromagnetic power of generators before and after disturbance
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Table 1. Cont.

Feature Number Feature Description

f 11–12 Total electromagnetic power of the system before and after disturbance

f 13–14 Reactive power of generators before and after disturbance

f 15–16 Total reactive power of the system before and after disturbance

f 17–18 Active and reactive loads of the system after disturbance

f19 Total active load of the system after disturbance

f20 Total reactive load of the system after disturbance

3.2. Feature Correlation Analysis for Disturbed System Dynamic Frequency Prediction

The Spearman’s rank correlation coefficient is a nonparametric measure of rank cor-
relation that assesses the monotonic relationship between two variables. Compared to
other correlation coefficients, the Kendall rank correlation coefficient is more suitable for
measuring non-linear monotonic relationships and performs better when analyzing power
system dynamic frequency features with strong nonlinearity.

The Spearman coefficient is an improvement on the Pearson correlation coefficient. Un-
like the Pearson coefficient, which measures the strength of a linear relationship, the Spear-
man coefficient focuses on the monotonicity of the relationship between variables. The ex-
pression for the Spearman coefficient rs is

rs =

n
∑

i=1

(
RXi − RX

)(
RYi − RY

)
√

n
∑

i=1

(
RXi − RX

)2 n
∑

i=1

(
RYi − RY

)2
, (19)

where Ri denotes the rank of the i-th element of variable X, and R̄ represents the mean rank
of all elements.

The range of the Spearman coefficient is from −1 to 1, where 1 indicates a perfect
positive correlation between variables, −1 indicates a perfect negative correlation, and 0
signifies no correlation between the variables.

Unlike other correlation coefficients, the Spearman correlation coefficient calculates
correlations based on ranks rather than the actual values, making it less sensitive to outliers.
In rank-based calculations, the actual numerical magnitude of data values is transformed
into their ranking order. Since the ranking order is not influenced by outliers, the Spear-
man coefficient offers better robustness compared to the Pearson correlation coefficient.
The comparison of features between Spearman and other common correlation coefficients
is shown in Table 2.

Table 2. Comparison of common correlation coefficient properties.

Category Applicable Conditions Rank Sensitivity Sensitivity to Outliers

Spearman Approximately Monotonic Yes No

Pearson Linear Relationship No Yes

Kendall Non-Linear Relationship Yes No

From the above table, it can be seen that the Pearson coefficient is sensitive to outliers
and that the Kendall coefficient requires inputs as non-linear rank variables, which contra-
dicts the requirements of dynamic frequency prediction tasks. The Spearman coefficient
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is sensitive to ordering, insensitive to outliers, and suitable for time series of dynamic
frequency features, thereby enhancing the model’s resistance to interference.

3.3. Trajectory Prediction Based on the LightGBM Spearman Method

the Process for Predicting the Frequency Trajectory of a Disturbed Electric Power
System and the Model Evaluation Metrics Are as Follows The process for predicting the
frequency trajectory of a disturbed electric power system constructed in this paper is shown
in Figure 1.

Figure 1. Structure of disturbance frequency trajectory prediction in power systems based
on LightGBM–Spearman.

Figure 1 outlines a four-step process for predicting the frequency trajectory of a
disturbed electric power system:

(1) Simulation Model Construction: Utilize the CloudPSS full electromagnetic cloud
simulation platform to build an IEEE 39-node electromagnetic simulation model. Set
typical active power disturbances in the system and record the transient process data
of electrical quantities at system nodes to form a frequency prediction dataset;

(2) Clustering and Feature Selection: Apply the K-means algorithm to cluster related
electrical quantities for frequency prediction. Determine the optimal number of clus-
ters using the elbow method. Based on the clustering results, identify and eliminate
similar redundant feature quantities;

(3) Feature Correlation and Dimension Reduction: Calculate the correlation between the
redundant-free feature quantities and the post-disturbance frequency trajectory of the
system. Select feature quantities sensitive to the frequency trajectory to further reduce
the dimensions of the model’s input;

(4) Model Construction and Evaluation: Build a LightGBM model for predicting fre-
quency trajectory. Use the dimension-reduced feature quantities obtained in step (3)
as inputs to train the prediction model. Assess the model’s performance using various
evaluation metrics.



Electronics 2024, 13, 597 9 of 13

To validate the performance of the frequency trajectory prediction proposed in this
paper, Mean Absolute Error (MAE), Mean Square Error (MSE), and R Squared (R2) are used
as evaluation metrics. The error functions are

MAE(X, h) =
1
m ∑m

i=1 |h(xi)− yi|, (20)

MSE(X, h) =
1
m ∑m

i=1 (h(xi)− yi)
2, (21)

R2 = 1 − ∑m
i=1 (h(xi)− yi)

2/m

∑m
i=1 (ȳ − yi)

2/m
= 1 − MSE(X, h)

Var(y)
(22)

4. Case Study Analysis
4.1. Validation Case Study Introduction

This article validates the proposed method using the New England 10-machine 39-bus
system test case. The simulation software employed is the CloudPSS 4.0 digital twin cloud
platform. Three hundred different rated load levels are set between 50% and 100%. For each
load level, one generator is taken offline in a rotating manner to simulate system faults.
Data samples of the system are obtained through electromagnetic transient simulations,
with a simulation duration of 8 s. The generator outage occurs in the 4th second and is
cleared 100 milliseconds later. The input features for each sample are presented in Table 1 .
Over 3000 simulation data sets are collected and divided into a training set and a testing
set with a 5:1 ratio. This dataset construction is for building a predictive model of dynamic
frequency trajectories for the disturbed system.

4.2. Feature Selection Result Analysis

To improve the model prediction efficiency and avoid interference from irrelevant
features, feature selection is performed on the features in Table 3 using the Spearman
correlation analysis method. The importance of each feature, as calculated, is normalized
and then sorted, as shown in Figure 2.

Figure 2. Relative weights of correlation features for frequency prediction.

From the graph, it can be observed that there are significant differences in the weights
of different features. It is necessary to perform feature selection to improve model pre-
diction efficiency. Considering both feature importance and computational efficiency,
the normalized weights are arranged from largest to smallest, and features are selected



Electronics 2024, 13, 597 10 of 13

such that their cumulative sum reaches 90% as the final input. The normalized weights
and weighted sum of features for disturbed trajectory prediction are shown in Table 3.

Table 3. Normalized weights for disturbance trajectory prediction features.

Feature Feature Quantity Weight

f2 Post-Disturbance System Power Deficit 0.1499

f1 System Load Level 0.1057

f4 Root Mean Square of Bus Voltages after Disturbance 0.0876

f16 Total Reactive Power of the System after Disturbance 0.0789

f11 Total Electromagnetic Power of the System Before and after Disturbance 0.0783

f9 Electromagnetic Power of Generators Before Disturbance 0.0781

f10 Electromagnetic Power of Generators after Disturbance 0.0724

f14 Reactive Power of Generators after Disturbance 0.0684

f12 Total Electromagnetic Power of the System after Disturbance 0.0634

f17 Active Load of the System after Disturbance 0.0582

f3 Degree of Each Generator’s Response to Dynamic Frequency 0.0391

f20 Total Reactive Load of the System after Disturbance 0.0361

Total Twelve Features 0.9161

From the table, it can be seen that 12 features were ultimately selected as model inputs,
and the sum of the weights of these features was 91.61%, covering most of the relevant
information. The table also reveals that the most heavily weighted feature is the power
deficit value of the disturbed system, followed by the system load level. This aligns with
intuition, as the power deficit of the system has the highest correlation with frequency,
resulting in its largest weight. By removing less-correlated features, a balance is struck
between training efficiency and prediction accuracy of the model.

4.3. Frequency Prediction Result Analysis

The features selected in former section are individually fed into Long Short-Term
Memory Network (LSTM), Convolutional Neural Network (CNN), Back-Propagation
Neural Network (BPNN), decision tree (DT), random forest (RF), and LightGBM models
for comparison. The comparison of the all algorithms with LightGBM is illustrated in
Table 4, while the comparison of the latter two algorithms with LightGBM is depicted in
Figure 3. All deep learning models employ the same optimizer, configured with identical
learning rates and training epochs. Non-deep learning models are trained until convergence.
All algorithms utilize the same training and testing datasets, and their performance is
quantified using identical evaluation metrics, ensuring the fairness of the experiments.

Table 4. Performance of multi-model trajectory prediction on the test dataset.

Index LightGBM–Spearman LSTM CNN BPNN DT RF

Number of features 12 10 8 12 12 12 12 12

MSE/10−4 Hz 1.131 1.610 1.842 1.597 1.602 1.687 34.256 21.214

MAE/10−2 Hz 2.567 2.997 3.025 2.732 2.796 2.844 14.096 10.013

R2 0.989 0.984 0.981 0.981 0.979 0.973 0.605 0.771
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(a)

(b)

Figure 3. Comparative frequency prediction for multi-model analysis in typical scenarios. (a) Typical
disturbance scenario 1; (b) Typical disturbance scenario 2.

From Figure 3, it can be observed that, in both fault scenarios, LightGBM can closely
follow the real frequency values and can exhibit higher prediction accuracy compared to
RF and DT methods. Table 4 further demonstrates that LightGBM outperforms the other
three models in terms of performance metrics, with the lowest MSE and MAE and the
highest R2 score when the number of features is the same. Its MSE is only 0.133 × 10−4 Hz,
significantly smaller than RF and DT methods, and is smaller than the other methods,
indicating the highest precision. Compared to deep learning models including LSTM,
CNN, and BPNN, LightGBM–Spearman presents better performance as well. The R2

score of 0.984 is higher than the other four methods, and, when features are reduced,
the LightGBM–Spearman still shows high accuracy, confirming the effectiveness of this
approach in predicting actual values.

4.4. Analysis of Prediction Results with Different Feature Combinations

To further demonstrate the necessity and effectiveness of feature selection, different
subsets of features were used, including those with weight sums of 50%, 70%, 90%, and
100%, and randomly selecting 12 features, which were then fed into the LightGBM model
for prediction. The various metrics and the duration of model training are presented in
Table 5.

From the table, it can be observed that, when fewer features are selected, the model
training time is shorter, but the final accuracy also decreases. On the other hand, when all
features are selected, although the model has access to more information, it also includes a
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significant amount of low-correlation data that are not conducive to model analysis and
prediction, resulting in decreased accuracy. Additionally, randomly selecting 12 features
leads to a significant drop in model accuracy. Therefore, it is necessary to use the Spearman
correlation coefficient method to select highly correlated features as model inputs. In prac-
tical engineering applications, feature selection should strike a balance between model
training efficiency and prediction accuracy based on specific circumstances.

Table 5. Influence of feature weight combinations on trajectory prediction

Feature Weight Sum MSE/10−5 Hz MAE/10−3 Hz R2 Training Time (s)

50% 2.303 3.579 0.973 7.06

70% 1.612 2.992 0.981 8.03

90% 1.335 2.723 0.984 8.76

Random 12 Features 5.643 7.016 0.915 8.93

All Features 1.432 2.853 0.983 9.48

5. Conclusions

This paper presents a dynamic frequency prediction method based on the Spearman
correlation coefficient and LightGBM. Utilizing the Spearman correlation coefficient for
feature selection reduces the complexity of model prediction, enhancing efficiency and
accuracy. LightGBM is employed for frequency prediction using the selected features.
Simulation results indicate that LightGBM reduces the MSE and MAE by up to 96.1% and
80.7% compared to other algorithms. When predicting with different feature combinations
using LightGBM, the results show that features selected through the Spearman correlation
coefficient method effectively balance model training efficiency and prediction accuracy.
With only 70% of the features used in prediction tasks, the MSE is reduced by 6.77%, and the
timeliness is improved by 7.59%. In practical engineering applications, different feature
sets with varying weights can be chosen according to specific requirements.
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