
Citation: Sun, Z.; Chen, G. Enhancing

Heterogeneous Network Performance:

Advanced Content Popularity

Prediction and Efficient Caching.

Electronics 2024, 13, 794. https://

doi.org/10.3390/electronics13040794

Academic Editor: Dimitris

Kanellopoulos

Received: 20 December 2023

Revised: 15 February 2024

Accepted: 16 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Enhancing Heterogeneous Network Performance: Advanced
Content Popularity Prediction and Efficient Caching
Zhiyao Sun and Guifen Chen *

School of Electronic and Information Engineering, Changchun University of Science and Technology,
Changchun 130022, China; sunzhiyao@mails.cust.edu.cn
* Correspondence: chengf0213@163.com

Abstract: With the popularity of smart devices and the growth of high-bandwidth applications,
the wireless industry is facing an increased surge in data traffic. This challenge highlights the
limitations of traditional edge-caching solutions, especially in terms of content-caching effectiveness
and network-communication latency. To address this problem, we investigated efficient caching
strategies in heterogeneous network environments. The caching decision process becomes more
complex due to the heterogeneity of the network environment, as well as due to the diversity of
user behaviors and content requests. To address the problem of increased system latency due to
the dynamically changing nature of content popularity and limited cache capacity, we propose a
novel content placement strategy, the long-short-term-memory–content-population-prediction model,
to capture the correlation of request patterns between different contents and the periodicity in the
time domain, in order to improve the accuracy of the prediction of content popularity. Then, to
address the heterogeneity of heterogeneous network environments, we propose an efficient content
delivery strategy: the multi-intelligent critical collaborative caching policy. This strategy models the
edge-caching problem in heterogeneous scenarios as a Markov decision process using multi-base-
station-environment information. In order to fully utilize the multi-intelligence information, we have
improved the actor–critic approach by integrating the attention mechanism into a neural network.
Whereas the actor network is responsible for making decisions based on local information, the critic
network evaluates and enhances the actor’s performance. We conducted extensive simulations, and
the results showed that the Long Short Term Memory content population prediction model was more
advantageous, in terms of content-popularity-prediction accuracy, with a 28.61% improvement in
prediction error, compared to several other existing methods. The proposed multi-intelligence actor–
critic collaborative caching policy algorithm improved the cache-hit-rate metric by up to 32.3% and
reduced the system latency by 1.6%, demonstrating the feasibility and effectiveness of the algorithm.

Keywords: heterogeneous network; edge caching; content popularity prediction; content placement
strategy; content delivery strategy; long and short-term memory networks; multi-intelligent actor–critic

1. Introduction

The proliferation of smart devices and the growth of high-bandwidth applications
have led to an unprecedented surge in data traffic, thus imposing significant pressure on
mobile network operators (MNOs) [1]. Mobile edge caching, as a pioneering technology,
is widely regarded as an effective means through which to alleviate the traffic burden on
MNOs [2]. By storing content at network edge nodes, Mobile Edge Computing(MEC) can
help with significantly reducing data transmission latency, thereby enhancing the quality of
experience (QoE) and quality of service (QoS) for users. However, traditional edge-caching
strategies are increasingly revealing their limitations in addressing the growing diversity of
content and changes in user behavior [3].

The emergence of heterogeneous networks (HetNets) provides a new perspective for
tackling these challenges [4]. A core feature of HetNets is the diversity of base-station

Electronics 2024, 13, 794. https://doi.org/10.3390/electronics13040794 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040794
https://doi.org/10.3390/electronics13040794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13040794
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040794?type=check_update&version=2

Electronics 2024, 13, 794 2 of 26

types, including micro, macro, and small cells, which differ significantly in caching capacity,
coverage area, and service modes. The diversity of user behavior and the heterogene-
ity of content requests further complicate the caching decision-making process, thereby
intensifying the demand for more sophisticated and intelligent caching strategies.

To effectively reduce the load on heterogeneous networks, caching popular content
is essential. However, given the limited caching resources at the edge, it is crucial to
analyze the popularity of content in the library. The key challenge in caching-placement
strategy lies in accurately predicting future content popularity, which is complicated by
the high dynamics of user content requests and the diversity of user behavior. Machine
learning (ML) techniques have been adopted as powerful tools for actively predicting
content popularity based on historical request data [5]. Despite this, learning-based edge-
caching strategies still face several unresolved challenges, including considerations of
content correlations, optimizations of resource consumption in heterogeneous networks,
and, particularly, the development of collaborative caching strategies that involve multiple
base stations.

For the complex load and content delivery strategies in heterogeneous edge net-
works, traditional caching-replacement strategies are limited by their neglect of dynamic
interactions with the environment. With the advancement of multi-agent reinforcement-
learning models, researchers are exploring the use of these models to formulate adaptive
edge-caching strategies, thus fully leveraging the environmental-awareness capabilities
of network systems [6]. We propose a multi-agent actor–critic framework that utilizes
multi-head attention technology to integrate features from multiple base stations, thereby
addressing the collaborative caching issues that are present in heterogeneous networks
with mixed base-station cooperation [7]. This framework aims to make effective caching
decisions and performance evaluations by considering both the local base station’s caching
capacity and the global information from neighboring base stations.

The main contributions of this paper include the following:

• Establishing an efficient caching strategy that minimizes communication latency and
maximizes cache hit rates by addressing the challenges of dynamic content popularity
and resource allocation in heterogeneous networks.

• Introducing an Long Short Term Memory(LSTM)-based content-popularity-prediction
model for a caching placement strategy, using low-dimensional denoising encoders to
capture content-request information and LSTM modules to analyze temporal features.
This is coupled with a fully connected network for feature fusion, thereby enhanc-
ing prediction accuracy and effectively addressing the diversity of user requests in
heterogeneous network environments.

• Representing the heterogeneous-edge-content-delivery problem as a Markov decision
process (MDP) and providing a collaborative caching solution based on multi-agent
actor–critic networks. This approach utilizes multi-head attention technology to
account for the variability in a diverse network environment.

• Conducting a series of tests to validate the effectiveness of the proposed solution in im-
proving network performance and reducing resource inefficiency, thus demonstrating
significant improvements in content-popularity-prediction capability, cache hit rate,
and system latency reduction compared to existing solutions and other reinforcement-
learning methods.

2. Related Works

With the proliferation of intelligent devices and the growth of high-bandwidth ap-
plications, heterogeneous networks have become an effective solution for addressing the
increased surge in data traffic [8,9]. Heterogeneous networks consist of different types
of base stations, including micro base stations, macro base stations, and small-cell base
stations, each differing in cache capacity, coverage area, and service modes [10].

This diversity allows heterogeneous networks to be deployed flexibly according to
different scenarios. For example, in densely populated urban centers, small-cell base

Electronics 2024, 13, 794 3 of 26

stations or micro base stations can be deployed to provide high-density network coverage;
in vast suburban or rural areas, macro base stations are more suitable, due to their wide
coverage range, and can effectively provide basic communication services to cover larger
geographical areas. For indoor environments, such as office buildings and shopping
centers, more stable and high-speed network connectivity can be provided by deploying
small cellular base stations or micro base stations to meet the communication needs in
dense environments. In addition, by deploying edge-computing nodes in the seismic
monitoring network, immediate collection and processing of seismic data can be realized.
Edge nodes can perform preliminary analysis of collected seismic-waveform data, such
as magnitude estimation and epicenter localization, and then quickly transmit critical
information to the central processing system or directly trigger the warning mechanism [11].
In all these scenarios, edge caching can improve overall network performance and reduce
communication delay. Furthermore, mobile edge computing (MEC) improves quality of
experience (QoE) and quality of service (QoS) by storing content in network edge nodes,
reducing the distance and time of data transmission. However, edge-caching strategies
face numerous challenges when dealing with increasingly diverse content and varying
user behaviors [12]. For instance, limited caching resources must be effectively utilized to
store the most popular content while also considering how to rapidly respond to changes
in user behavior.

In a heterogeneous network environment, accurately predicting content popularity is
crucial for efficient cache placement. Traditional content-popularity-prediction methods
primarily rely on historical access data and simple statistical models, such as moving aver-
ages or exponential smoothing techniques [13]. However, these methods have limitations
in dealing with dynamically changing content popularity. Certain studies [14–17] have
adopted reinforcement learning (RL) techniques based on insights into content popularity
to proactively manage cache decisions, thereby demonstrating a shift toward dynamic,
adaptive caching strategies; however, these can still fail to capture complex data patterns.

Given the dynamic nature of content popularity, numerous studies [18–21] have
employed various time-series-analysis methods (such as ARMA, ESN, segmented lin-
ear regression, Bi-LSTM, etc.) to capture and predict fluctuations in content demand
over time. Mannepalli et al. introduced a model for predicting the popularity of social-
media material. The authors combined textual content and user and time-series encoders
with user-sentiment analysis. The model uses a long short-term memory network with
weights that are fine tuned by adaptive rain optimization (SA-RO) to improve prediction
accuracy [22]. HU et al. proposed a collaborative caching framework based on content-
popularity prediction for multi-objective optimization for cloud-edge-end collaborative IoT
networks, where there are difficulties in optimizing multiple network metrics at the same
time, by integrating three prediction algorithms for predicting content popularity, and us-
ing a multi-objective evolutionary algorithm to mine user and content preferences and
popularity characteristics [23]. However, these models still have limitations in capturing
correlations and long-term dependencies among different types of content.

Most of the aforementioned studies have proposed proactive caching systems based
on content popularity—a method that often overlooks user variability and the diversity of
network structures. To address this issue, current research has predominantly employed
artificial intelligence (AI) methods, particularly deep learning (DL) and deep reinforce-
ment learning (DRL), in tackling cache-replacement problems. Deep learning is utilized to
precisely investigate user preferences and predict base-station request patterns [24]. Deep
reinforcement learning (DRL) is applied to optimize caching strategies, thereby enabling
network entities to learn, build knowledge, and interact with the environment [25]. Due
to the presence of macro base stations and multiple micro base stations in heterogeneous
networks, which results in a complex structure with numerous nodes but limited resources,
researchers have employed multi-agent reinforcement-learning approaches for cache deci-
sion making, to improve resource utilization, reduce content transmission delays, and better
facilitate multi-base-station collaborative operation [26]. The studies of [27,28] explored the

Electronics 2024, 13, 794 4 of 26

application of multi-intelligent-body learning in network resource allocation and caching
strategies. Multi-agent reinforcement-learning networks are overly complex and have a
singular focus on feature analysis, which can lead to a wastage of computational resources
and inadequacies in addressing user diversity and adaptability. The multi-head attention
mechanism enables a model to obtain more layered information about base stations from
different representation spaces, thereby enhancing the model’s feature-representation capa-
bility. To better extract the underlying information of the system, this paper introduces an
attention-mechanism approach, to focus on analyzing multi-base-station environmental
information for global decision making.

Although current research has provided various innovative solutions for edge caching,
effectively integrating multi-node information in heterogeneous network environments,
responding to network dynamics in real time and balancing the contradiction between
caching performance and resource consumption remain unresolved. These issues have
still not been adequately addressed. Therefore, the objective of this study was to provide
a highly effective collaborative caching method that relies on predicting the popularity
of content across multiple base stations. This approach aims to address the challenges of
cache resource allocation and content preferences in heterogeneous networks, thus seeking
to achieve comprehensive improvements in caching efficiency and network performance.

3. System Model
3.1. Network Model

We considered a heterogeneous network architecture containing three layers with
collaborative edge caching, as shown in Figure 1. The first layer was the core network-
communication layer, which consisted of a macro base station (MBS). The second layer,
the medium communication layer, contained a number of small base stations (SBSs) with
limited caching capabilities, which were responsible for responding directly to user requests.
The third layer was the mobile-edge-communication-node layer, which consisted of several
mobile terminals (MTs). The set of MBS and SBSs were M, where M = 0 denoted the MBS
and the MTs were randomly distributed. The set of MTs for each SBS service was defined as
Nm. MT n communicated wirelessly with SBS m. For ease of reference, Table 1 summarizes
the key notations.

Figure 1. Three-layer heterogeneous network architecture.

Electronics 2024, 13, 794 5 of 26

Table 1. Key notations.

Symbol Description

M = {0, 1, ..., m, ..., M} Set of MBS and SBSs
Nm = {0, 1, ..., n, ..., Nm} Set of all MTs within the coverage area of SBS m

t Time slot t
Vm,n(t) Data transmission rate
Gm,n(t) Channel gain between SBS m and MT n in time slot t

Ps Transmit power
ζ2 Background-noise power
Bs Bandwidth of SBSs

xm,n(t) ∈ (0, 1) Bandwidth percentage allocated by SBS m to corresponding MT n
F = {1, 2, ..., f , ..., F} Set of contents stored in the content server

SIZE f Size of each content
CS and CM Cache capacity of servers equipped in SBSs and MBS

H Historical request data of contents
τ Length of historical-data observation window

K = {1, 2, ..., k, ..., K} Categories of content popularity for different service ranges
γk

n ∈ {0, 1} Interest category of each base station
pr f Request probability of content f
Hk

f Popularity ranking of content f in interest category k
ι Reflects the skewness of the Zipf distribution

yt
m,n Content-caching decision of BS m in time slot t
D Delay function

Cm(t) Cache hit rate in time slot t
c f (t) Number of requests for content f in time slot t

d f (t)
Number of requests for all content within the coverage area of base

station m
W Weight matrix
b Bias vector
zt

i Input gate of the LSTM network
zt

f Forget gate of the LSTM network
zt

o Output gate of the LSTM network
CLSTM

t Cell state of the LSTM network
Ht Hidden-layer output variable of the LSTM network

sim f , f ′ Similarity between new content f and existing content f ′

Si State space
ai Action space

R(·) Reward function
O Observation mechanism

AF (·) Update rule typically involves the advantage function
keyd,m′ Key vector

valued,m′ Value vector

Attm
Critic network of each BS estimates the action-value function through

attention mechanism
ϖk MLP layer
µ Decay factor
α Balances between the maximum entrance and reward
ψ Network-update parameter
lr Learning rate

In addition, the edge server had the computational capability to perform offline
training tasks and caching-policy tasks. The system adopted a heterogeneous network
with multiple base stations for collaborative communication. The macro base station
shared cache contents with the small base stations through backhaul links, and the cache
contents could also be transmitted between the small base stations through cables with
limited capacity.

Electronics 2024, 13, 794 6 of 26

3.2. Communication Model

The different SBSs were considered to share the same radio spectrum, and the MTs
connected to the same SBS were given orthogonal spectra. As a result, the MTs experienced
interference from other small cells; in addition, no interference within the small cells was
taken into account.

At time slot t, the data-transmission rate of the downlink, where the SBS m sent its
content to the MT n, was

Vm,n(t) = xm,n(t)Bslog2(1 +
PsGm,n(t)

∑m′∈M\{0,m} PsGm′ ,n(t) + ζ2). (1)

The rate depended on the channel gain Gm,n(t) of SBS m and MT n at time slot t,
the transmit power of SBS Ps, the background-noise power, and the bandwidth of SBS Bs.
The variable xm,n(t) ∈ (0, 1) represented the proportion of bandwidth assigned by SBS m to
the matching MT n.

The channel power gain in this model was the gain of the LOS channel, which reduced
the complexity of the model and ensured the validity of the caching algorithm study. Ac-
cording to the LOS channel form, the power gain of the channel was Gm,n = β0d−α∥g∥2

where ∥g∥2 represented the small-scale fading caused by a variety of factors, such as the
Doppler shift and multipath propagation, which was the result of meeting the require-
ments of ∥g∥2N (1), an independent identically distributed circularly symmetric complex
Gaussian vector with zero mean and variance 1. In addition to this, β0 represented the
path loss experienced by the signal-per-unit reference distance, d was the communication
distance, and the form of the gain could be directly seen from the fact that it exhibited an
inversely proportional function to the communication distance, with the gain decreasing
as the distance increased. And α was the path-loss exponent, which was usually taken
between 2 to 7.

3.3. Content-Caching Model

Every time slot was thought to have a content request from each MT, and the content
of these requests could be cached by the edge server. The content servers stored a collection
of contents that were denoted by F , and each content had a size of SIZE f bits. The server
cache capacity at each base station was, respectively, CS and CM. If an MT requested
content, it could obtain it directly from the core network or from the closest edge server
(i.e., an SBS or the MBS).

The collaborative edge-caching approach comprised two phases (as illustrated in
Figure 2): content distribution and content placement.

Figure 2. Collaborative edge-caching policy.

In order to forecast the content popularity, the content placement phase made use of
previous request data. We categorized the content popularity into different categories, to
simulate the request patterns of the content in different interest categories.

The content delivery model described the four ways for MTs to obtain requested
content, each involving different transmission-delay calculations.

3.3.1. Content Placement Phase

The ratio of requests (for a specific piece of content to all requests) for the material in
the MTs was known as content popularity. At the start of each time interval, the historical
request data of the content H = [ht−τ , ht−τ+1, . . . , ht] determined the content-popularity-
prediction model, while the symbol τ represented the duration of the historical-data

Electronics 2024, 13, 794 7 of 26

observation window [29]. The number of requests for time slot t and content f were
indicated by the symbol ht

f . We then applied the prediction to forecast how popular the
material would be during the following time slot.

We considered the variability and complexity of the network environment, and we
set it so that the different MTs had different preferences for requested content. We cat-
egorized the content popularity of the different service ranges into different classes as
K = {1, 2, . . . , k, . . . , K}, where γk

n ∈ {0, 1} denoted the interest class to which each base
station belonged.

We utilized a homogeneous Poisson process with density λ f = ∧pr f models, as well
as the requested process for a given content f [30], where ∧ was the number of times the
content was requested and pr f denoted the request probability of the content f . For each
base station, the popularity of the content f in the interest category to which it belonged
could be modeled via the Zipf distribution with the following expression:

prk
m f =

(
Hk

f

)−ι

∑
i∈F

(
Hk

i
)−ι , ∀ f ∈ F , ∀m ∈ M, (2)

where Hk
f denoted the popularity ranking of content f in interest category k, ι reflected

the degree of Zipf skewing, and a larger value of ι indicated a higher concentration of
content popularity.

At time slot t, BS m had the ability to determine whether and where to store the
requested content f for MT n. We defined yt

m,n = {−1, 0, 1} as the content-caching decision
of BS m in time slot t. When yt

m,n = −1, BS m had no content caching at time slot t. When
yt

m,n = 0, it meant that in time slot t the content f was cached in SBS. When yt
m,n = 1, it

meant that in time slot t the content f was cached in MBS, i.e., BS m = 0.

3.3.2. Content Delivery Phase

We identified four distinct strategies for the mobile terminals (MTs) to access requested
content within a heterogeneous network, thereby leveraging collaborative edge caching.

CASE 1: SBSs to MTs.
In this case, the SBSs were directly transmitted to the MTs through a cellular link. The

transmission delay for the content requested by MT n was given by

Dsbs
m,n(t) =

SIZE f

Vm,n(t)
. (3)

CASE 2: Neighboring SBS to MTs.
If the local SBS did not have the requested content, it was sourced from a nearby SBS

that had the content cached. The content transfer latency from this neighboring SBS m
′

to
MT n was expressed as

Dns
m′ ,n

(t) = Dsbs
m,n + DSBS, (4)

where Dm, nsbs was the wireless transmission delay for acquiring the content, and DSBS
represented the wired transmission delay from a neighboring SBS to the local SBS.

CASE 3: MBS to MTs.
If the content requested by MT n was only cached by the MBS, it was first sent to the

local SBS, which then delivered it to the MT. The content delivery delay in this scenario was

Dmbs
0,n (t) = Dsbs

m,n(t) + DMBS, (5)

where DMBS was the transmission delay from the MBS to an SBS. It was assumed that
all SBSs within the same MBS coverage area were interconnected via optical fiber, thus
enabling a consistent, short transmission delay [31].

CASE 4: Core network to MTs.

Electronics 2024, 13, 794 8 of 26

When the requested content was not available by any of the above methods, i.e., not
cached by any edge-cache server, then the data were transferred from the core network to
the MBS by a backhaul link, which was subsequently relayed to the MTs. The latency for
content transfer was given by

DCN
n (t) = Dmbs

0,n (t) + DCN , (6)

where DCN = SIZE f /BCN
n was the backhaul delay, BCN

n = prk
m, f B was the backhaul

bandwidth of the MT n requesting the content f , and B denoted the average data transfer
rate in the internet [32].

3.4. Problem Description

In the context of SBS m, the transmission delay experienced by MT n in time slot t
when requesting content f is articulated as follows:

Dn(t) =

Dsbs
m,n(t), m ̸= 0, m ∈ M

Dns
m′ ,n

(t), m
′ ̸= m ̸= 0, m

′ ∈ M

Dmbs
0,n (t), m = 0

DCN
n (t), not cached

. (7)

Here, MT n ∈ Nm seeks content f sequentially from the local SBS, a neighboring SBS,
the MBS, and finally, the core network.

The total content delivery latency for all the MTs in BS m is calculated as

Dm(t) = ∑
n∈Nm

Dn(t). (8)

For BS k, the cache hit rate during time slot t is defined as

Cm(t) =
c(t)
|Nm|

, (9)

where Cm(t) ∈ [0, 1], c(t) denotes the number of MT n request contents that have been
cached by the edge server, and |Nm| = Nm is the number of contents requested by all MTs
within the BS m coverage. At time slot t, an MT requests only one content.

To minimize each BS’s delivery latency while maximizing the cache hit rate, we
formulated the content-caching-and-bandwidth-allocation challenge as Problem 1. This
problem aimed to minimize the disparity between the content delivery latency and the
cache hit rate in each small cell for any BS m. It is presented as follows:

Problem 1: min
ym(t),xm(t)

Dm(t)− Cm(t),

s.t.C1:yt
m,n ∈ {−1, 0, 1}, n ∈ Nm, m ∈ M\{0},

C2:xm,n(t) ∈ (0, 1), n ∈ Nm, m ∈ M\{0},

C3: ∑
n∈Nm

xm,n(t) = 1, m ∈ M\{0}.

(10)

In this model, ym(t) = ym, nt(t) : n ∈ Nm and xm(t) = xm, n(t) : n ∈ Nm represent
the content-caching decision matrix and bandwidth-allocation matrix for SBS m, respec-
tively. Constraint C1 denotes the constraints on the caching decisions, C2 denotes the
constraints on the bandwidth-allocation ratio, and C3 ensures the sum of the bandwidths
allocated to associated MTs via each SBS, which equals its total bandwidth. These con-

Electronics 2024, 13, 794 9 of 26

straints add complexity to the problem, as they restrict the solution space. It is important
to note that the total volume of all cached content must not exceed the edge server’s total
storage capacity. Problem 1 is a mixed-integer-nonlinear-programming problem, and it
poses challenges in a direct polynomial-time resolution.

Next, we employed the offline training of content-popularity-prediction models. We
considered heterogeneous-environment variability and organically combined content sim-
ilarity. We introduced a long short-term memory–content popularity prediction (LSTM–
CPP)-model content placement strategy to accurately predict the content popularity. In
addition, considering the content complexity of the MT requests and the variability of the
channel states, we designed a collaborative caching strategy based on multi-intelligent
actor–critic networks, to solve the optimization problem.

4. LSTM-Based Content Placement Strategy

For edge-cache management, advance knowledge of content popularity plays a key
role. For this purpose, we developed an innovative offline training model to predict
content popularity. With historical content-request data as the input, the model improved
prediction accuracy by fusing correlation and time-periodic features. It also addressed the
content variability in heterogeneous network environments by proposing a method for
predicting the popularity of new content based on content similarity.

4.1. Content Popularity Prediction

The requirements of MTs in heterogeneous networks are complex and variable,
and there are significant correlations between content requests. By using historical re-
quest data, we aimed to explore these relationships, to improve the predictive accuracy of
content popularity. At first, we introduced the LSTM model for predicting the popularity
of web content. With its advantage in processing time-series data, the LSTM model can
effectively capture the long-term dependencies of content requests, thus improving the
accuracy of popularity prediction. The model is a regression model.

To improve the prediction accuracy further, we proposed the LSTM–CPP model,
as shown in Figure 3. The model achieves accurate predictions of content popularity
by analyzing the correlation between the low-dimensional feature information and time-
domain features of different content-request patterns. Generating appropriate features
from a historical content-request sequence H for input into a predictive model involves
feature learning, where the model extracts the most representative features h from the
content-request sequence H across all the past nodes through an encoder. This process is
formally expressed as follows:

h = f (H) = s f (WAE H + bAE), (11)

where WAE and bAE represent the encoder’s weight matrix and bias vector, respectively,
and s f (·) denotes an activation function (typically a sigmoid function).

After mapping h to a lower-dimensional hidden layer, the data are then mapped to
the output layer through a decoding function g(·), which is expressed as

ĥ = g(h) = sg(WAEh + bAE). (12)

The aim of auto-encoding is to replicate the original data; thus, the difference before
and after reconstruction is used to obtain the error value. If the error is significant, it
indicates that the hidden layer has not extracted effective features from H. Therefore, it is
necessary to continuously adjust the generation of WAE and bAE during the encoding and
decoding process to minimize the reconstruction loss function LAE, which is specifically
defined as follows:

LAE = min
WAE ,bAE

m

∑
i=1

(ĥ − h)2. (13)

Electronics 2024, 13, 794 10 of 26

Figure 3. Long-short-term-memory–content-popularity-prediction model.

Additionally, long short-term memory (LSTM) networks are used to capture the
temporal features of a content request sequence. LSTM networks control the features of
content-request patterns over long and short timescales through three control gates, i.e.,
the input gate zt

i , the forget gate zt
f , and the output gate zt

o, as follows:

zt
i = σ(Wi[Ht−1, gt] + bi), (14)

zt
f = σ(W f [Ht−1, gt] + b f), (15)

zt
o = σ(Wo[Ht−1, gt] + bo), (16)

CLSTM
t = zt

f CLSTM
t−1 + it tanh(Wc[Ht−1, gt] + bc), (17)

Ht = zt
o tanh(CLSTM

t). (18)

In the LSTM network, the cell state CLSTM
t and the hidden-layer output variable Ht are

crucial components that store and transfer information throughout the sequence processing.
The dynamics of these components are governed by several parameters and operations,
primarily involving weight matrices and bias terms that correspond to different gates and
cell interactions, as well as to the nonlinear activation functions σ and tanh(). Furthermore,
Wi, W f , Wo, and Wc are the weight matrices between the input gates, oblivion gates, output
gates, and the cells, respectively. In addition, bi, b f , bo, and bc are the to-be-learned bias
terms between the LSTM input gates, oblivion gates, output gates, and cells, respectively.

We converged the relevance and temporal multi-dimensional characterizations of the
content requests over a fully connected network as follows:

O = O1 ⊕ O2 · · · ⊕ Ot, (19)

where Ot represented the content-request-pattern features extracted for each time slot.
After three layers of fully connected networks and activation operations, the model output
the content popularity Ŷ = δ(O) for the next moment.

Electronics 2024, 13, 794 11 of 26

The purpose is to perform dimensionality reduction on the input data, due to the
dimension of the auto-encoder’s hidden layer being smaller than the input layer. However,
this does not prevent the opposite situation, wherein the dimensionality of the hidden layer
is larger than that of the input layer, thus resulting in an increase in data dimensionality.
In the heterogeneous network’s changing environment, content constantly changes. Ac-
cording to YouTube data analysis, including short videos, popular news updates every 2
to 3 h, while new movies are released almost weekly. When new content emerges, there
is not enough of an accumulation of historical data. Therefore, when the frequency of
user content requests is low, or when new content appears, it may lead to sparsity in
the historical request sequence itself or the data being affected by noise, thereby increas-
ing the reconstruction error. A denoising auto-encoder was thus adopted in this context,
as illustrated in Figure 4.

Figure 4. Low-dimensional feature extraction.

Denoising auto-encoders consider that features capable of restoring original data are
not necessarily optimal. Only those features extracted from “contaminated” data that can
still replicate the initial data can express the hidden information of the data. They are
encoded and decoded to obtain data g(fθ(H̃)). However, in practice, a single layer of a
denoising auto-encoder is insufficient for extracting features from historical content-request
data. Therefore, it is feasible to cascade multiple denoising auto-encoders to form a stacked
denoising auto-encoder (SDAE) for network training, and this is performed to complete
data feature extraction, with the extracted features serving as inputs to the classifier. SDAE,
as a hierarchical coding model, takes the output of one layer as the input of the next.
In addition, after multiple layers of training, the deep features of the data can be obtained.
This process does not require the addition of labels during input sample processing; hence,
it is referred to as unsupervised pre-training. After pre-training, fine tuning is required.
Firstly, all hidden-layer parameters are initialized, thereby forming a matrix containing all
hidden-layer bias vectors learned during pre-training; then, the weight matrix and bias
matrix are randomly initialized; and, finally, the entire model’s parameters are adjusted by
the backpropagation algorithm, which is specifically expressed as follows:

JB =
1

2TS′ ∥h − h̃∥, (20)

where TS
′

represents the training samples. The model parameters are fine tuned by
comparing the label inputs with the model outputs. The Adam algorithm updates all
weight matrices and bias terms in the model, to minimize the loss between predicted and
actual values. The collective loss function expression is

LLSTM = min
W,b

∥Ŷ − Y∥. (21)

Electronics 2024, 13, 794 12 of 26

4.2. Content-Popularity-Prediction Methods in Varying Environments

In the dynamic environment of heterogeneous networks, content flows change in real
time. The lack of historical data for new content makes it difficult to predict its popularity.
To address this challenge, we propose the LSTM–CPP strategy. It uses the request data
of new content at the current moment to compute the similarity to the existing content.
The similarity between the new content f and the existing content f

′
is calculated by the

following formula:

sim f , f ′ =
1∣∣∣∣ht

f − ht
f ′

∣∣∣∣+ 1
. (22)

Here, ht
f and ht

f ′
represent the number of requests for content f and f

′
at time t,

respectively. The similarity metric sim f , f ′ falls within the range (0, 1].
The next step involves estimating the number of requests for new content based on its

similarity to existing content. This estimation is pivotal in predicting the popularity of the
new content. The formula for this estimation is as follows:

ĥt+1
f =

∑ f ′∈Fed
sim f , f ′ ĥ

t+1
f ′

∑ f ′∈Fed
sim f , f ′

. (23)

In this expression, F ed denotes the set of existing similar content and ĥ f
′ t+1

is the
predicted number of requests for existing content f

′
at time t + 1, which is based on the

content-popularity-prediction model. The popularity of content f at moment t + 1 can be
expressed as

p̂rk,t+1
m f =

ĥt+1
f

∑F
i ĥt+1

i

. (24)

The LSTM–CPP model utilizes these methods in a multi-variable environment, to
predict the popularity of new content until there is sufficient accumulated historical request
data to effectively train a content-popularity-prediction model. Subsequently, the model
predicts the popularity of existing content using the trained model, and it then iterates
this process.

This entire workflow of the cache-placement policy, as proposed and based on the
LSTM–CPP model, is encapsulated in Algorithm 1.

The complexity of Algorithm 1 is influenced by multiple factors, including the number
of existing contents |Fed|, the number of new contents |Fnew|, the length of the time series T,
and the structure of the SAE and LSTM networks. Specifically, the complexity of the SAE
encoding step is approximately O(|Fed| · LSAE · N2

SAE). The complexity associated with the
LSTM processing step is approximately O(|Fed| · T · N2

LSTM), whereas the complexity for
feature fusion and FC network prediction is approximately O(T · LFC · N2

FC). The complex-
ity for estimating the popularity of new content is O(|Fnew| · |Fed|). Collectively, these steps
result in relatively high complexity when the algorithm processes a large volume of content
and lengthy time series. Consequently, it is imperative to meticulously select the network
architecture and parameters to achieve an optimal balance between prediction performance
and computational efficiency, especially considering potential constraints on computational
resources. However, as this algorithm is designed for offline pre-training models, the high
time complexity can be offset by the resultant improvement in prediction accuracy.

Electronics 2024, 13, 794 13 of 26

Algorithm 1 Long short-term memory–content popularity prediction (LSTM–CPP) algorithm.

Require:
H: Historical content request data, H = [h1, . . . , h f , . . . , hF]
Fed: Set of existing contents
τ: Historical data observation-window length

Ensure:
Ŷ: Predicted popularity for each content

1: Initialize the stacked auto-encoder (SAE)
2: for each content f in Fed do
3: Extract the low-dimensional representation g f using an SAE trained on H
4: g f = Encode_SAE(H[f])
5: end for
6: Initialize the LSTM network
7: for each representation g f do
8: Process g f with LSTM to capture the time-dimension features Ht
9: Ht = LSTM(g f)

10: end for
11: Initialize the feature-fusion module
12: for each time slot t do
13: Fuse multi-dimensional features g f and Ht to form Ot
14: Ot = g f ⊕ Ht

15: Predict content popularity Ŷt using a fully connected (FC) network on Ot
16: Ŷt = FC(Ot)
17: end for
18: for new content fnew in each time slot do
19: Calculate similarity sim f , f ′ between fnew and each content in Fed

20: sim f , f ′ =
1

|ht
fnew

−ht
f ′ |+1

21: Estimate the popularity of fnew based on weighted similarity

22: Ŷfnew =
∑ f ′∈Fed

sim f , f ′ Ŷf ′

∑ f ′∈Fed
sim f , f ′

23: end for
24: return Ŷ

5. Collaborative Caching Strategies Based on Multi-Intelligent Actor–Critic Networks

The multi-intelligence actor–critic collaborative caching policy (MACP) algorithm pro-
vides an effective method through which to manage and optimize complex heterogeneous
network systems, as shown in Figure 5.

Figure 5. Multi-intelligence actor–critic collaborative caching policy (MACP) algorithm.

The LSTM–CPP model provides MTs with the foresight of future content demand by
modeling content popularity analysis. The integrated actor–critic network with a multi-head

Electronics 2024, 13, 794 14 of 26

attention mechanism ensures optimal decision making for the overall network performance.
We suggest employing a cooperative caching approach for delivering content, thereby utilizing
multi-intelligent actor–critic networks as a solution to the edge-caching issue.

5.1. Multi-Intelligent Actor–Critic Framework

We constructed a networked system consisting of multiple BSs, each of which inter-
acted with the information as an independent agent of intelligence. This system achieved
efficient cache management in a heterogeneous network environment by combining actor
networks and critic networks to accommodate the needs and preferences of different MTs.

• State Space:
We defined the state space S = [s1, s2, . . . , si, . . . , sm], where si = [si,local, si,global] con-
tained a composition of the local and global information for each agent. The local infor-
mation si,local indicated the state of the cached list, and the global information si,global
focused on the content requests of the MTs, including historical and current data.

• Action Space:
The action space was denoted as A = [a1, a2, . . . , ai, . . . , am], where ai = [ai,cache, ai,bw]
and ai,cache denoted the process where the caching decision is the agent’s decision
on which content is to be stored or removed. The decision is based on the pre-
dicted content popularity and the current cache state. Moreover, ai,bw denoted the
bandwidth-allocation decision, which involves how the agent allocates the available
bandwidth resources among the MTs it serves. Each element indicates the proportion
of bandwidth allocated to the corresponding MTs or tasks.

• Reward Mechanism:
We designed the reward function Rm(si, ai) to evaluate the effect of an agent’s action
according to the definition of the system model. The reward mechanism includes
aspects such as reducing network latency, increasing cache hit rate, and improving the
efficiency of bandwidth allocation. For behaviors that are effective in reducing network
latency and improving cache hit rate, the agent will be positively rewarded. At the
same time, we also considered the optimization of the bandwidth-allocation efficiency.
For behaviors that reduce network latency, the agent should receive positive rewards:

Rdelay(si, ai) = w1 · ∆delay(si, ai), (25)

where ∆delay(si, ai) denotes the reduction in delay due to taking action ai.
An increase in cache hit rate should also be rewarded, especially if it matches the
popular content predicted by the LSTM–CPP algorithm:

Rhit_rate(si, ai) = w2 · ∆hit_rate(si, ai), (26)

where ∆hit_rate(si, ai) denotes the increase in cache hit rate.
Efficient bandwidth allocation should be equally rewarded:

Re f f (si, ai) = w3 · ∆eff(si, ai), (27)

where ∆eff(si, ai) denotes the efficiency of resource utilization. In addition, w1, w2,
and w3 are the weighting coefficients. In summary, the total reward function can be
expressed as follows:

Rm(si, ai) = Rdelay(si, ai) + Rhit_rate(si, ai) + Re f f (si, ai). (28)

• Observation Mechanism:
The observation mechanism O = {o1, o2, . . . , oi} enables each agent to obtain the state
of the local cache in its service area, as well as a sense of the overall network state. In
addition, the agents can obtain the state information of neighboring SBSs through the
established communication links.

Electronics 2024, 13, 794 15 of 26

• Actor Networks:
An actor network is a parameterized policy network that defines the probability of
choosing a particular action given an observation. Each agent observes the local state
si of its service region, and it then makes a caching decision based on the current
observation of its local state. For agent i, the actor network can be represented by the
function πθi, which outputs the probability distribution of taking action ai under a
given observation oi as follows:

ai = πθi(oi). (29)

Here, θi denotes the parameters of the actor network.
• Critic Network:

The determination to cache actions is made by the actor network implemented in
each agent, and it relies on local knowledge. After the action selection in the actor
network, the critic network selects actions based on the states S = [s1, s2, . . . , si, . . . , sm]
of all the BSs and actions A = [a1, a2, . . . , ai, . . . , am], which guides the update of the
actor network by evaluating the expected returns of the strategies through a value
function. In addition, we introduced an attention mechanism to more accurately
model the influence of other agents, thus making the evaluation process more accurate
and efficient.

5.2. Critic Networks with Attention Mechanisms

We introduced a state-of-the-art critic network that employs an enhanced attention
mechanism for the purposes of in-depth analysis and optimization of the collaborative
caching strategies among BSs. This network structure not only considers the local informa-
tion of each agent, but also integrates the insight of the global network state.

It achieves efficient learning and decision making in complex heterogeneous net-
work environments.

5.2.1. Optimization of the Embedding Layer

We used a multi-layer perceptron (MLP) to process the observed features and to adapt
to the diverse needs of different BSs in providing services to MTs. Due to variations in
the caching capability of the BSs, content sizes, and content quantities at each base station,
the length of the related coded vector list was not set. It was not found to be suitable
for use as an input in a fully linked network that can only process inputs of a defined
length. To represent the type, we employed one-hot or multi-hot encoding techniques [33].
We embedded the sparse embedding vectors em′ of the cached content in the BSs with
embedding techniques. We used pooling to convert it into dense embedding vectors
e = pooling(e1, e2, . . . , em, . . . , em′).

5.2.2. Attention Mechanism Refinement

The attention layer utilizes a fine-grained, multi-head attention mechanism. The
attention mechanism processes a set of multidimensional information Q = q1, q2, . . . , qd,
where d represents the number of different types of features. Each attention head operates
in parallel, thereby focusing on distinct aspects of the input message. This parallel process-
ing enables the network to concurrently consider multiple informative elements, which
enhances the richness and depth of the analysis.

Each attention header focuses on a specific subspace of features, such as the size,
type, request frequency, and cache capacity of the cached content, thus providing a more
comprehensive understanding of the network state. The key keyd,m′ and the value valued,m′

are the information of neighboring SBSs on feature d. We obtained the attention on feature
d for the neighboring node m

′
, which was defined as the attention weight, as follows:

ξd,m′ =
qT

d,m′ keyd,m′

∑
key ̸=m

exp(qT
d,m′ keyd,m)

. (30)

Electronics 2024, 13, 794 16 of 26

We computed the cooperative unit Attd,m by focusing on the weighted sum of the
weights ξd,m′ and the values valued,m′ . We obtained the computed weights keyd,m′ and
captured features valued,m′ through multiple linear embedding layers Attd,m, which is
defined as

Attd,m = ∑
m′ ̸=m

ξd,m′ valued,m′ . (31)

This mechanism is particularly well suited for capturing and responding to the subtle
changes in a network state, so as to support caching decisions.

5.2.3. Integration of the Output Layer

After the attention layer, we integrated the outputs of each attention head through a
concatenate operation. Then, we generated the final output via linear transformation. The
concatenation function, which aggregates the attention from multiple heads, is defined as

Attm = concat(Att1,m, ..., Attd,m). (32)

This process facilitates the efficient estimation of the behavior value function per-
formed by the critic network for each BS as follows:

Vψm(o, a) = ϖm(em, Attm), (33)

where ϖm is an MLP layer and ψm denotes the parameter set of the target critic network
associated with the agent.

5.3. Multi-Intelligence Actor–Critic Collaborative Caching Policy Algorithm

The multi-intelligence actor–critic collaborative caching policy algorithm that we im-
plemented is based on a reinforcement-learning framework. This algorithm is particularly
designed to evaluate and iteratively update the policy, thereby taking into consideration the
intricate dynamics of the network and the unique roles played by different agents within
it. Its primary objective is to enhance the efficiency and precision of caching decisions
across the network, whereby it factors in the complex interplay of various elements and
agent-specific functions.

5.3.1. Strategy Evaluation and Iterative Optimization

We utilized the value function Q to estimate the total payoff that an agent may receive
in the future under a particular state S and action a. This function reflects the long-term
payoff effect of implementing a particular action in a particular context as follows:

Vi(o, a) = Eπ

[
+∞

∑
t=0

µtrt+1|o0 = o, a0 = a

]
. (34)

To stabilize the learning process and enhance the algorithm’s performance, we intro-
duced a target network. In our approach, Vψm(o, a) was utilized to approximate Vi(o, a),
thereby facilitating more accurate predictions and efficient learning.

5.3.2. Utilization of Dominance Functions

We recognized the advantage function Aa
i (o, a) as a function that can aid in determin-

ing the advantage of the current action over the average action level. Accordingly, we
guided the gradient update of the strategy. The advantage function considers the additional
benefits in multi-environment interactions. Importantly, while it provides an additional
perspective for evaluation, it does not alter the fundamental decision-making process of
the agent, as is expressed in the following:

Aa
i (o, a) = Vψm(o, a)− ∑

a′i∈Ai

πθi(a
′
i|oi)Vψm(o, (a

′
i|ai)). (35)

Electronics 2024, 13, 794 17 of 26

This equation introduces a baseline for evaluating additional benefits in multi-
environment interactions without impacting the agent’s core decision-making process.
The policy’s gradient update is calculated, whereby the integration of the advantage func-
tion in our approach is ensured, as follows:

∇θi J(πθi) = Eπθi [∇θ log(πθi(ai|oi))Ai(o, a, ψi)]. (36)

5.3.3. Update Mechanisms for the Critic and Actor Networks

The critic network’s update relied on a specifically defined loss function:

Lcn(ψi) = E
[
(ηi − VLψk(o, a))2

]
, (37)

where ηi = ri + µEπθi

[
Vψk(o

′
, a

′
)Vψ

i (o
′
, a

′
)− α log(πθ(a

′ |o′
))
]
, µ was the decay factor,

the terms ψ and θ represented the network parameters prior to updating, and α determined
the balance between the maximum entrance and return [34].

We focused on minimizing the deviation between the predicted and actual values.
Meanwhile, the actor-network updates were focused on maximizing the expected return
of the strategy. In order to post each iteration, we updated the parameters ψ of the critic
network and θ of the actor network as follows:

ψ = ψ − lrcr∇Lcn(ψi), (38)

θ = θ − lrac
∇θi J(πθi)

∇θi
, (39)

where lrcr and lrac were the learning rates, which ensured the stability and efficiency of
the algorithm. Notably, the above equations were instrumental in introducing randomness
into our strategy, as they effectively distributed the probability of each action, especially in
scenarios where the agent might favor a single action. The specific process of this strategy
is delineated in Algorithm 2.

5.4. Algorithm Complexity Analysis

Time complexity focuses on how quickly the time required for algorithm execution
grows with the size of the input. In each iteration, the algorithm traverses all agents and
performs a series of computations on each agent. These computations include observing
states, selecting actions, executing actions, and observing new states with rewards. The
updating of the actor network and critic network are the main computational steps for each
agent. The updating of the actor network involves the computation of the gradient and the
dominance function, while the updating of the critic network includes the computation
of the loss function and the gradient descent of the parameters. Assume that the number
of agents is N, where the dimensions of the state and action space for each agent are S
and A, respectively. The operation of each agent in each iteration takes roughly O(S + A)
time. Therefore, the overall time complexity of the algorithm can be estimated as O(N ·
(S + A)) [35].

This synthesis approach is particularly effective in dynamic and complex network
environments, and it can significantly improve the efficiency of resource allocation and
user satisfaction.

Electronics 2024, 13, 794 18 of 26

Algorithm 2 Multi-intelligence actor–critic collaborative caching policy (MACP) algorithm.
Input:

Set of SBSs, each as an intelligent agent
Initial set of states S
Predicted content popularity as determined via the LSTM model
Observation mechanism O
Set of parameters Θ for the actor networks
Set of parameters Ψ for the critic networks

Output:
Updated set of parameters Θ for the actor networks
Updated set of parameters Ψ for the critic networks

1: Initialize parameters Θ for the actor networks and Ψ for the critic networks
2: for each iteration do
3: for each agent i do
4: Observe current state si
5: Choose action ai = πθi (oi)
6: Execute action ai
7: Observe new state s′i and reward ri
8: end for
9: Update state set S

10: for each agent i do
11: Compute advantage function Aa

i (o, a) = Vψi (o, a)− ∑ πθi (a′i|oi)Vψi (o, (a′i|ai))
12: Update parameters θi of the actor network: θi = θi + αan∇θi J(πθi)
13: end for
14: for each agent i do
15: Compute loss function for the critic network Lcr(ψi) = E[(ηi − Vψk (o, a))2]
16: Update parameters ψi of the critic network: ψi = ψi − αcn∇Lcr(ψi)
17: end for
18: end for
19: return Updated parameters Θ and Ψ

6. Simulation Analysis

We conducted extensive simulations to evaluate the system performance through
Python and MATLAB. The simulation parameter configurations are first given, then we
will analyze the performance of the algorithms and the comparative method analysis for the
LSTM–CPP content placement strategy and MACP content delivery strategy, respectively.
The experimental dataset is derived from the real-world dataset of YouTube in April 2018
and is used to evaluate the proposed content popularity prediction method. This dataset
has records of the count observations (views, comments, likes, dislikes, etc.) of 1500 videos
being posted in real time. After filtering out some of the missing and erroneous data,
50 files were selected as the experimental dataset.

The low-dimensional feature extraction for the cache-placement-strategy model was
performed using a two-layer stacked denoising encoder with 20 neurons in total. The
time-domain-feature acquisition was conducted using an LSTM network with 24 neurons.
The feature-fusion part consisted of a three-layer fully connected network, where the
number of neurons per layer was 12, 15, and 50. Furthermore, the learning rate was set to
0.0007 and the batch size to 32.

The network for a cache-delivery strategy was set up with a total of four micro base
stations with storage sizes of 300, 340, 380, and 420. The number of mobile terminals served
in the coverage area of each base station was 10, 7, 5, and 8, and the initial state of the
terminals was randomly generated. The ReLU activation function was used for the actor
and critic networks. The size of the experience pool was [20,000, 25,000, 15,000, and 20,000],
and the batch size was [128, 128, 256, and 256].

Electronics 2024, 13, 794 19 of 26

6.1. Simulation Parameter Configuration

We utilized a dataset from the content-popularity-prediction method of [36]. Table 2
shows the important parameters of the experiment conducted in [37].

Table 2. Simulation parameter configuration.

Symbol Setting Parameter

M 4 Number of base stations
Nm 40 Number of mobile terminals
Ws 10 MHz Size of bandwidth
Ps 1 w Transmission power of SBS
ζ2 10−14 Power of background noise

DSBS 10 ms Delay of content delivery from neighboring SBS to SBS
DMBS 10 ms Delay of content delivery from MBS to SBS

V 100 Mb/s Average data rate of the core network
λ f 0.003 SBS density
CS 10 Mb Capacity of SBS-equipped server cache
CM 20 Mb Capacity of MBS-equipped server cache
F 1000 Number of contents

SIZE f 1 Mb Size of each content
τ 7 Step size of LSTM

6.2. Content-Popularity-Prediction Method

We analyze the content-popularity-prediction method by comparing it to the following
different methods:

• LSTM: The content-popularity-prediction model of an LSTM uses a K-mean clustering
algorithm to group different contents [38]. Moreover, the content popularity of each
group was predicted using a long short-term memory network.

• DNN-LSTM: An end-to-end network from [39]. A two-layer fully connected network
with [20, 10] neurons, as well as two-layer long and short-term memory network with
[24, 24] neurons.

• CNN-LSTM: This method is different from DNN-LSTM. This model uses a one-
dimensional convolutional neural network instead of a fully connected network [40].

We employed the LSTM–CPP model to forecast the content popularity for the upcom-
ing time slot, thereby informing our cache placement policy. As illustrated in Figure 6,
the LSTM–CPP model significantly reduced the prediction error, especially the root mean
square error (RMSE), by 28.61% compared to the standard LSTM model. The LSTM model’s
relatively inferior performance was attributed to its inability to account for the correlation
between different content request patterns. The reason for its especially large execution
time was the popularity-prediction model that corresponded to one for each content of the
method. LSTM uses a clustering method to process the data before prediction. If clustering
correctly divides the data into clusters with similar patterns of prevalence during training,
then the LSTM is likely to make more accurate predictions in most cases, resulting in lower
MAEs; however, even a small percentage of inaccurate clustering may result in larger errors
in individual cluster predictions, which can increase the RMSE value.

In our analysis, we compared the LSTM–CPP model to LSTM-DNN and LSTM-CNN.
As can be seen in Figure 6, our proposed LSTM–CPP model achieved a better prediction
performance than LSTM-DNN and LSTM-CNN. This enhanced accuracy can be attributed
to the LSTM–CPP model’s integration of unsupervised pre-training, which effectively
initializes the network parameters. This approach enables the model to establish more
suitable initial values for the parameters, thereby optimizing its predictive capability.

Electronics 2024, 13, 794 20 of 26

LSTM LSTM-DNN LSTM-CNN LSTM-CPP

1000

2000

3000

4000

5000

R
M

S
E

LSTM LSTM-DNN LSTM-CNN LSTM-CPP

0

400

800

1200

1600

2000

M
A

E

(a) (b)

Figure 6. Comparison of the performance indicators: (a) MAE. (b) RMSE.

We plotted the training loss curves, as shown in Figure 7. The illustration clearly
demonstrates that the LSTM–CPP model exhibited a faster convergence rate and superior
prediction accuracy compared to LSTM, DNN-LSTM, and CNN-LSTM. Therefore, stacked
auto-encoders for unsupervised pre-training can accelerate the model convergence speed
and improve the model prediction performance. The dataset has multidimensional features
and contains unlabeled data. The LSTM model only uses clustering algorithms to discover
inherent groupings or patterns in the video data. However, our focus is on how to use a
large number of video features to predict future trends, making an unsupervised pre-trained
LSTM model potentially more effective.

0 100 200 300 400 500 600 700

Epochs

1

2

3

4

5

6

7

T
ra

in
in

g
 l
o
s
s

10
4

LSTM

LSTM-CNN

LSTM-DNN

LSTM-CPP

Figure 7. Training loss.

We compared the predicted values of the LSTM–CPP model to the true values, to
analyze its prediction level, the results of which are shown in Figure 8. Our proposed LSTM–
CPP method achieved better content-popularity-prediction performance and could roughly
fit the true distribution. To improve the accuracy of content popularity prediction, we not
only considered the correlation and time-domain characteristics between content requests,
but also considered dynamic content changes and introduced the similarity between new
and original content.

Electronics 2024, 13, 794 21 of 26

0 20 40 60 80 100

t

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

C
o

n
te

n
t

R
e

q
u

e
s
ts

Actual situation

LSTM-CPP

Figure 8. Prediction error.

Figure 9 depicts the cache-hit-rate performance of the system when under a content
placement policy with and without prediction; as expected, the performance was found to
be better under prediction. We used the LSTM–CPP model, which considers not only query
relevance and user preferences, but also the similarity between old and new content, in the
scenario of dynamic variability of content popularity in heterogeneous environments. This
aspect is evident in Figure 9, which demonstrates the decrease in the cache hit rate as the
numbers of content increased. However, it is worth noting that the LSTM–CPP scheme
with content similarity had an 18.4%-higher cache hit rate than the scheme without content
similarity (NCSC). In addition, it was also found to be much higher than the no projected
programs (NPPs) approach.

1000 1500 2000 2500 3000 3500 4000

Number of Contents

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
a
c
h
e
 H

it
 R

a
te

NPP

NCSC

LSTM-CPP

Figure 9. Effect of the content popularity prediction on the cache hit rate.

6.3. Efficient Caching Strategy

Figure 10 showcases the convergence performance of the MACP algorithm. In the
figure, the following three key metrics are focused upon: system reward, average content
delivery latency, and average cache hit rate. As the number of episodes increased, we
observed a corresponding rise in the system reward. Notably, the growth rate of the system
reward began to slow significantly and reached a steady state around episode = 200.

Electronics 2024, 13, 794 22 of 26

0 200 400 600 800 1000

Episode

0.75

0.8

0.85

0.9

0.95

1

A
v
e

ra
g

e
 c

a
c
h

e
 h

it
 r

a
te

(a) (b) (c)

Figure 10. Algorithm convergence analysis: (a) System rewards. (b) Average cache hit rate. (c) Aver-
age content delivery latency.

During the training phase, the exploration noise was progressively reduced as the
episode count increased. This adjustment was critical for the learning process. The reward
function in our model is primarily composed of two factors: content delivery latency and
cache hit rate. As we progressed through more episodes, there was a noticeable decrease in
the content delivery delay; meanwhile, the cache hit rate experienced a gradual increase.
This trend underscored the effectiveness of the MACP algorithm in optimizing both the
timeliness of content delivery and the efficiency of cache utilization.

Figure 11 examines the influence of the learning rate on the cache hit rate, and this
was achieved using the number of episodes as the horizontal axis to illustrate the effects of
the varying parameters. We initiated our analysis by comparing the performance of the
actor networks that were operating at different learning rates. To ensure the stability and
efficiency of our algorithm, we set the learning rate for the actor network at 0.05.

0 200 400 600 800 1000

Episode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
a

c
h

e
 H

it
 R

a
te

Actor Network Ir=0.1

Actor Network Ir=0.01

Actor Network Ir=0.05

0 200 400 600 800 1000

Episode

0.3

0.4

0.5

0.6

0.7

C
a

c
h

e
 H

it
 R

a
te

Actor Network Ir=0.01

Actor Network Ir=0.1

Actor Network Ir=0.05

(a) (b)

Figure 11. Learning-rate analysis: (a) Actor network. (b) Critic network.

Subsequently, we evaluated the cache hit rates achieved by the critic network at
varying learning rates. The results indicated that our proposed algorithm attains the
highest cache hit rate when the learning rate for the critic network is set to 0.05. This
observation highlights the significance of optimizing the learning rate to achieve superior
performance in terms of cache hit rate, thereby demonstrating the algorithm’s efficacy in
handling network caching tasks.

The multi-head self-attention mechanism employed in the MACP model effectively
leveraged multiple sets of keys, keyd,m′ , and values, valued,m′ . Here, keyd,m′ was utilized for
the computing weights, while valued,m′ was instrumental in capturing features. Figure 12
presents the experimental outcomes of incrementally increasing the number of heads in the
multi-head self-attention mechanism from one to eight.

Electronics 2024, 13, 794 23 of 26

1 2 3 4 5 6 7 8

Multi-head Numbers

9

10

11

12

13

S
y
s
te

m
 R

e
w

a
rd

s

Figure 12. Analysis of the multiple attention mechanisms.

The experimental results indicated that, when the number of heads is relatively low,
increasing their count can enhance the model’s ability to capture user interest from a broader
range of perspectives, thereby improving the model’s performance. Optimal results were
observed when the number of heads was set to four. Beyond this point, further increasing
the number of heads led to a decline in performance. This trend underscores the importance
of balancing the number of attention heads to achieve the best experimental outcomes.

In assessing our approach, we benchmarked it against the following state-of-the-art
baseline algorithms:

• Actor–Critic (AC): This method employs a distinct memory structure that explicitly
represents the policy, and this is true independent of the value function. Such a setup
allows for a more nuanced policy development that is not directly tied to the value
estimations [41].

• Deep Q Networks (DQN): DQN differs not only in its network structure, but also in
its approach to feature handling. This method is grounded in local features and does
not incorporate the influences from neighboring nodes’ environments. This limita-
tion could impact the algorithm’s effectiveness in more interconnected or dynamic
settings [42].

The performance of the hits is shown in Figure 13. MACP can be seen as clearly the
highest. The aforementioned approach improved by 15.3% (AC) and 32.3% (DQN) when
compared to the several commonly used conventional methods with different parameters.
Heterogeneous networks are characterized by multi-server heterogeneity, and the AC
and DQN methods formulate caching policies that are based on local BSs that do not
consider the correlation of neighboring BSs. By contrast, the MACP algorithm we adopted
formulates caching policies based on multi-BS information, and it is able to collaborate
caching policies across multiple BSs, which greatly improves the system performance.

As shown in Figure 14, the MACP method reduces the system delay by 1.6% compared
to the AC method. Although the performance of the MACP facet was slightly lower than
the DQN, it was still found to be better in terms of hit rate. From the figure, it can be seen
that the MACP approach improved with an increase in the cache capacity when compared
to DQN. DQN, due to being a value-function-based algorithm, struggles to identify the
maximum q-value among a large set of values, especially in scenarios with extensive
action spaces. As the cache capacity expands, which leads to an even larger action space,
the limitations inherent in DQN’s algorithmic approach become more pronounced. This
aspect underscores the advantage of the MACP approach in environments with growing
cache capacities.

Electronics 2024, 13, 794 24 of 26

100 150 200 250 300 350 400 450 500

Cache Capacity

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
c
h
e
 H

it
 R

a
te

DQN

AC

MACP

Figure 13. Analysis of the the hit ratio performance.

100 150 200 250 300 350 400 450 500

Cache Capacity

2.3

2.4

2.5

2.6

A
v
e
ra

g
e
 C

a
c
h
e
 D

e
la

y

AC

MACP

DQN

Figure 14. Analysis of the delay performance.

7. Conclusions

This work investigated precise content popularity prediction and efficient hybrid
collaborative caching strategies to enhance heterogeneous network performance. Initially,
based on the macro–micro structure of heterogeneous networks, we established a problem
framework aimed at minimizing system latency and maximizing cache hit rates. Then,
recognizing the crucial role of content popularity prediction in edge-cache placement, we
proposed a novel content-popularity method that executes rapidly and effectively improves
prediction accuracy. Lastly, considering multi-base station information in heterogeneous
networks, we proposed a hybrid collaborative caching delivery strategy. The actor–critic
method was employed to solve complex edge-caching issues within this strategy. We
utilized a multi-head attention mechanism to quantify the influence of multiple base
stations on the current node, thereby making effective caching decisions after collecting
multidimensional global and local information, as well as significantly reducing backhaul
traffic and enhancing the QoS/QoE. We conducted extensive simulations, and the results
show that the LSTM–content-population-prediction model is more advantageous in terms
of content-popularity-prediction accuracy, with a 28.61% improvement in prediction error,
compared to several other existing methods. The proposed MACP algorithm improves the
cache-hit-rate metric by up to 32.3% and reduces the system latency by 1.6%, demonstrating
the feasibility and effectiveness of the algorithm. Building on this work, we will focus on
user privacy issues in the future and will continuously refine our algorithms and framework
according to real-world scenarios.

Electronics 2024, 13, 794 25 of 26

Author Contributions: Conceptualization, Z.S.; methodology, Z.S.; validation, Z.S.; data curation,
Z.S.; writing—original draft preparation, Z.S.; writing—review and editing, G.C.; visualization,
Z.S.; project administration, Z.S.; funding acquisition, G.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the “Thirteenth Five-Year Plan” Science and Technology
Research Project of Jilin Provincial Department of Education, Research on Large-scale D2D Access and
Traffic Balancing Technology for Heterogeneous Wireless Networks JJKH20181130KJ, Special Project
on Industrial Technology Research and Development of Jilin Province, Research on Selforganizing
Network System of Unmanned Platform for Optoelectronic Composite Communication, 2022C047-8.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reiss-Mirzaei, M.; Ghobaei-Arani, M.; Esmaeili, L. A review on the edge caching mechanisms in the mobile edge computing:

A social-aware perspective. Internet Things 2023, 22, 100690. [CrossRef]
2. Somesula, M.K.; Rout, R.R.; Somayajulu, D. Cooperative cache update using multi-agent recurrent deep reinforcement learning

for mobile edge networks. Comput. Netw. 2022, 209, 108876. [CrossRef]
3. Wang, Q.; Chen, S.; Wu, M. Incentive-Aware Blockchain-Assisted Intelligent Edge Caching and Computation Offloading for IoT.

Engineering 2023, in press. [CrossRef]
4. Zyrianoff, I.; Gigli, L.; Montori, F.; Sciullo, L.; Kamienski, C.; Felice, M.D. Cache-it: A distributed architecture for proactive edge

caching in heterogeneous iot scenarios. Ad Hoc Netw. 2024, 156, 103413. [CrossRef]
5. Liu, W.-X.; Zhang, J.; Liang, Z.-W.; Peng, L.-X.; Cai, J. Content popularity prediction and caching for icn: A deep learning approach

with sdn. IEEE Access 2017, 6, 5075–5089. [CrossRef]
6. Zhou, H.; Jiang, K.; He, S.; Min, G.; Wu, J. Distributed deep multi-agent reinforcement learning for cooperative edge caching in

internet-of-vehicles. IEEE Trans. Wirel. Commun. 2023, 22, 9595–9609. [CrossRef]
7. Lee, D.D.; Pham, P.; Largman, Y.; Ng, A. Advances in neural information processing systems 22. In Proceedings of the 26th

Annual Conference on Neural Information Processing Systems 2012, NIPS 2012, Lake Tahoe, NV, USA, 3–6 December 2009.
8. Sultan, M.T.; Sayed, H.E. QoE-aware analysis and management of multimedia services in 5 g and beyond heterogeneous networks.

IEEE Access 2023, 11, 77679–77688. [CrossRef]
9. Salim, M.M.; Elsayed, H.A.; Elaziz, M.A.; Fouda, M.M.; Abdalzaher, M.S. An optimal balanced energy harvesting algorithm for

maximizing two-way relaying d2d communication data rate. IEEE Access 2022, 10, 114,178–114.191. [CrossRef]
10. Fang, S.; Tang, R.; Guo, X. An adaptive adjusting density scheme of small cell base stations in heterogeneous cell networks.

In Proceedings of the 5th International Conference on Communication and Information Processing, Chongqing, China, 15–17
November 2019; pp. 221–225.

11. Abdalzaher, M.S.; Moustafa, S.S.; Hafiez, H.A.; Ahmed, W.F. An optimized learning model augment analyst decisions for seismic
source discrimination. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

12. Choi, Y.; Lim, Y. Deep reinforcement learning-based edge caching in heterogeneous networks. J. Inf. Process. Syst. 2022, 18, 803.
13. Li, Y.; Ma, H.; Wang, L.; Mao, S.; Wang, G. Optimized content caching and user association for edge computing in densely

deployed heterogeneous networks. IEEE Trans. Mob. Comput. 2020, 21, 2130–2142. [CrossRef]
14. Tang, J.; Tang, H.; Zhang, X.; Cumanan, K.; Chen, G.; Wong, K.-K.; Chambers, J.A. Energy minimization in d2d-assisted

cache-enabled internet of things: A deep reinforcement learning approach. IEEE Trans. Ind. Inform. 2019, 16, 5412–5423.
[CrossRef]

15. Tang, J.; Tang, H.; Zhao, N.; Cumanan, K.; Zhang, S.; Zhou, Y. A reinforcement learning approach for d2d-assisted cache-enabled
hetnets. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December
2019; pp. 1–6.

16. Sadeghi, A.; Wang, G.; Giannakis, G.B. Deep reinforcement learning for adaptive caching in hierarchical content delivery networks.
IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1024–1033. [CrossRef]

17. Hou, J.; Xia, H.; Lu, H.; Nayak, A. A graph neural network approach for caching performance optimization in ndn networks.
IEEE Access 2022, 10, 112657–112668. [CrossRef]

18. Hassine, N.B.; Milocco, R.; Minet, P. ARMA based popularity prediction for caching in content delivery networks. In Proceedings
of the 2017 Wireless Days, Porto, Portugal, 29–31 March 2017; pp. 113–120.

19. Ale, L.; Zhang, N.; Wu, H.; Chen, D.; Han, T. Online proactive caching in mobile edge computing using bidirectional deep
recurrent neural network. IEEE Internet Things J. 2019, 6, 5520–5530. [CrossRef]

20. Jiang, Y.; Feng, H.; Zheng, F.-C.; Niyato, D.; You, X. Deep learning-based edge caching in fog radio access networks. IEEE Trans.
Wirel. Commun. 2020, 19, 8442–8454. [CrossRef]

21. Lin, Z.; Sun, X.; Ji, Y. Landslide displacement prediction model using time series analysis method and modified lstm model.
Electronics 2022, 11, 1519. [CrossRef]

http://doi.org/10.1016/j.iot.2023.100690
http://dx.doi.org/10.1016/j.comnet.2022.108876
http://dx.doi.org/10.1016/j.eng.2022.10.014
http://dx.doi.org/10.1016/j.adhoc.2024.103413
http://dx.doi.org/10.1109/ACCESS.2017.2781716
http://dx.doi.org/10.1109/TWC.2023.3272348
http://dx.doi.org/10.1109/ACCESS.2023.3298556
http://dx.doi.org/10.1109/ACCESS.2022.3216775
http://dx.doi.org/10.1109/TGRS.2022.3208097
http://dx.doi.org/10.1109/TMC.2020.3033563
http://dx.doi.org/10.1109/TII.2019.2954127
http://dx.doi.org/10.1109/TCCN.2019.2936193
http://dx.doi.org/10.1109/ACCESS.2022.3217236
http://dx.doi.org/10.1109/JIOT.2019.2903245
http://dx.doi.org/10.1109/TWC.2020.3022907
http://dx.doi.org/10.3390/electronics11101519

Electronics 2024, 13, 794 26 of 26

22. Mannepalli, K.; Singh, S.P.; Kolli, C.S.; Raj, S.; Bojja, G.R.; Rajakumar, B.; Binu, D. Popularity prediction model with context, time
and user sentiment information: An optimization assisted deep learning technique. Int. J. Uncertain. Fuzziness-Knowl.-Based Syst.
2023, 31, 283–302. [CrossRef]

23. Hu, Z.; Fang, C.; Wang, Z.; Tseng, S.-M.; Dong, M. Many-objective optimization based-content popularity prediction for
cache-assisted cloud-edge-end collaborative iot networks. IEEE Internet Things J. 2023, 11, 1190–1200. [CrossRef]

24. Shekhar, S.; Singh, A.; Gupta, A.K. A deep neural network (dnn) approach for recommendation systems. In Advances in
Computational Intelligence and Communication Technology: Proceedings of CICT 2021; Springer: Singapore, 2022; pp. 385–396.

25. Zhang, R.; Yu, F.R.; Liu, J.; Huang, T.; Liu, Y. Deep reinforcement learning (drl)-based device-to-device (d2d) caching with
blockchain and mobile edge computing. IEEE Trans. Wirel. Commun. 2020, 19, 6469–6485. [CrossRef]

26. Zhong, C.; Gursoy, M.C.; Velipasalar, S. Deep multi-agent reinforcement learning based cooperative edge caching in wireless
networks. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24
May 2019; pp. 1–6.

27. Yan, H.; Xu, X.; Bilal, M.; Xia, X.; Dou, W.; Wang, H. Customer centric service caching for intelligent cyber-physical transportation
systems with cloud-edge computing leveraging digital twins. IEEE Trans. Consum. Electron. 2023. [CrossRef]

28. Lu, Y.; Zhang, P.; Duan, Y.; Guizani, M.; Wang, J.; Li, S. Dynamic scheduling of iov edge cloud service functions under nfv: A
multi-agent reinforcement learning approach. IEEE Trans. Veh. Technol. 2023. [CrossRef]

29. Li, D.; Zhang, H.; Ding, H.; Li, T.; Liang, D.; Yuan, D. User preference learning-based proactive edge caching for d2d-assisted
wireless networks. IEEE Internet Things J. 2023, 10, 11922–11937. [CrossRef]

30. Garetto, M.; Leonardi, E.; Traverso, S. Efficient analysis of caching strategies under dynamic content popularity. In Proceedings of
the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 2263–2271.

31. Li, D.; Han, Y.; Wang, C.; Shi, G.; Wang, X.; Li, X.; Leung, V.C. Deep reinforcement learning for cooperative edge caching in future
mobile networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019; pp. 1–6.

32. Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation offloading and resource allocation in wireless cellular networks
with mobile edge computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]

33. Al-Shehari, T.; Alsowail, R.A. An insider data leakage detection using one-hot encoding, synthetic minority oversampling and
machine learning techniques. Entropy 2021, 23, 1258. [CrossRef]

34. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International Conference on Machine Learning; PMLR: London, UK, 2018; pp. 1861–1870.

35. Wang, X.; Wang, C.; Li, X.; Leung, V.C.; Taleb, T. Federated deep reinforcement learning for internet of things with decentralized
cooperative edge caching. IEEE Internet Things J. 2020, 7, 9441–9455. [CrossRef]

36. ElSawy, H.; Sultan-Salem, A.; Alouini, M.-S.; Win, M.Z. Modeling and analysis of cellular networks using stochastic geometry: A
tutorial. IEEE Commun. Surv. Tutor. 2016, 19, 167–203. [CrossRef]

37. Li, D.; Zhang, H.; Yuan, D.; Zhang, M. Learning-based hierarchical edge caching for cloud-aided heterogeneous networks. IEEE
Trans. Wirel. Commun. 2023, 22, 1648–1663. [CrossRef]

38. Xu, H.; Sun, Y.; Gao, J.; Guo, J. Intelligent edge content caching: A deep recurrent reinforcement learning method. Peer-to-Peer
Netw. Appl. 2022, 15, 2619–2632. [CrossRef]

39. Zheng, H.; Lin, F.; Feng, X.; Chen, Y. A hybrid deep learning model with attention-based conv-lstm networks for short-term traffic
flow prediction. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6910–6920. [CrossRef]

40. Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A cnn-lstm model for soil organic carbon content prediction with long
time series of modis-based phenological variables. Remote Sens. 2022, 14, 4441. [CrossRef]

41. Peters, J.; Schaal, S. Natural actor-critic. Neurocomputing 2008, 71, 1180–1190. [CrossRef]
42. Li, R.; Zhao, Y.; Wang, C.; Wang, X.; Leung, V.C.; Li, X.; Taleb, T. Edge caching replacement optimization for d2d wireless networks

via weighted distributed dqn. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC),
Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0218488523500150
http://dx.doi.org/10.1109/JIOT.2023.3290793
http://dx.doi.org/10.1109/TWC.2020.3003454
http://dx.doi.org/10.1109/TCE.2023.3326969
http://dx.doi.org/10.1109/TVT.2023.3333291
http://dx.doi.org/10.1109/JIOT.2023.3244621
http://dx.doi.org/10.1109/TWC.2017.2703901
http://dx.doi.org/10.3390/e23101258
http://dx.doi.org/10.1109/JIOT.2020.2986803
http://dx.doi.org/10.1109/COMST.2016.2624939
http://dx.doi.org/10.1109/TWC.2022.3206236
http://dx.doi.org/10.1007/s12083-022-01369-6
http://dx.doi.org/10.1109/TITS.2020.2997352
http://dx.doi.org/10.3390/rs14184441
http://dx.doi.org/10.1016/j.neucom.2007.11.026

	Introduction
	Related Works
	System Model
	Network Model
	Communication Model
	Content-Caching Model
	Content Placement Phase
	Content Delivery Phase

	Problem Description

	LSTM-Based Content Placement Strategy
	Content Popularity Prediction
	Content-Popularity-Prediction Methods in Varying Environments

	Collaborative Caching Strategies Based on Multi-Intelligent Actor–Critic Networks
	Multi-Intelligent Actor–Critic Framework
	Critic Networks with Attention Mechanisms
	Optimization of the Embedding Layer
	Attention Mechanism Refinement
	Integration of the Output Layer

	Multi-Intelligence Actor–Critic Collaborative Caching Policy Algorithm
	Strategy Evaluation and Iterative Optimization
	Utilization of Dominance Functions
	Update Mechanisms for the Critic and Actor Networks

	Algorithm Complexity Analysis

	Simulation Analysis
	Simulation Parameter Configuration
	Content-Popularity-Prediction Method
	Efficient Caching Strategy

	Conclusions
	References

