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Abstract: Controlling multi-agent systems (MASs) has attracted increased interest within the control
community. Since the control challenge consists of the fact that each agent has limited local capabilities,
our adopted solution is tailored so that a group of such entities works together and shares resources
and information to fulfill a given task. In this work, we propose a coalitional control solution using
the distributed model predictive control (DMPC) framework, suitable for a multi-agent system. The
methodology has a switching mechanism that selects the best communication topology for the overall
system. The proposed control algorithm was validated in simulation using a homogeneous vehicle
platooning application with longitudinal dynamics. The available communication topologies were
specifically tailored taking into account the information flow between adjacent vehicles. The obtained
results show that when the platoon’s string stability is risked, the algorithm switches between
different communication topologies. The resulting coalitions between vehicles ensure an increase in
the overall stability of the entire system and prove the efficacy of our proposed methodology.

Keywords: coalitional control; distributed model predictive control; predecessor–follower string
stability; switching communication topologies; multi-agent systems

1. Introduction

Nowadays, there is much interest in the control of multi-agent systems (MASs). Ac-
cording to the work in [1], MASs are those systems that are composed of multiple au-
tonomous units (hereafter called agents), each one with limited access to information,
that need to communicate and collaborate to achieve a common task. Depending on the
communication used to ensure a desired global behavior, MASs can be classified as [2]
(i) MASs based on agent-to-agent communication, in which both the local controllers and
the communication topology must be accordingly designed, and (ii) MASs based on broad-
cast, where a global controller analyzes the group performance and broadcasts a signal to
all local controllers. According to [3], from the point of view of the problem formulation,
MASs can solve various problems such as (i) consensus control, in which all local states
must converge to a common value agreed upon among the agents [4], (ii) formation control,
where all agents must move in a predefined formation shape [5], and (iii) containment
control, in which a subset of agents are considered leaders and dictate the safe regions for
the follower agents to move [6].

As stated in the survey work on intelligent control of MASs [7], one key limitation
in achieving intelligent control of a MAS is given by the communication and sensing ca-
pabilities of each agent, which are usually constrained by the limited range of perception
or limited bandwidth within the network resources. Moreover, even with this challenge
solved, there are still open issues when dealing with MASs, such as assuring network
security concerning cyber attacks, designing fully distributed control frameworks that
ensure the global stability of the MAS, testing control strategies on heterogeneous applica-
tions, or validating the control strategies on large-scale practical applications. There are
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manifold control strategies suitable for MASs, such as gain feedback robust control [8],
the distributed Kalman filtering algorithm for estimation and tracking applications [9],
robust model predictive control (RMPC) [10], and distributed model predictive control
(DMPC) [11], among others. In [12], a DMPC algorithm for a linear quadratic consensus
problem of MASs is provided. The idea is to optimize at each sampling period both the final
consensus state and the input trajectory to achieve the steady-state response in addition
to the transient response of the MAS. In [13], an event-triggered synchronous DMPC for
MASs is proposed, where the DMPC problem is solved only when the triggering condition
is satisfied. In [14], a DMPC algorithm with energy management is compared with a
proportional-integral-derivative (PID) controller, using an electric vehicle platoon with
longitudinal motion, with leader–predecessor following communication topology. In [15],
a DMPC-based string-stable platoon with robustness against communication delays is
proposed. A string stability constraint is imposed in the local optimization problem.

A common test case for MASs is a switching topology scenario, since, due to environ-
mental faults, the communication topology established between the agents can change. For
example, in a vehicle-to-vehicle communication network established within an MAS, the
communication between agents can be disconnected due to communication range or exter-
nal disturbances [16]. In [17], the consensus problem is solved using a model predictive
control (MPC) algorithm, which is designed to ensure a fast convergence to consensus for
all the MASs in the presence of input constraints and switching topologies. The algorithm
is tested on five MASs with double-integrator dynamics, connected via two communication
topologies, which are switched periodically within a sampling period. In [18], a distributed
attitude synchronization control of MASs with switching topologies is presented. The
algorithm is validated using five agents (rigid bodies) with absolute and relative rotation
movements, respectively. The agents are assumed to be connected via two interaction
graphs, which are switched periodically, following a predefined switching signal. In [19],
distributed reconfiguration strategies for networked MASs with switching topologies in
the presence of actuator faults are proposed. Two distributed control laws are tested using
a seven-agent system and three periodically switching network graph topologies. In [20],
a car-following model useful for a vehicle platooning application with fixed and switching
communication topologies is presented. Three communication topologies regarding the
information flow in the entire platoon are proposed, which are switched according to a
periodic and predefined schedule.

A common characteristic of the above-mentioned works is that the switching mecha-
nism is periodic and predefined. There are several communication topologies designed
for the MASs, and, within the simulation scenario, there is a periodic switching signal that
selects the activation of a certain topology. Another control approach for MASs is reformu-
lating the problem in the coalitional control framework [21], which is a clustering approach
in which the activation of the communication links is penalized to prevent unnecessary
information exchange. The idea is to merge local agents into coalitions or clusters, which
share relevant information via enabled communication links to solve their common goal.
In [22], a coalitional, robust MPC algorithm is given, in which different coalitions between
agents are formed using a consensus-based algorithm with potential games. In [23], a
coalitional, robust, tube-based MPC algorithm for tracking target sets is proposed. The
switching mechanism between different communication topologies is based on the periodic
evaluation of an unconstrained performance cost index. In [24], a coalitional, robust, tube-
based MPC strategy with plug-and-play capabilities is presented. The coalitions between
different agents are formed when the feasibility of the optimization problems is lost due
to local disturbances. In [25], a robust, coalitional MPC with a hierarchical architecture
is proposed. The transitions between different topologies are predicted by each agent by
introducing a new variable in the optimization problem.

In this work, we focus on the formation control of an MAS with agent-to-agent
communication. To this end, we formulate a DMPC algorithm in the coalitional control
framework, hereafter called (C-DMPC). The proposed C-DMPC algorithm is tested in a
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vehicle platooning application. The coalitions between different agents are formed when
the string stability of the platoon is lost. For example, if a vehicle indexed i is not string
stable with respect to vehicle i − 1 (i.e., its longitudinal error is larger than the longitudinal
error of its predecessor), a coalition will form between vehicle i and vehicle i − 1.

The most recent results by the authors obtained in the coalitional control domain
can be classified depending on the methodology used to control the MAS, as follows:
(i) coalitional control based on an optimal feedback gain matrix [26], in which each
communication topology is described by a different optimal feedback gain matrix, with
non-zero elements corresponding to active communication links, and (ii) coalitional control
based on a robust DMPC framework [27,28] with a robust, min-max DMPC algorithm, in
which the coalitions between agents are formed when the local feasibility with respect to a
robust positive invariant terminal set constraint is lost. Furthermore, in [29], a comparative
assessment is performed on a vehicle platooning application by evaluating the results
achieved using a DMPC strategy and a coalitional control algorithm, formulated using
an optimal feedback gain matrix. Thus, the idea is to investigate the performance of the
DMPC method, compared with the coalitional control with distributed and decentralized
communication topologies, respectively.

With respect to similar works from the literature, the main contributions of this work
are summarized as follows:

1. A DMPC-based coalitional control strategy is developed, in which the reconfiguration
of the communication network is jointly decided depending on local string stabil-
ity criteria. This is different from the DMPC algorithm in [30], where the network
topology changes by inserting or removing certain agents, or the robust, min-max
DMPC algorithm in [27,28], in which the coalitions are formed when the local feasi-
bility of the optimization problem is lost due to the fact that a terminal constraint is
not fulfilled.

2. An automatic procedure to switch between different communication topologies is
designed, based on a string stability index evaluation. This evaluation is performed
periodically, but the period is not fixed and depends on the transient response of
each networked sub-system. This means that a coalition between two sub-systems is
formed if the string stability criteria between them are not fulfilled (i.e., the output
error between two adjacent sub-systems is increasing). An alternative condition for
switching between topologies, which is based on a performance index evaluation for
each possible topology, performed at periodic time intervals can be found in [23].

3. The DMPC algorithm with the string stability constraint introduced in [29] was
extended in a coalitional DMPC framework, using as a switching deciding factor
the evaluation of a string stability index, computed outside of the local optimization
problems. Thus, in order to decide if a coalition between sub-systems is required,
resulting in a change in the communication topology, the string stability index is
assessed by each sub-system, and, depending on the result, a coalition is formed (i.e.,
the communication topology is switched).

4. A comprehensive analysis of the performance achieved with each individual com-
munication topology is performed. Moreover, three simulation scenarios for a ho-
mogeneous vehicle platoon are executed to evaluate the selection between different
available communication topologies (i.e., corresponding to certain coalitions between
sub-systems).

The remainder of this paper has the following structure: Section 2 presents the pro-
posed coalitional distributed model predictive control (C-DMPC) strategy formulation. The
methodology is tested in simulation using a vehicle platooning application. The platoon
model is provided in Section 3, while the simulation results and discussion are given in
Section 4. The conclusions and future work ideas are presented in Section 5.
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2. Coalitional Distributed Model Predictive Control (C-DMPC) Strategy

In this section, the proposed C-DMPC method is provided. Starting from the DMPC
algorithm description given in [29], a coalitional DMPC strategy is formulated.

2.1. Preliminaries

Consider a multi-agent system composed of NS sub-systems dynamically coupled through
the state and input vectors. The agents controlling each sub-system i, ∀i ∈ S = {1, . . . , NS},
are connected with the agents controlling the sub-systems j, ∀j ∈ S − {i}, if the coupling
matrices Aij, Bij ̸= 0.

The discrete-time, state-space model for sub-system i ∈ S is the following:

xi(k + 1) = Aixi(k) + Bi,iui(k) + ∑
j∈S−{i}

(
Aijxj(k) + Bijuj(k)

)
yi(k) = Cixi(k)

(1)

with k being the discrete time index. The input, output, and state variables are denoted
with ui ∈ R, yi ∈ R, and xi ∈ R, respectively. Sub-system i is dynamically coupled with
sub-system j through the state xj ∈ R and input uj ∈ R variables. In particular, the first
sub-system with the index i = 1 is not coupled. Thus, the coupling term ∑j∈S−{1} A1jxj(k) +
B1juj(k) = xr(k) is replaced by the reference imposed for sub-system i = 1. Note that
matrices Ai, Bi,i, Ai,j, Bi,j, and Ci have adequate dimensions.

For all sub-systems i ∈ S , linear input and output hard constraints are imposed as:

ui ∈ Ui, yi ∈ Yi, (2)

where Ui and Yi are defined by sets of linear inequalities.
All sub-systems (1) can exchange information using a communication network de-

scribed by the graph (S , L), where S represents the set of agents and L represents the set
of communication links. Each link li,j ∈ L, connects a pair of agents {i, j} ⊆ S, i ̸= j. A net-
work topology is defined as a configuration of communication links between agents. Inside
of a network topology, the sub-systems form a coalition C. The members of a coalition C
cooperatively compute their future inputs uC = (ui)i∈C. Hence, a coalition behaves as a
single system described by [31]:

xC(k + 1) = ACxC(k) + BCui(k) + xdC(k), (3)

where xdC = ∑j∈S−{C}
(

ACjxj(k) + BCjuj(k)
)

and xC = (xi)i∈C and uC = (ui)i∈C denote
the aggregate state and input vector composed of the sub-systems i ∈ C included in the
coalition. The corresponding state and input matrices for the coalitions are BC = [Bi,i′ ]i,i′∈C
and AC = [Ai,i′ ]i,i′∈C, respectively. For each coalition C, linear input and output hard
constraints are imposed as:

uC ∈ ∏
i∈C

Ui, yC ∈ ∏
i∈C

Yi, (4)

where ∏i∈C Ui is defined by the Cartesian product between each individual input constraint
set, corresponding to each sub-system i ∈ C. The output constraint for the coalition C can
be defined similarly.

The interconnected sub-system (1) must respect the string stability property to ensure
that a change in the first sub-system’s (i.e., the leader) states is attenuated along the
upstream direction [32]. In this work, the predecessor–follower string stability condition is
defined in terms of output error ei(k) = ri(k)− yi(k), as follows [33]:
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Definition 1. The multi-agent system with NS sub-systems (1) is predecessor–follower string
stable if, for each sub-system i ∈ {2, . . . , NS}, there exists a constant αi ∈ (0, 1) such that:

ηi = ||e∗i (l|k)||∞ − αi max
s∈{0,..,k}

||e∗i−1(l|s)||∞ ≤ 0, ∀k ≥ 0, l ∈ {1, ..., N}, (5)

where e∗i is the predicted trajectory error and ∥ · ∥∞ denotes the infinity-norm.

Notice that the stability condition (5) requires both the history of prediction for e∗i−1
and its current optimal predicted trajectory. The information at the current step k cannot be
obtained but can be replaced with the prediction from the previous step [32]:

ηi = ||e∗i (l|k)||∞−
αi min( max

s∈{0,..,k−1}
||e∗i−1(l|s)||∞, max(|e∗i−1(2|k − 1)|, |e∗i−1(3|k − 1)|)) ≤ 0, (6)

where | · | denotes the absolute value. The value (6) represents the predecessor–follower
string stability condition imposed for each sub-system in the local optimization problem.

Remark 1. Between two adjacent sub-systems i and i − 1, which are not in the same coalition, the
predecessor–follower string stability constraint is defined as (6). However, if these two sub-systems
are members of the same coalition, then the stability constraint becomes:

ηi = ||e∗i (l|k)||∞ − αi min( max
s∈{0,..,k−1}

||e∗i−1(l|s)||∞, max(|e∗i−1(2|k)|, |e∗i−1(3|k)|)) ≤ 0. (7)

Note that, within a coalition, the stability constraint between adjacent sub-systems (7)
is computed based on the prediction of ei−1 locally computed by sub-system i using the
coalition model. This is different than the case in which sub-systems i and i − 1 do not
form a coalition and the information regarding the prediction of ei−1 used to compute (6) is
received via a vehicle-to-vehicle (V2V) communication network.

Remark 2. The predecessor–follower string stability condition provided in (5) was firstly intro-
duced in [33]. In this work, we replace the string stability condition (5) with the string stability
condition (6), following the interpretation provided in [32], in order to approximate missing current
information with past known information. Furthermore, the stability condition (6) was firstly used
as a constraint in the DMPC algorithm provided in [29].

In what follows, a coalitional DMPC strategy to control the multi-agent system com-
posed of NS sub-systems (1) that ensures the string stability property is proposed.

2.2. C-DMPC—Optimization Problem

First, let us define the optimization problem to be solved over the prediction horizon
N by each agent in charge of each sub-system i ∈ {1, . . . , NS}:

Problem 1. For each sub-system i ∈ {1, . . . , NS}, at each discrete step k, given xi(k), solve:

min
Ui(k)

Ji(xi(k), Ui(k)), (8)

subject to constraints (1), (2), and (6),
where

Ji(xi(k), Ui(k)) = xT
i (N|k)Pixi(N|k) +

N−1

∑
l=0

(
xT

i (l|k)Qixi(l|k) + uT
i (l|k)Riui(l|k)

)
. (9)
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Note that the cost index (9) involves a terminal cost weighted by matrix Pi ≻ 0 and a
stage cost that penalizes the state xi and the input ui by the weight matrices Qi ≻ 0 and
Ri ≻ 0, respectively.

Second, as previously mentioned, when the string stability constraint (6) is not ful-
filled, the agents will choose to merge into a coalition. Inside a coalition, the following
optimization problem is solved:

Problem 2. For each coalition C, at each discrete step k, given xC(k), solve:

min
UC(k)

JC(xC(k), UC(k)) (10)

subject to constraints (3), (4), and (7),
where

JC(xC(k), UC(k)) =xT
C(N|k)PCxC(N|k)+

N−1

∑
l=0

(
xT

C(l|k)QCxC(l|k) + uT
C(l|k)RCuC(l|k)

)
,

(11)

where PC ≻ 0, QC ≻ 0, and RC ≻ 0 are the weight matrices for the coalition’s C terminal cost,
state, and input, respectively.

Notice that, in a coalition, each member i ∈ C knows the model of the coalition and
has to solve Problem 2 instead of Problem 1.

2.3. C-DMPC—Algorithm

In Algorithm 1, the algorithm for the C-DMPC strategy is provided.

Algorithm 1: Coalitional DMPC algorithm.

for each discrete time k do
if mod(k, NC) == 0 then

All sub-systems verify the stability condition (6):
if ηi > 0 then

if i − 1 ∈ C then
• Enter in the existing coalition of sub-system i − 1;

else

• Create a new coalition with sub-system i − 1;

end
else

• Sub-system i will not form a coalition with sub-system i − 1;

end
end

• All sub-systems share their current states within the coalition;
• Sub-system i − 1 sends to sub-system i the state trajectory prediction,

if sub-systems i − 1 and i do not belong in the same coalition;
• Sub-system i solves Problem 2, if sub-system i belongs in a coalition,

otherwise sub-system i solves Problem 1.

end

In the proposed Algorithm 1, the key step performed by each sub-system is to verify
if the predecessor–follower string stability condition, i.e., (6) is fulfilled. To minimize
the computational burden implied by checking this condition at each sampling period,
condition (6) is investigated after every Nth

C sampling period. However, the NC parameter
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is not static and is cooperatively selected by all agents between two limit values. More
details regarding the method used to decide this parameter are provided in Section 3,
Algorithm 2. Since each agent checks its own condition, depending on each local ηi value,
either a new coalition between two adjacent sub-systems is formed, or a larger coalition
is created. Within a coalition, all information is freely shared and Problem 2 is solved.
Furthermore, if all local ηi values are negative, no coalition is formed, and each agent solves
Problem 1.

Algorithm 2: Condition of determining NC.

if |ai(k)| ≤ ϵ then
NCi = NCMAX ;

else
NCi = NCMIN ;

end
NC = min(NCi), i ∈ {2, . . . , NS}.

3. Vehicle Platoon—CASE Study

The proposed C-DMPC algorithm is applied to a vehicle platooning application to
control the longitudinal dynamics. Since the platoon is coupled using a predecessor–
following communication topology, it means that the information flow is unidirectional
between adjacent vehicles.

The leader vehicle is modeled using the following state-space representation: v̇1
ėp1

ȧ1

 =

 0 0 1
−1 0 0
0 0 −1

τ

 v1
ep1

a1

+

 0
0
1
τ

u1 +

 0
1
0

xr

y1 =
[

0 1 0
]
x1

(12)

where the state vector variables x1 = [v1 ep1 a1]
T are the vehicle’s velocity, position error,

and acceleration, respectively; the control input u1 is the desired acceleration, while the
output y1 is the position error ep1 of the vehicle, which is computed with respect to an
imposed velocity reference trajectory xr = rv1 . The time constant of the first-order vehicle
model is denoted with τ.

Starting from the individual vehicle’s model, a vehicle platoon is formed, in which the
leader vehicle, indexed i = 1, follows an imposed velocity reference, whereas a follower
vehicle, indexed i ∈ {2, . . . , NS}, needs to maintain a desired relative distance rdi

with
respect to the preceding vehicle indexed with i − 1. Let us assume a constant headway time
policy imposed for the follower vehicles, defined as follows:

rdi
= r + hvi, (13)

where r is the standstill constant distance between the vehicles, h is the time headway, and
vi is the velocity of vehicle i.

According to the work in [34], the follower vehicle dynamics can be described starting
from the computation of the inter-vehicle distance di as the difference between the position
pi−1 of vehicle i − 1 and the position of the current vehicle pi:

di = pi−1 − pi. (14)

The position error between two consecutive vehicles denoted with epi is computed as
the difference between the inter-vehicle distance di from (14) and the headway time policy
rdi

given in (13) as follows:

epi = di − rdi
= pi−1 − pi − r − hvi. (15)
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Using the definition of the position error from (15), the time derivative of the position
error ėpi is computed:

ėpi = ṗi−1 − ṗi − ṙ − hv̇i = vi−1 − vi − hai = evi − hai, (16)

where the velocity error between two consecutive vehicles evi is computed as the difference
between the velocity vi−1 of vehicle i − 1 and the velocity of the current vehicle vi. It results
that the time derivative of the velocity error ėvi is calculated as the difference between the
two consecutive vehicle accelerations:

ėvi = v̇i−1 − v̇i = ai−1 − ai. (17)

For each follower vehicle, i ∈ {2, . . . , NS}, the following continuous-time, state-space
model is used:

ẋi =


0 0 0 1
0 0 1 −h
0 0 0 −1
0 0 0 −1

τ




vi
epi

evi

ai

+


0
0
0
1
τ

ui +


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




vi−1
epi−1

evi−1

ai−1


yi =

[
0 1 0 0

]
xi

(18)

where the state variables xi = [vi epi evi ai]
T , i ∈ {2, . . . , NS} are the follower vehicle’s

velocity, position error, velocity error, and acceleration, respectively; the control input ui is
the desired acceleration, while the output yi is the position error.

Note that each follower vehicle model (18) is coupled to its predecessor vehicle through
the acceleration state variable ai−1. This means that, between adjacent vehicles, the acceler-
ation is unidirectionally transmitted using the communication network.

In this work, for a vehicle platooning application, the parameter NC, which determines
the frequency of the topology switching in Algorithm 1, is variable and depends on
the acceleration of vehicles. If the acceleration of the vehicles is close to zero, i.e., the
vehicles move with a constant velocity, then the stability condition ηi is rarely checked, and
otherwise, it is checked more often.

Remark 3. In Algorithm 1, when mod(k, NC) == 0, all sub-systems will determine their own
NCi and share it with all sub-systems to find the new NC according to Algorithm 2.

4. Results and Discussion

In this section, the simulation results for the proposed C-DMPC strategy obtained for
a vehicle platooning application are presented. The multi-agent system is composed of
NS = 4 identical vehicles in a predecessor–following platoon formation, consisting of a
leader vehicle (labeled in the figures with L) and three follower vehicles (labeled in the
figures with F1, F2, and F3, respectively). For all vehicles, the time constant is τ = 0.1, and
for the follower vehicles, the time headway is h = 0.7.

The discrete-time platoon model is obtained by conversion using the Matlab function
c2dm with the zoh method, starting from the continuous-time models (12) and (18), for the
leader and follower vehicles, respectively. The sampling period used is Ts = 0.1 s.

The optimization parameters are as follows: the prediction horizon N = 50 samples,
the weight matrices Pi = Qi = [0.15, 0, 0, 0; 0, 0.15, 0, 0; 0, 0, 0.1, 0; 0, 0, 0, 0], i = {2, . . . , 4},
P1 = Q1 = [0.2, 0, 0; 0, 0.1, 0; 0, 0, 0], and Ri = 0.1. For the stability condition, the parameter
is αi = 0.95, i = {1, . . . , 4}. Notice that the numerical values for the optimization parameters
were chosen empirically by performing multiple simulation experiments, on a trial-and-
error basis, to ensure the best platoon performance. The main focus was to ensure the
feasibility of all the optimization problems using a given reference trajectory scenario. In
both Problems 1 and 2, the cost functions Ji, i = {1, . . . , 4} and JC, respectively, have three
terms: (i) the terminal cost, which penalizes the states at the end of the prediction horizon
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with the weight matrix Pi, the stage cost, which penalizes the states predictions over the
prediction horizon with the weight matrix Qi, and the input cost, which penalizes the
control effort value with the weight value Ri. Within the optimization problem solved by
each sub-system, a trade-off between all these three terms is performed. Moreover, the
optimization parameters for both Problems 1 and 2 are identical for all follower vehicles
in the platoon i ∈ {2, . . . , 4}, with a slightly larger weight given to states vi and epi when
compared to the weight given to state evi . For the leader vehicle, the state v1 is given a
larger weight than the state epi , since, for the leader, it is more important to maintain the
desired velocity than to minimize the position error.

Please note that since the follower vehicles are dynamically coupled through the
acceleration states (see model (18)), it results that the cost functions Ji, i ∈ {2, . . . , 4}, which
are locally minimized, are implicitly coupled, i.e., to compute the local state prediction for
vehicle i, the state value from the preceding vehicle i − 1 is required.

In Algorithm 2, the value for the parameter is ϵ = 0.01. Moreover, the values available
for the NC parameter used to determine the switching frequency between topologies are
NCMIN = 3 and NCMAX = 10. The inequality input constraints are bounded by the limit
values umin

i = −2 m/s2 and umax
i = 2 m/s2. The inequality output constraints are bounded

by the limit values ymin
i = −1 m and ymax

i = 1 m.

Remark 4. All the optimization problems were solved using the YALMIP toolbox for Matlab [35],
using the optimization solver quadprog. Within an optimization problem, the iterations ended
when the relative dual feasibility stopping condition was less than the optimality tolerance threshold
imposed at the value 1.0 × 10−8. Regardless of the communication topology, the optimal solution
was found in no more than nine iterations (i.e., C0 required five or six iterations, whereas C7
required seven or nine iterations), in an average computation time of 0.05 s, which is less than the
sampling period.

Since we aim to test a C-DMPC algorithm with switching topologies, let us denote
each communication topology with respect to the coalition activated between the platoon
vehicles, as follows:

• C0: dist is the default platoon setting, in which each vehicle individually solves a
DMPC optimization problem and no coalitions are formed;

• C1: F3-F2 is the coalition between vehicles F3 and F2, whereas vehicles F1 and L are
outside the coalition;

• C2: F2-F1 is the coalition between vehicles F2 and F1, whereas vehicles F3 and L are
outside the coalition;

• C3: F1-L is the coalition between vehicles F1 and L, whereas vehicles F2 and F3 are
outside the coalition;

• C4: F3-F2-F1 is the coalition between vehicles F3, F2, and F1, whereas vehicle L is
outside the coalition;

• C5: F2-F1-L is the coalition between vehicles F2, F1, and L, whereas vehicle F3 is
outside the coalition;

• C6: F3-F2/F1-L is the simultaneous activation of two separate coalitions, i.e., the
coalition between vehicles F3 and F2 and the coalition between vehicles F1 and L;

• C7: cen is centralized coalition, between all platoon vehicles L, F1, F2, and F3.

As previously mentioned in Algorithm 1, the coalitions are formed when the string
stability condition is not fulfilled, i.e., the index value ηi is positive. To have an overall
performance view, each topology was tested separately in a reference tracking scenario. To
this end, a velocity profile for the leader was defined, consisting of segments of linearly
spaced velocity values (in ascending or descending order), alternating with segments of
constant velocity values.

In Figure 1, the values for the stability condition index η obtained during the simu-
lations are provided. In Figure 1a, the values for coalitions C0, C1, C2, and C3 are given,
while Figure 1b depicts the η values for coalitions C5, C6, C7, and C8.
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Figure 1. Stability condition index. (a) Stability condition index for coalitions C0–C3. (b) Stability
condition index for coalitions C4–C7.

To have an overall statistic view for each platoon vehicle, the simulation data were
visualized in a box plot format using the Matlab function boxplot. The bottom and top of
each box, which is depicted in black color are the 25th and 75th percentiles of the sample
data, and the median of the sample data is depicted with a red line in the middle of the
box. The whiskers of each box are the lines extended above and below each box and
denote the maximum and the minimum values of the sample data. Data placed beyond
the whiskers are considered outliers and are marked with a red cross sign. Each box plot
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was overlapped with a swarm chart for the numerical values of the data using the Matlab
function swarmchart, i.e., each vector value is depicted with a green dot marker.

For a better understanding, for each follower vehicle, the mean value of the η index is
computed (denoted with η1, η2, and η3, for vehicles F1, F2, and F3, respectively), together
with the overall mean value for each topology (denoted with η). For computations, the
Matlab function mean was used. The results are given in Table 1 and show that the coalitions
between adjacent vehicles improve the stability of the platoon, with respect to the default
case, i.e., coalition C0, which can be viewed as each vehicle working independently in a
distributed manner. See, for example, the numerical values for C1, in which a coalition
between vehicles F3 and F2 is formed. Since F3 initialized the coalition, the corresponding
η3 value is improved (since −0.0925 < −0.0711). A smaller η index can be viewed as a
more stable vehicle because it is further from the stability limit, which is the zero value. As
expected, the centralized coalition C7 has the smallest overall η index (is the most stable),
whereas the default coalition C0 has the largest value.

Another evaluation criterion for the performance obtained by each topology is a

cumulative cost index J = ∑i∈S Ji, with Ji = ∑Nsim
k=0

(
xi(k)TQixi(k)+ ui(k)T Riui(k)

)
, where

Nsim is the time length of the simulation. The weight matrices Qi and Ri are the same as
those from Problem 1. The values for the cumulative cost index J are also provided in
Table 1, last column.

Motivated by these findings, we tested Algorithm 1 in three tests, obtained using the
same velocity profile as before (Test 1), and two additional profiles (for Test 2 and Test 3),
as depicted in Figure 2.

0 20 40 60 80 100 120

time (s)

0

2

4

6

8

10

12

r v
1
 (

m
/s

)

Test 1

Test 2

Test 3

Figure 2. Velocity reference profiles used in Test 1, Test 2, and Test 3.

These tests were used to evaluate the switching mechanism between the available
topologies, i.e., which coalitions are selected, and what is the frequency of the selection.

The results obtained in simulation for Test 1, Test 2, and Test 3 are provided in
Figures 3–5, respectively. Each figure includes two sub-figures, with indices (a) and (b).
Figures 3a–5a show the states and control inputs trajectories obtained in Test 1, Test 2, and
Test 3, respectively. In Figures 3b–5b, the stability condition index η obtained for Test 1,
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Test 2, and Test 3, respectively, are depicted in the upper subplot, while the selected values
for the parameter NC are given in the middle subplot, and the selected coalitions are shown
in the lower subplot. Note that when a coalition is formed, the communication topology
between vehicles also changes, i.e., new communication links with bidirectional flow are
open to ensure full information exchange inside a coalition.

Table 1. Mean value for the stability index η and the cumulative cost performance index J for
each coalition.

Topology η1 η2 η3 η J

C0 −0.5219 −0.0478 −0.0711 −0.2136 101.6485
C1 −0.5219 −0.0397 −0.0925 −0.2180 101.7256
C2 −0.4948 −0.0739 −0.0787 −0.2158 102.0910
C3 −0.6113 −0.0659 −0.0727 −0.2500 109.8897
C4 −0.4764 −0.1046 −0.1006 −0.2272 102.5453
C5 −0.6313 −0.0713 −0.0771 −0.2599 113.4700
C6 −0.6113 −0.0572 −0.0997 −0.2561 109.9782
C7 −0.6395 −0.0860 −0.1026 −0.2760 115.5049

The simulation results show that, from the eight available coalitions (i.e., C0–C7), in all
our tests, only coalitions C4, C2, and C0 are selected by the switching mechanism. However,
the switching frequency and the moment of selection between coalitions are different in
each test (see, for example, time moment 60 s, when, for Test 1, coalition C0 is active, for
Test 2, coalition C2 is active, whereas for Test 3, coalition C0 is active). This is marked in
Figure 3b, Figure 4b, or Figure 5b, (3rd subplot) by a bar plot, with the y-axis labeled with
the coalition indices.

As previously mentioned in Algorithm 2, the frequency of the coalition switching
(i.e., the value for the parameter NC) is related to the acceleration values registered by the
platoon vehicles. This is also visible for Test 1 when correlating the acceleration trajectories
given in Figure 3a (3rd subplot) and the NC values shown in Figure 3b (2nd subplot). See,
for example, time moment 20 s, when the accelerations are zero, which corresponds to
NC = 10. This means that all platoon vehicles agree that there is no need to check the
stability more frequently. At this moment, since the platoon is in the steady state regime,
there is no need for coalitions (i.e., the default coalition C0 is active).

For all tests, a similar evaluation was performed by computing the mean value for the
stability condition index η and the cumulative performance cost J. The numerical values
are given in Table 2.

Table 2. Mean value for the stability index η and the cumulative cost performance index J for
each test.

Test η1 η2 η3 η J

Test 1 −0.5085 −0.0525 −0.0794 −0.2135 102.0183
Test 2 −0.5673 −0.0458 −0.0849 −0.2327 152.2686
Test 3 −0.5139 −0.0438 −0.0787 −0.2121 110.6744

When analyzing the numerical values given in Table 2, it results that Test 2 is ‘more
stable’ since it has the smallest mean value for the index η, from the stability condition
index perspective, but it has the largest performance index J. When comparing the values
provided in Table 1, obtained for each coalition (while tested independently), and the
values computed for Test 1, given in Table 2, it shows that the performance achieved in
Test 1 is almost the mean value between the η values obtained for coalitions C0, C2, and C4
(when tested separately). This result is not surprising since, in Test 1, the topology active
at each sampling period is freely chosen by the switching mechanism to achieve the best
outcome for the entire platoon.
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Figure 3. Simulation results for the proposed C-DMPC strategy obtained in Test 1. (a) Test 1—velocity
trajectories (1st subplot), position error trajectories in absolute value (2nd subplot), acceleration
trajectories (3rd subplot), and control input trajectories (4th subplot). (b) Test 1—stability condition
index (1st subplot), parameter NC values (2nd subplot), and coalition selection (3rd subplot).
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Figure 4. Simulation results for the proposed C-DMPC strategy obtained in Test 2. (a) Test 2—velocity
trajectories (1st subplot), position error trajectories in absolute value (2nd subplot), acceleration
trajectories (3rd subplot), and control input trajectories (4th subplot). (b) Test 2—stability condition
index (1st subplot), parameter NC values (2nd subplot), and coalition selection (3rd subplot).
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Figure 5. Simulation results for the proposed C-DMPC strategy obtained in Test 3. (a) Test 3—velocity
trajectories (1st subplot), position error trajectories in absolute value (2nd subplot), acceleration
trajectories (3rd subplot), and control input trajectories (4th subplot). (b) Test 3—stability condition
index (1st subplot), parameter NC values (2nd subplot), and coalition selection (3rd subplot).
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Remark 5. Although outside the current scope of this work, in the future, a rigorous mathematical
stability analysis will be derived, starting from the works in [32,36]. In the latter, the string stability
of a vehicle platoon is analyzed using a L2 norm with respect to the acceleration signals between
adjacent vehicles.

5. Conclusions

In this paper, a coalitional control strategy developed in the DMPC framework, with
automatic switching between possible communication topologies, was proposed. The
proposed control methodology was tested in simulation using a vehicle platooning appli-
cation. The performance analysis was performed for both the individual communication
topologies and in three separate tests. Each test was designed to evaluate the switching
mechanism between the topologies, which periodically selects the best communication
topology for the entire platoon. The simulation results show that when given the liberty,
the algorithm chooses the best outcome.

Future work will focus on testing the proposed algorithm in a more realistic scenario.

6. Materials and Methods

The simulations from this work were performed using MATLAB R2021a on Windows
10 Pro, 64-bit Operating System with a laptop 12th Gen Intel Core i5-1235U CPU @ 1.30 GHz
and 8 GB RAM.
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