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Abstract: Offloading computation-intensive tasks to mobile edge computing (MEC) servers, such as
road-side units (RSUs) and a base station (BS), can enhance the computation capacities of the vehicle-
to-everything (V2X) communication system. In this work, we study an MEC-assisted multi-vehicle
V2X communication system in which multi-antenna RSUs with liner receivers and a multi-antenna
BS with a zero-forcing (ZF) receiver work as MEC servers jointly to offload the tasks of the vehicles.
To control the energy consumption and ensure the delay requirement of the V2X communication
system, an energy consumption minimization problem under a delay constraint is formulated. The
multi-agent deep reinforcement learning (MADRL) algorithm is proposed to solve the non-convex
energy optimization problem, which can train vehicles to select the beneficial server association,
transmit power and offloading ratio intelligently according to the reward function related to the delay
and energy consumption. The improved K-nearest neighbors (KNN) algorithm is proposed to assign
vehicles to the specific RSU, which can reduce the action space dimensions and the complexity of the
MADRL algorithm. Numerical simulation results show that the proposed scheme can decrease energy
consumption while satisfying the delay constraint. When the RSUs adopt the indirect transmission
mode and are equipped with matched-filter (MF) receivers, the proposed joint optimization scheme
can decrease the energy consumption by 56.90% and 65.52% compared to the maximum transmit
power and full offloading schemes, respectively. When the RSUs are equipped with ZF receivers, the
proposed scheme can decrease the energy consumption by 36.8% compared to the MF receivers.

Keywords: vehicle-to-everything; mobile edge computing; offloading; transmit power; deep
reinforcement learning

1. Introduction

The sixth generation (6G) is expected to enhance energy efficiency and the intelligence
level to meet mass connectivity and low latency requirements of wireless communication
network [1]. Supported by 6G, vehicle-to-everything (V2X) with the requirements of
low communication delay is an instrumental element of future connected autonomous
vehicles [2]. This promising technology can obtain the location and speed of vehicles
and road hazards, reduce traffic accidents and improve road safety [3,4], and has gained
significant interest from vehicle manufacturers, researchers and scientific communities [5].
However, as intelligent applications, i.e., in-vehicle Internet access and cooperative collision
warning [6], high mobility of the device [7] and low-latency requirements [8], using V2X
technology to handle computation-intensive tasks that require a large amount of data
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computation and communication resources is a challenge [9]. By offloading tasks to mobile
edge computing (MEC) servers, i.e., base stations (BSs) [7], road-side units (RSUs) [10]
and unmanned aerial vehicles (UAVs) [11–13], MEC technology can meet the demand for
computation resources in V2X networks [14]. In addition, offloading tasks to the MEC
servers that are located close to the vehicles can effectively reduce the computation delays,
meeting real-time communication requirements [15,16].

In [17], the authors developed a three-tier offloading architecture where vehicles can
offload tasks to the RSUs and BS, and the average latency can be effectively reduced.
In [18], vehicles offload tasks to the infrastructures and other vehicles to minimize the
communication delay. In [19], the weighted sum of delay and energy consumption is
minimized while considering the impact of interference on MEC-assisted V2X systems.
In order to reduce the power consumption, the joint connection modes, uplink paths and
task assignment optimization are studied in [20]. The communication and computation
resource allocation, optimized jointly, is studied in [21] to minimize the cost of the V2X
system under delay and energy constraints. In [22], the authors optimized user association
and resource allocation jointly to maximize the overall data rate of both cellular users and
device-to-device pairs. In [23], the end-to-end latency is minimized by optimizing the user
association and resource allocation jointly. But, due to the coupling of many parameters,
these optimization problems are highly non-convex and difficult to solve.

Deep reinforcement learning (DRL) is one of the leading research fields of artificial
intelligence [24]. It can find the globally optimal or near-optimal solutions for more complex
optimization problems even under an unknown environment [25–27], and has been adopted
in numerous applications [28]. In [29], the authors present a DRL algorithm to maximize
the long-term cache hit rate of the system, which consists of a single BS and several users. In
a given time slot, the number of contents that users can request from the BS is fixed, and the
BS acts as an agent and makes a content store decision. The simulation results show that the
DRL algorithm can improve the cache hit rates and provide significant savings in runtime.
In [30], the authors studied the UAV-assisted V2X system, which consists of several BSs
and vehicles. In order to minimize the age of information, the DRL algorithm is proposed
to jointly optimize the transmit power and computation offloading. The simulation results
show that the DRL algorithm can significant reduce the age of information.

This paper studies an MEC-assisted multi-vehicle V2X system, where the BS and RSUs
work as MEC servers jointly to offload the tasks of vehicles. In order to reduce energy
consumption while ensuring the requirement of V2X communication delay, the energy
consumption minimization problem is formulated under delay and power constraints, and
the DRL algorithm is proposed to solve the non-convex energy consumption optimization
problem. The abbreviations and acronyms used in this paper are summarized in Table 1
and the main contributions of this work can be summarized as follows:

(1) To compute the computation-intensive tasks for the computation-limited vehicles,
we study an MEC-assisted multi-vehicle V2X communication system, where multi-
antenna RSUs with linear receivers and a BS with a zero-forcing (ZF) receiver offload
the tasks of vehicles jointly. In order to control the energy consumption, we formulate
the energy consumption minimization problem and transform the non-convex opti-
mization problem into a multi-agent decision process. Thus, each vehicle is capable of
making intelligent decisions in its own communication environment.

(2) In order to solve the non-convex optimization problem while satisfying the delay and
power constraints, the multi-agent deep reinforcement learning (MADRL)-enabled
server association, transmit power and offloading ratio joint optimization scheme
is proposed. According to the reward function, which is related to the delay and
energy consumption, vehicles are trained to select the beneficial transmit power,
server association and offloading ratio. In order to reduce the action space dimensions
and complexity of the MADRL algorithm, the improved K-nearest neighbors (KNN)
algorithm is used to assign the vehicles that are located within the coverage area of
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several RSUs to the specific RSUs. Vehicles that are allocated to the same RSU as a
group, and vehicles in the l-th group, can only offload tasks to the RSU l or BS.

(3) Numerical results show that the proposed MADRL scheme can reduce more en-
ergy consumption compared with the full offloading and maximum transmit power
schemes, and RSUs equipped with ZF receivers can decrease more energy consump-
tion compared to the matched-filtering (MF) receivers. In addition, the proposed DRL
scheme has a stable convergence under the different number of vehicles and data
packet sizes.

Table 1. List of acronyms in alphabetical order.

Acronym Description Acronym Description

BS Base station RSU Road-side unit
DQN Deep Q-network SINR Signal-to-interference-plus-noise-ratio
DRL Deep reinforcement learning 6G Sixth generation
I2B Infrastructure-to-base-station UAV Unmanned aerial vehicle
KNN K-nearest neighbors V2B Vehicle-to-base-station
MF Matched filter V2X Vehicle-to-everything
MEC Mobile edge computing V2I Vehicle-to-infrastructure
MADRL Multi-agent deep reinforcement learning ZF Zero forcing
MIMO Multi-input multi-output

2. System Model

As shown in Figure 1, we consider an uplink MEC-assisted multi-vehicle V2X com-
munication system that consists of a BS equipped with NB antennas, L RSUs equipped
with NR antennas and K single-antenna vehicles. In addition, the number of RSUs L = 4
and number of vehicles K = 6, and the radii of the BS and RSUs are 100 m and 200 m,
respectively. In order to ensure real-time communication when the number of vehicles
increases or vehicles move at a high speed, the RSUs and BS all work as the MEC servers
jointly to offload the computation-intensive task of the vehicles. Thus, the vehicles can
process the information locally or offload it to the RSUs via a vehicle-to-infrastructure
(V2I) communication link or the BS via a vehicle-to-BS (V2B) communication link for edge
computing. Meanwhile, each RSU has two transmission modes: direct mode, which
transmits the processed task to corresponding vehicles directly, and indirect mode, which
transmits the task to the wide-coverage BS, which transmits the processed information to
the vehicles. For simplicity, the RSUs adopt the indirect transmission mode.

MEC serverMEC server MEC serverMEC server

RSU

V2I communication link

V2I interference link

I2B communication link

V2B communication link

offloading

local processing 

BSBS

MEC serverMEC server

BS Processing 

MEC serverMEC serverMEC server

RSU processing 

vehicles 1

vehicle K

Figure 1. The system model of the MEC-assisted multi-vehicle V2X system.

Significant interference caused by the multi-antenna BS and RSUs will increase the
computation complexity of the multi-input multi-output (MIMO) system [31]. Thus, we
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adopt the linear receivers for the BS and RSUs to reduce the computation complexity [32].
Specifically, the BS is equipped with a ZF receiver and RSUs with linear receivers, respectively.

2.1. Channel Model of the Multi-Antenna RSUs

In our vehicular system, the RSUs are equipped with NR antennas to serve many vehicles
at the same time. Assuming that the number of vehicles in the system K = K1 +K2 + · · ·+KL,
with Kl denoting the number of vehicles in RSU l, the received signal at the l-th RSU can be
defined as

YR
l = (PR

l )
1/2GR

l XR
l + ZR

l , (1)

where the diagonal matrix PR
l is the transmission power matrix of the vehicles in RSU

l, and PR
l = diag[pR

1 , pR
2 , . . . , pR

Kl
]. pR

k are the transmit power of the k-th vehicle in the

l-th RSU, with indexes k denoting the k-th vehicle in the l-th RSU. GR
l and XR

l denote the
channel matrix and the transmitted signal matrix between the vehicles and the l-th RSU,
respectively. ZR

l denotes the additive complex Gaussian white noise at the l-th RSU. The
channel matrix between the vehicles and the l-th RSU can be defined as

GR
l = [gR

1,l , gR
2,l , . . . , gR

Kl ,l
] = HR

l (Dl
R)1/2, (2)

where HR
l = [hR

1,l , hR
2,l , . . . , hR

Kl ,l
] and diagonal matrix DR

l = diag[βR
1,l , βR

2,l , . . . , βR
Kl ,l

] are the
small-scale and large-scale fading matrix between the vehicles and the l-th RSU, respectively.
hR

k,l and βR
k,l denote the small-scale and large-scale fading between the k-th vehicle and the

l-th RSU, respectively. Thus, the channel vector between the vehicle k and the l-th RSU is

given by gR
k,l =

√
βR

k,lh
R
k,l .

Interference in the MIMO system will increase the analysis complexity of the multi-
vehicle V2X system [33]. Thus, the liner equalizers such as the MF and the ZF receivers are
applied to reduce the analysis complexity of the system [32]. The MF receiving matrix is
represented by AMF

l = (GR
l )

H. Thus, the received signal at the l-th RSU which is equipped
with an MF receiver, is given by

YMF
l = AMF

l XR
l = (GR

l )
HXR

l . (3)

The signal-to-interference-plus-noise ratio (SINR) for vehicle k at the l-th RSU can be defined as

γMF
k,l =

pR
k |(g

R
k,l)

HgR
k,l |

2

IMF
k,l

, (4)

where IMF
k,l = ∑

i=1,i ̸=k
pR

i |(gR
k,l)

HgR
i,l |

2 + σ2||gR
k,l ||

2 is the interference between the k-th vehicle

and the l-th RSU equipped with the MF receiver.
The ZF receiving matrix is represented by AZF

l = ((GR
l )

HGR
l )

−1(GR
l )

H. Thus, the
received signal at the l-th RSU, which is equipped with a ZF receiver, can be defined as

YZF
l = AZF

l XR
l = ((GR

l )
HGR

l )
−1(GR

l )
HXR

l . (5)

The SINR for vehicle k at the l-th RSU is given by

γZF
k,l =

pR
k

σ2[((GR
l )

HGR
l )

−1]k,k
. (6)

2.2. Communication Model of the Multi-Antenna BS

In our vehicular system, the BS is equipped with an NB-antenna to serve the vehicles
and RSUs. Therefore, all the RSUs and vehicles are users of the BS. Let M denote the BS’s
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users number, which can be regarded as a combination of L RSUs and K vehicles, i.e.,
M = L + K. Thus, the received signal at the BS can be defined as

YB = (PB)1/2GBXB + ZB, (7)

where the diagonal matrix PB is the transmit power matrix of the users, which can be
defined as PB = diag[pB

1 , pB
2 , . . . , pB

M], with pB
m denoting the transmit power of the m-th

user. GB and XB denote the channel matrix and the transmitted signal matrix between the
users and the BS, respectively. ZB denotes the additive complex Gaussian white noise at
the BS. The channel matrix between the users and BS is given by

GB = [gB
1 , gB

2 , . . . , gB
M] = HB(DB)1/2, (8)

where HB = [hB
1 , hB

2 , . . . , hB
M] and diagonal matrix DB = diag[βB

1 , βB
2 , . . . , βB

M] are the small-
scale and large-scale fading matrix between the users and BS, respectively. hB

m and βB
m

denote the small-scale and large-scale fading between the m-th user and the BS. Thus, the
channel vector between the m-th user and the BS is given by gB

m =
√

βB
mhB

m. In addition, in
the vehicular system, the BS is equipped with a ZF receiver to eliminate the interference
and provide higher communication rates of the V2B and infrastructure-to-BS (I2B) commu-
nication links [33]. The ZF receiving matrix can be defined as AZF = ((GB)HG)−1(GB)H.
Thus, the received signal at the BS can be defined as

YZF = AZFYB = ((GB)HG)−1(GB)HXB. (9)

The SINR for user m at the BS can be defined as

γZF
m =

pB
m

σ2[((GB)HGB)−1]m,m
. (10)

3. Computing Model of MEC-Assisted V2X Communication System

The processing capabilities of the vehicles, RSUs and BS executing one bit of data are
f V, f R and f B (in cycles/bit) CPU cycles, respectively. The data packet size generated by
the vehicle is Dk. In our vehicular system, the data model adopts a partial offloading model.
Thus, the data packet can be regarded as a combination of local computation data DL

k and
offloading computation data DO

k , i.e., Dk = DL
k + DO

k . Let DO,R
k,l and DO,B

k denote the data
offloading to the l-th RSU and the BS from the k-th vehicle, respectively. Thus,

DO
k =

{
DO,R

k,l , xk = 0,

DO,B
k , xk = 1,

(11)

where xk denotes the server association of vehicle k. xk = 0 and xk = 1 represent the vehicle
offloading tasks to the RSUs or the BS, respectively. It should be noticed that, when the k-th
vehicle offloads a task to the RSUs, DO,B

k = 0. Similarly, when the k-th vehicle offloads a
task to the BS, DO,R

k,l = 0.

3.1. Local Computing Model

When the k-th vehicle offloads partial data to MEC servers, the vehicle needs to
compute partial tasks locally. The computation delay and energy (in Joules, J) at vehicle k
can be defined as [19]

TL
k =

DL
k

f V
k

, EL
k = c0DL

k ( f V
k )2, (12)

where f V
k and c0 denote the processing capability of the k-th vehicle and the energy coeffi-

cient depending on the chip architecture [34], respectively.
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3.2. RSU Computing Model

The k-th vehicle offloading computation-intensive tasks to the l-th RSU for edge com-
puting consists of three steps: (1) the vehicle offloads tasks to the associated RSU via a V2I
communication link, and the RSU computes the offloaded data, (2) the RSU transmits the
computed data to the BS via an I2B communication link and (3) the BS transmits downlink
data. The feedback data packet size is small; thus, the delay and energy consumption of
downlink transmission are ignored.

(1) V2I communication link

The MF and ZF receivers are adopted to provide higher communication rates of the
V2I communication links. When the RSUs are equipped with the MF receivers, according
to Equation (4), the corresponding communication rate between the k-th vehicle and the
specific l-th RSU can be written as

RV2I
k,l = BV2I log2(1 +

pV
k |(g

R
k,l)

HgR
k,l |

2

∑
i=1,i ̸=k

pV
i |(gR

k,l)
HgR

i,l |2 + σ2||gR
k,l ||2

), (13)

where BV2I is the bandwidth of the V2I communication link and pV
k is the transmit power

of the k-th vehicle. When the RSUs are equipped with the ZF receivers, according to
Equation (6), the corresponding communication rate between the vehicle k and the specific
l-th RSU can be defined as

RV2I
k,l = BV2I log2(1 +

pV
k

σ2[((GR
l )

HGR
l )

−1]k,k
). (14)

Thus, the transmission delay and energy between vehicle k and the l-th RSU can be
defined as [21,35]

TV2I
k,l =

DO,R
k,l

RV2I
k,l

, EV2I
k,l = pV

k TV2I
k,l . (15)

When the k-th vehicle offloads partial data DO,R
k,l to the l-th RSU for edge computing,

the computation delay and energy at the l-th RSU is given by [21]

TO,R
k,l =

DO,R
k,l

f R
l

, EO,R
k,l = c1DO,R

k,l ( f R
l )

2, (16)

where f R
l and c1 denote the processing capability of the l-th RSU and the energy coefficient.

(2) I2B communication link

The ZF receiver is adopted to eliminate the interference so that the communication
rate of the I2B communication link can be improved. According to Equation (10), the
communication rate between the l-th RSU and the BS is given by

RI2B
l = BI2B log2(1 +

pR
l

σ2[((GB)HGB)−1]K+l,K+l
), (17)

where BI2B denotes the bandwidth of the I2B communication link, and pR
l denotes the

transmit power of the l-th RSU. Let Dprc denote the tasks after computing. The transmission
delay and energy between RSU l and the BS are given by

TI2B
l =

Dprc

RI2B
l

, EI2B
l = pR

l TI2B
l . (18)

The delay for the k-th vehicle offloading tasks to the l-th RSU for edge computing
includes TV2I

k,l , TO,R
k,l and TI2B

l , and energy consumption includes EV2I
k,l , EO,R

k,l and EI2B
l . There-
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fore, the delay and energy consumption for the k-th vehicle offloads tasks to the l-th RSU
for edge computing can be written as

TR
k,l = TV2I

k,l + TO,R
k,l + TI2B

l , ER
k,l = EV2I

k,l + EO,R
k,l + EI2B

l . (19)

3.3. BS Processing Model

Vehicle k offloading tasks to the BS for edge computing consists of two steps: (1) the
vehicle offloads task to the BS via the V2B communication link and the BS computes the
offloaded data, and (2) the BS transmits downlink data. The delay and energy consumption
of downlink transmission are ignored. The ZF receiver is adopted to eliminate interference
so that the communication rate of the V2B communication link can be improved. According
to Equation (10), the corresponding communication rate between vehicle k and the BS is
given by

RV2B
k = BV2B log2(1 +

pV
k

σ2[((GB)HGB)−1]k,k
). (20)

Thus, the transmission delay and energy between the k-th vehicle and the BS can be defined as

TV2B
k =

DO,B
k

RV2B
k

, EV2B
k = pV

k TV2B
k . (21)

When the k-th vehicle offloads partial data DO,B
k to the BS for edge computing, the

computation delay and energy at the BS is given by

TO,B
k =

DO,B
k
f B , EO,B

k = c1DO,B
k ( f B)2, (22)

where c1 is the energy coefficient.
The delay for vehicle k offloading tasks to the BS includes TV2B

k and TO,B
k , and energy

includes EV2B
k and EO,B

k . Thus, the delay and energy consumption for vehicle k offloading
tasks to the BS for edge computing can be defined as

TB
k = TV2B

k + TO,B
k , EB

k = EV2B
k + EO,B

k . (23)

Thus, the delay and energy consumption of the k-th vehicle is related to server associ-
ation {xk = 0, 1}, offloading ratio and transmit power, and can be defined as

Ttotal
k =

{
TL

k + TR
k,l , xk = 0,

TL
k + TB

k , xk = 1,
Etotal

k =

{
EL

k + ER
k,l , xk = 0,

EL
k + EB

k , xk = 1.
(24)

3.4. Optimization Problem

In order to reduce the energy consumption of the V2X system while satisfying the
requirements of communication delay, the energy consumption minimization problem is
formulated under the delay constraint, which can be written as follows:

(P1) : min
xk ,DO

k ,pV
k

K

∑
k=0

Etotal
k (25)

s.t. Ttotal
k ≤ Tmax, k ∈ K, (25a)

xk ∈ {0, 1}, k ∈ K, (25b)

0 ≤ pV
k ≤ PV

max, k ∈ K, (25c)

0 ≤ DO
k ≤ Dk, k ∈ K. (25d)
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To ensure basic communication, the first constraint limits that the processing delay
of the tasks generated by vehicle k must be less than the maximum delay. The second
constraint ensures that the tasks can be offloaded to the RSUs or BS for edge computing.
Constraint (25c) is to limit pV

k to not be greater than the maximum transmit power PV
max.

Constraint (25d) restricts that, for the vehicles that adopt the partial offloading model,
the offloading quantity must be not greater than the maximum value Dk. It is noted that,
because of the coupling of server association, transmit power and offloading ratio, (P1) is
a non-convex problem and difficult to solve by using the traditional convex optimization
schemes while satisfying the delay and power constraints. Thus, the DRL algorithm is
adopted to solve (P1), which can find the globally optimal or near-optimal solution of the
complex optimization problem [36].

4. Proposed Scheme for Solving the Problem (P1)

In order to solve the highly non-convex problem, the DRL algorithm is proposed by
optimizing the server association, transmit power and offloading ratio jointly. In addition,
the improved KNN algorithm is used to assign vehicles and reduce the action space
dimensions and complexity of the DRL algorithm.

4.1. Vehicle Grouping Based on the Improved KNN Algorithm

The optimization problem (P1) is aimed at minimizing the energy consumption of
the MEC-assisted multi-vehicle V2X system while satisfying the delay constraint, which is
related to the transmission rate and SINR of the wireless communication links. A higher
SINR can effectively improve the communicate rate in the V2X system [37]. Thus, in order
to minimize energy consumption, the SINR must be maximized. According to Equations (4),
(6) and (10), the SINR is related to the vehicle’s transmit power in the same group. Therefore,
assigning vehicles that are located within the coverage area of several RSUs to an RSU with
a smaller user number can provide a higher SINR and reduce energy consumption.

The model-free KNN [38] method is one of the commonly used classification algo-
rithms. It calculates the distance between initial center points and all training samples, and
then obtains the test sample’s nearest neighbors sample and groups them together. But, it
is hard for KNNs to correctly classify overlapping samples [39]. Removing an overlapped
sample from the training set can increase the accuracy of the KNN classifier [40]. In this
paper, the locations of RSUs and vehicles are regarded as initial center points and samples,
respectively, and the improved KNN algorithm [41] is adopted to assign the vehicles within
the coverage area of multiple RSUs to a specific RSU. The distance between the vehicle and
RSUs is denoted by dk,l , which can be defined as

dk,l =
√
(xV

k − xR
l )

2 + (yV
k − yR

l ), (26)

where (xV
k , yV

k ) and (xR
l , yR

l ) are the position of vehicle k and the l-th RSU, respectively. The
k-th vehicle can communicate with the l-th RSU when dk,l ≤ RRSU, with RRSU denoting
the radius of the l-th RSU. After calculating the distance between vehicles and RSUs, the
improved KNN algorithm assigns a vehicle to the RSU with a smaller number of vehicles
to decrease system energy consumption and computational complexity. The improved
KNN algorithm is shown in Algorithm 1.
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Algorithm 1 The Improved K-nearest Neighbors Algorithm

1: Initial: The location of vehicles and RSUs. The radius of RSUs and the number of
vehicles in each RSU.

2: for vehicle k = 1 : K do Initial the set Ik and number ik of RSUs that can be selected by
the k-th vehicle.

3: for RSU l = 1 : L do Calculate the distance dk,l in (26). If dk,l ≤ RRSU, Ik appends
RSU l and ik + 1.

4: end for
5: if ik > 1 then Assigning vehicle k to the l-th RSU which is in Ik and has a lower

number of vehicles.
6: else Assigning vehicle k to corresponding RSU l which makes dk,l ≤ RRSU.
7: end if
8: end for

4.2. Joint-Optimized Server Association, Offloading Ratio and Transmission Power Scheme
Based on DRL

DRL learns from the environment-to-action mappings and develops an optimal strat-
egy via trial and error [24]; according to the reward function, it trains agents to make quick
decisions and optimal policies. Due to the non-convexity of objective function (P1), we
propose an MADRL scheme. Agents interact with the environment and update the learning
strategies. Therefore, the agent can choose the optimal action to minimize the total energy
consumption of the V2X system while satisfying the delay constraint.

(1) Agent: In the system, vehicles work as agents. They know their own information—since
the BS and RSUs have no direct link to exchange the information, it is difficult to make
the optimal decisions for offloading and power. Thus, the training is performed in the
optimization problem to make the adjustment to the dynamic environment. We choose
the vehicle as the agent to make the decision in the uplink link, and the BS and RSUs
will send the corresponding information to the associated vehicles—i.e., the packet size
of the task Dk generated by vehicle k, set Ik and the channel state information.

(2) Action space: Due to the limited communication resources in the system, the server
association, offloading ratio and transmit power affect the communication rate and
determine the communication energy consumption. Thus, the action space of vehicle
k comprises the server association, offloading ratio and transmit power. The server
association action space of the k-th vehicle is given as A1 = {xk = 0, 1}. The offload-
ing and power control action space are given as A2 = {Dk

dp
, 2Dk

dp
, 3Dk

dp
, · · · , Dk} and

A3 = { PV
max
dl

, 2PV
max
dl

, 3PV
max
dl

, · · · , PV
max}. dp and dl represent the length of offloading and

the power control action space. Therefore, the k-th agent can choose action from the
action space ak ∈ A = {A1, A2, A3}, k ∈ K.

(3) State space: According to the communication model established in the system, the
system energy consumption is related to transmission power, rate and delay; there-
fore, the state space comprises the transmit power pV

k , transmission rate Rdes
k and

communication delay Ttotal
k in Equation (24). When xk = 0, the transmission rate Rdes

k
is calculated by (14), and when xk = 1, the transmission rate Rdes

k is calculated by (20).
Thus, the state of vehicle k can be expressed as Sk = [PV

k , Rdes
k , Ttotal

k ], k ∈ K.
(4) Reward: In the DRL algorithm, the agents are trained to adjust the action choice

strategy and obtain the expected value by accumulating the maximum reward return.
Aiming to minimize the total energy consumption of the V2X system and meet the
delay constraint, the reward function of vehicle k is modeled as

rk =


b

∑K
k=0 Etotal

k

, if satisfied (25a),

−Ttotal
k , otherwise,

(27)
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where b is a positive number. When the corresponding delay constraint can be
satisfied, the agent will obtain a greater reward related with the energy consumption
of the V2X system. When the corresponding delay constraint cannot be satisfied,
the agent will obtain a negative reward related with the delay. In order to obtain
the long-term rewards, agents are trained to choose the action that can minimize the
energy consumption and meet the delay constraint.

The detailed design framework based on the deep Q-network (DQN) joint server
association, offloading ratio and transmit power optimization scheme in the MEC-assisted
V2X system is shown in Figure 2. The framework of the DQN contains two neural networks
and an experience replay buffer, and vehicles act as agents interacting with the environment.
On the current environment state sk, the k-th agent chooses and executes action ak and
observes the next state s′k and the greatest discount reward rk. The experience replay buffer
is used to store < sk, ak, rk, s′k >. DQN trains the agent by randomly selecting a batch of
samples from the experience replay buffer during the exploration cycle. Specifically, the
main network takes current state sk and action ak from each data sample to obtain the
predicted Q-value Q(sk, ak) of the particular action ak. The target network takes next state
s′k and predicts the action a′

k with the largest Q-value from all actions that can be taken in
that state, obtaining the target Q-value Q′(s′k, a′

k). The predicted and target Q-value is used
to calculate the loss function and adjust the parameters of the neural network.

Experience replay 

buffer
Mini-batch

Update 

weights

Predicted 

Q-value

Target 

Q-value 

i

Update 

weights

Estimate network Target network

Action(   ) : 

Offloading, power 
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state(     ),    ,
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' ' ' 2, | ) ( ,( ) ( (max( ( | )))t t i t ti t is a Q s ar Q = +   − 

tr

Figure 2. The framework of DQN-based multi-agent transmit power and task offloading scheme.

The loss function of the k-th agent is used to obtain the best Q-function by adjusting
the neural network parameters, which is given by [42]

L(θi) = (rk + γ(maxQ′(s′k, a′
k|θ

′
i)− Q(sk, ak|θi)))

2, (28)

where θi and θ′i denote the weights parameters of the main network and target network
during the i-th training, respectively. γ ∈ [0, 1) is a discount factor that can weight the
future rewards. In order to obtain the maximum long-term reward, the Q-function is
updated based on the Bellman equation, which is written as

Q(sk, ak) = (1 − α)Q(sk, ak) + α(rk + γmax(Q′(s′k, a′
k))), (29)

where α denotes the learning rate, which directly determines how quickly the agent can
adapt to the environment. DRL combines reinforcement learning with the DQN neural
network [43] and makes agents observe from the environment and intelligently select
the action that interacts with the environment. With repeated iterations, the agent will
choose a better server association, offloading ratio and transmit power to minimize the
energy consumption of the MEC-assisted multi-vehicle V2X communication system. The
DRL-based scheme is show in Algorithm 2.
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Algorithm 2 DRL-based Multi-agent Transmit Power and Offloading Optimization Scheme

1: Inputs: The sate s of the vehicles.
2: Initial: DQN-networks for all agents, including of policy strategy π(s, a), Q(s, a), and

{α, γ, ϵ, θ}.
3: for each iteration episode do
4: Agents observe state st, randomly selecting an action with probability ϵ, or

arg max
at∈A

{Q(st, at)} from the action space with probability 1 − ϵ. Interacting with

the environment, obtaining the next state s′t and reward (27). Storing < st, at, rt, s′t > in
the experience replay buffer.

5: for each training step do
6: Agents select a random mini-batch data from the experience replay buffer, and

transmit it to the neural network. The estimate network calculate the predicted Q-value
according to st, at, the target network calculate the target Q-value according to rt, s′t.
According to the predicted and target Q-value, computing the loss function in (28),
update the weights θi to the target network and Q-value Q(st, at) in (29).

7: end for
8: end for
9: Outputs: The action a of the vehicles used to optimize the offloading decision, offload-

ing ratio and power control.

4.3. DRL Algorithm Complexity Analysis

Computational complexity is critical for evaluating the algorithm performance. For
the Q-learning algorithm, the Q-table of agents consists of (|S|)K rows with |S| = 3
denoting the length of the environment states and (|a|p)K columns with |a|p = 50 denoting
distinct possible agent actions in our simulation. Thus, the whole Q-learning algorithm is
O((|S|)K · (|a|p)K), and the complexity of the Q-learning algorithm is primarily determined
by the dimensions of state space, the distinct possible agent actions and the number of
agents. From Algorithm 2, it can be known that the whole MADRL algorithm procedure
mainly contains two parts:

(1) Calculate the reward function: Agents, according to the state, select the beneficial
action, interact with the environment and obtain the reward. Thus, the computational
complexity of an agent calculating the reward is O(|st|), with |st| denoting the length
of the state space for the t-th training step.

(2) Select the beneficial action: For each agent, the numbers of layers in the DQN
network and neurons in each layer are considered. For the DQN network, the number
of layers in the DQN network is M, and neurons in the m-th layer is Um. Thus, the
computational complexity of the m-th layer is O(Um−1Um + UmUm+1), and, for the
t-th step, the computational complexity of an agent selecting the beneficial action
is Oc = O(|st| · U2 + ∑M

m=3(Um−1Um + UmUm+1) + UM−1 · |at|), with |at| denoting
the length of the action space for the t-th training step. Therefore, the computational
complexity of an agent is O(Or + Oc). The computational complexity for a complete
episode is O(Nstep(Or + Oc)), where Nstep is the number of steps in one episode. The
computational complexity for the whole algorithm is O(Nepisode · Nstep(Or + Oc)),
where Nepisode is the number of iteration episodes. In this paper, all agents have the
same DQN network, and the computational complexity of all agents is O(K(Nepisode ·
Nstep(Or + Oc))). The complexity of the proposed algorithm is primarily determined
by the network architectures of the DQN network structure and the dimensions of
the state and action space. In addition, the complexity of the Q-learning algorithm
is primarily determined by the number of agents, and the implementation of Q-
learning is more complex compared to the MADRL algorithm in the multi-vehicle
V2X communication system. Thus, the proposed MADRL algorithm is more suitable
for solving the optimization problem (P1) in this work.
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5. Simulation Results

Numerical results are provide to prove the effectiveness of the proposed DRL scheme
in this section. Unless otherwise stated, the BS is located at the origin and its radius is
400 m. The number of RSUs L = 4 and the radius of the RSUs is 200 m. The number
of vehicles K = 6. Note that the vehicles are in the coverage of the RSUs, which are in the
coverage of the BS. Other parameters are shown in Table 2. In addition, in order to reflect the
excellent performance of the joint optimization scheme, the maximum transmit power and full
offloading schemes are adopted as benchmark schemes. Specifically, the maximum transmit
power scheme represents that vehicles use their maximum transmit power offloading task,
and the full offloading scheme represents that vehicles offload all tasks to the RSUs or BS for
edge computing. The DQN has one input layer, one output layer and two hidden layers, and
the number of neurons in each layer is 10. The simulation environment is Python 3.7.4 and
TensorFlow 2.1.0.

The energy consumption of the MEC-assisted multi-vehicle V2X system versus the
number of training episodes under different learning rates, i.e., α = 0.005, 0.01 and 0.05,
is shown in Figure 3. Figure 3a,b show that the energy consumption decreases when the
RSUs are equipped with MF and ZF receivers, respectively. It can be seen that, whether the
RSUs are equipped with MF or ZF receivers, as the training episode increases, the energy
consumption decreases and is finally stable under the proposed scheme with different
learning rates, especially when α = 0.01. Thus, α = 0.01 is adopted to train vehicles to
select the beneficial server association, offloading ratio and transmit power to minimize the
energy consumption. In addition, energy consumption when the RSUs are equipped with
the ZF receivers is lower than when equipped with the MF receivers. This is because the
ZF receivers eliminating the inter-user interference of the V2I, I2B and V2B communication
links results in a higher transmission rate. The delay of each vehicles versus the number
of training episodes under the proposed scheme when α = 0.01 is shown in Figure 4.
Figure 4a,b show the delay of each vehicle when the RSUs are equipped with MF and ZF
receivers, respectively. It is noted that the delay of each vehicles is less than the maximum
vehicle delay; thus, the proposed scheme can decrease the energy consumption while
satisfying the delay constraint.

Table 2. Simulation parameters.

Symbol Description Value

Tmax Maximum vehicle delay 8 s
f V Processing capability of the vehicles 0.1 Mbit/s
f R Processing capability of the RSUs 5 Mbit/s
f BS Processing capability of the BS 10 Mbit/s
Dmax Data packet 2 M
Dprc Processed data packet size 1 M
BV2I Bandwidth of the V2I communication link 1 MHz
BI2B Bandwidth of the I2B communication link 5 MHz
BV2B Bandwidth of the V2B communication link 5 MHz
PV

max Maximum transmit power of the vehicles 23 dBm
PR Transmit power of the RSUs 40 dBm
do Length of offloading action space 5
dp Length of power control action space 5
σ2 Noise power −90 dBm
α Learning rate 0.01
γ Discount factor 0.9
ϵ Exploration possibility 0.96
Nepisode Iteration episode 350
Nstep Training step in one episode 200
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Figure 3. Energy consumption under the proposed scheme with different learning rate when L = 4.
(a) RSU equipped with MF receivers. (b) RSU equipped with ZF receivers.
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Figure 4. Delay of each agents under the proposed scheme when α = 0.01 and L = 4. (a) RSU
equipped with MF receivers. (b) RSU equipped with ZF receivers.

The energy consumption versus the number of training episodes under different
schemes is shown in Figure 5. Figure 5a,b show the energy consumption under different
schemes when the RSUs are equipped with MF and ZF receivers, respectively. It is noted
that the energy consumption decreases and is finally stable under different schemes. When
the RSUs are equipped with the MF receivers, the proposed scheme can decrease the
energy consumption by 55.89% and 64.67% more than the maximum transmit power and
full offloading schemes, respectively. This is because the proposed scheme optimizes the
offloading ratio and the transmission power jointly, which both have an impact on the
energy consumption. When the RSUs are equipped with the ZF receivers, the proposed
scheme can decrease the energy consumption by 20.00% more than the full offloading
scheme, but has a similar performance compared to the maximum transmit power scheme.
This is because ZF receivers can eliminate inter-user interference, making vehicles choose
the maximum transmit power to offload tasks. In addition, RSUs equipped with ZF
receivers under the proposed scheme can decrease the energy consumption by 35.04% more
than MF receivers.
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Figure 5. Energy consumption versus training episodes under different schemes when L = 4.
(a) RSU equipped with MF receivers. (b) RSU equipped with ZF receivers.

Figure 6 shows the impact of the number of vehicles on the energy consumption. It
can be seen that as the number of vehicles increases, the energy consumption increases
under the same scheme, which is independent of the RSUs equipped with the receiver.
This is because the number of vehicles increases, the interference caused by other vehicles
increases and transmission rate decreases. In order to satisfy the delay constraint, vehicles
need to offload more tasks to the MEC server for edge consumption, which makes the
energy consumption increase. When the number of vehicles K is lower than the number of
RSUs L, the energy consumption of the maximum transmit power scheme is the same as
the proposed scheme. This is because the improved KNN algorithm assigns vehicles to
different RSUs, and the vehicles will use the maximum transmit power in the offloading
task but not cause interference to each other. When the number of vehicles is larger than the
number of RSUs, the proposed scheme has a lower energy consumption than the benchmark
schemes. Specifically, when K = 5 and RSUs are equipped with MF receivers, the proposed
scheme can decrease the energy consumption by 42.86% and 54.29% compared with the
maximum transmission power and full offloading schemes, respectively. When K = 9, the
energy consumption of the proposed scheme reduces by 42.26% and 47.27% compared
with the maximum transmit power and the offloading schemes, respectively. When K = 9
and RSUs are equipped with ZF receivers, the proposed scheme can decrease the energy
consumption by 17.78% compared with the full offloading schemes, respectively. Thus,
the proposed scheme has a better performance in reducing the energy consumption of the
system when the number of vehicles increases.
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Figure 6. Energy consumption versus number of vehicles when L = 4.

The energy consumption versus the number of RSUs L under different schemes when
the number of vehicles K = 6 is shown in Figure 7. It can be seen that as the number of



Electronics 2024, 13, 663 15 of 18

RSUs increases, the energy consumption decreases under the same scheme. This is because
the number of RSUs increases and more vehicles can offload tasks to the RSUs and have a
lower energy consumption. When the number of RSUs L = 8, the proposed scheme can
decrease energy consumption by 19.93% more than the full offloading scheme and has a
similar performance compared to the maximum transmit power scheme. This is because
the improved KNN algorithm assigns vehicles to different RSUs when L > K, making
vehicles choose the maximum transmit power to offload tasks.
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Figure 7. Energy consumption versus number of RSUs.

The energy consumption versus packet size increase under different schemes is shown in
Figure 8. It is noted that as the packet size increases, the energy consumption increases under
the same scheme, no matter what receivers the RSUs are equipped with. This is because the
packet size increases and the process delay increases, and so the vehicles need to offload more
tasks to the MEC server for edge consumption to satisfy the delay constraint. This makes the
energy consumption increase. In addition, the energy consumption of the proposed scheme
is lower than the benchmark schemes, and when the RSU is equipped with a ZF receiver, it
can reduce more energy consumption. Specifically, when the packet size is 1.2 M and RSUs
are equipped with MF receivers, the energy consumption of the proposed scheme reduces
by 52.38% and 80.95% compared with the maximum transmit power and offloading scheme,
respectively. When the packet size is 3M, the energy consumption of the proposed scheme
reduces by 52.30% and 61.84% compared with the benchmark schemes. Thus, the proposed
scheme has a better performance in reducing the energy consumption of the system when the
packet size increases.
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Figure 8. Energy consumption versus the packet size.

The DRL scheme is proposed to solve the non-convex energy consumption minimiza-
tion problem. From the above simulation results, it can be concluded that the proposed
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DRL scheme can obtain superior performance in reducing the energy consumption of the
system under a different number of vehicles, number of RSUs and packet size.

6. Conclusions

This paper studied the uplink MEC-assisted multi-vehicle V2X communication system
in which vehicles can offload tasks to the RSUs and BS for edge computing. To minimize
the energy consumption and satisfy the delay requirements, an energy consumption min-
imization problem was formulated under a delay constraint. Due to the coupling of the
server association, offloading ratio and transmit power, as well as delay constraints, the
minimization problem is highly non-convex and difficult to solve. Thus, the DRL algorithm
was proposed to solve the optimization problem. Vehicles as agents were trained according
to the reward function, which is related to the energy consumption of the system and
processing delay, to obtain a better action containing server association, offloading ratio
and transmit power. In addition, an improved KNN algorithm was used to assign vehicles
within the coverage area of multiple RSUs to reduce the action space and complexity of the
DRL scheme. Numerical results have shown that the proposed scheme outperforms the
maximum transmit power and full offloading schemes regarding minimizing the energy
consumption with a different number of vehicles and packet size. In addition, the RSUs
equipped with ZF receivers can decrease more energy consumption than MF receivers.
However, the collaborative RSUs for computation processing are not considered in this
work due to the complicated action space and the computation complexity. It is interesting
to investigate the collaborative RSUs for computation processing to reduce the energy
consumption and reduce the latency, especially for the resource-limited V2X network. Joint
offloading and RSU allocation optimization is difficult with communication delay and
power constraints due to the action space being related to a discrete RSU.
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