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Abstract: The issue of sub-module (SM) capacitor voltage unbalance is a hot topic in the current
research into the modular multilevel converter (MMC). An excellent strategy comprises mitigating
the SM capacitor voltage imbalance by adjusting the SM on time. The traditional capacitor voltage
balancing control regulates the speed to maintain accuracy. A unique SM capacitor voltage balancing
control strategy is presented in this paper and is based on conventional capacitor voltage balance
management and neural network prediction. Firstly, the SM capacitor voltage and arm current are
speculated by operating the time series forecasting technique in real time, considering the dynamic
changes in the SM capacitor voltage and arm current. Secondly, the SM capacitor voltage distinction
between the actual and theoretical value is determined, and a deviation’s mixed Gaussian distribution
is established to estimate its compensation voltage. Thirdly, the SM triggering sequence is anticipated
by using the neural network along with the pilot values of the SM capacitor voltage, arm current,
and the offset compensation value, and the control is executed. Finally, a three-phase, six-leg,
eight-module, nine-level MMC model is built to verify the feasibility of the suggested approach.

Keywords: capacitor voltage balance; time series prediction; Gaussian distribution; neural network

1. Introduction

The modular multilevel converter (MMC) represents the most recent iteration of
voltage source converters. When operated, the converter’s active and reactive power,
voltage, and current can be modified independently, providing minimal loss and high-
quality output voltage waveforms [1–4]. However, due to the diverse capacitor values
of each sub-module (SM), the SM capacitor voltage deviates from the theoretical voltage
during the inverter process, resulting in the SM capacitor voltage imbalance, leading to
upper- and lower-bridge voltage fluctuations, increasing the circulating current between
the bridges and reducing the DC voltage utilization.

As a result, a switching function model was used to analyze the coupling relationship
between the SM electrical quantities [5] and the steady-state characteristics of the SM
electrical quantities and design the main circuit’s parameters. Meanwhile, according to
the MMC structure, the bridge arm’s instantaneous power equation was established [6]
and revealed the existence of the second-harmonic component in the circulating current.
According to the components of the circulating current, a generalized controller-based
circulating current suppression strategy [7,8], reactive circulating current injection [9],
is proposed, which incorporates the CPS-PWM modulation method to achieve the SM
output voltage balancing, but increases the SM’s switching frequency and loss. A guiding
factor [10] and a balancing regulation index [11] are introduced to achieve a flexible trade-
off between switching frequency and capacitor voltage balancing. At the same time, the
disadvantages of the CPS-PWM modulation method are fully demonstrated and the use of
carrier cascading is proposed, but the rotation period of the carriers will have an extremely
important effect on the control. In addition, when carrier modulation is used, it is necessary
to establish an independent capacitor voltage control circuit for each SM, which increases
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the cost of the control link. Moreover, the extraction of the circulation component will
directly affect the SM capacitor voltage balancing control, which improves the complexity
of the control link.

The modulation method using nearest level approximation [12,13] is proposed to
accomplish balanced control of SM capacitor voltages by conducting bubble sort [14],
base sort [15], group sort [16], and subsumption sort [17] on the capacitor voltages, which
reduces the effect of the output due to capacitor parameter differences. However, as the SM
number increases, the computer’s performance is required to be higher. It is not conducive
to rapidly adjusting active and reactive power, voltage, and current.

All the above capacitor voltage balancing control strategies need to use specialized
sensors, leading to a cost increase for capacitor voltage balancing control. For this purpose,
Kalman filtering [18], state observer [19], and the online estimation of arm currents [20]
are implemented to predict the arm currents. In addition, SM capacitor voltage balancing
has been achieved by changing the SM topology, for instance, by adding diodes between
neighboring SMs to form a self-homogenizing circuit [21–23]. The dynamic balancing
of SM capacitor voltages is achieved by introducing flying capacitor multilevel (FCML)
converters between adjacent SMs [24]. However, this increases the complexity of the
SM topology and is not conducive to later expansion. Further, the SM capacitor voltage
output interval was partitioned using a field-programmable gate array (FPGA) to achieve
SM capacitor voltage dynamic balancing [25,26], improving its balancing control speed.
Nevertheless, the interval division and the number setting of intervals will seriously affect
the balancing control effect. If SMs were placed in the same output interval, the capacitor
voltage balancing control would not be any better. The active and reactive power, voltage,
and current could not be precisely controlled.

In practical engineering, it is necessary to regulate the speed at the cost when utilizing
the above methods to satisfy the control accuracy. For this reason, using the traditional
capacitor voltage balancing control strategy, the SM capacitor voltage, turn-on sequence,
and arm current are regarded as the initial data. The MMC input and output parameters’
fluctuation interval is divided into smaller segments. The SM capacitor voltage and arm
current will evolve when the input and output parameters change. Consequently, the
primary database is updated and supplemented. An SM capacitor voltage balancing
control strategy based on neural network forecasting is proposed. Firstly, the SM capacitor
voltage and arm current trends and periodicity are analyzed and tested. The time series
method is used to predict the SM capacitor voltage and arm current in real time. Secondly,
the SM capacitor voltage discrepancy between the actual and theoretical value is estimated,
and its mean and variance are generated. We observe the deviation distribution, construct
a mixed Gaussian distribution of the voltage offset, and evaluate the compensation value
of the voltage offset. Thirdly, taking into account the historical data for the SM capacitor
voltage and conduction sequence, the neural network is trained. Considering the predicted
SM capacitor voltage, arm current, and deflection compensation value, the SM conduction
sequence is predicted and the control is completed. Finally, a simulation model is developed
to verify the feasibility of the proposed scheme.

2. Theoretical Analysis

During MMC operation, the SM capacitor parameters are not identical, which con-
stitutes a primary factor in the SM output voltage imbalance. The SM capacitor voltage
imbalance is a natural occurrence because of the disparity between the predicted time and
the actual on-state time calculated via the modulation.

2.1. SM Capacitor Value Differences

MMC’s basic unit is SM. Its standard structures include the half-bridge type and
full-bridge type. In engineering, a half-bridge SM is commonly employed, consisting of
two insulated gate bipolar transistors (IGBTs) and a capacitor, as demonstrated in Figure 1.
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Figure 1. Basic structure of half-bridge SM.

IGBT1 and IGBT2 determine the SM capacitor C0 charge or discharge. Assuming that
ism is active from A to B and vice versa, if the potential of A is higher than that of B, then
usm is active and vice versa. The values ‘1’ and ‘0’ indicate IGBT conduction and shutdown,
respectively. Then, the relationship between the on–off of IGBT1 and IGBT2, and the state
of the SM capacitor C0 is shown in Table 1.

Table 1. Relationship between the on–off of IGBT1 and IGBT2 and the state of the SM capacitor C0.

IGBT1 IGBT2 ism SM Status C0 uc

0 0 + input charge usm
0 0 − remove bypass 0
1 0 + input charge usm
1 0 − input discharge −usm
0 1 + remove bypass 0
0 1 − remove bypass 0
1 1 + remove bypass 0
1 1 − input discharge −usm

From Figure 1, we can see that if the SM initial voltage is u0, then the capacitor voltage
uc, instantaneous power pc, and stored energy Wc meet the following relationship during a
charging cycle:

uc =
1

C0

∫
ismdt + u0 (1)

pc = ismuc (2)

Wc =
∫

pcdt =
∫

ismucdt (3)

During operation, we suppose that the voltage and current are Udc, Idc at the DC side
bus. In phase j(j = a, b, c), the upper arm current is ijp; the number of on-state SMs is npj;
and the capacitor value, voltage, and stored energy of the i-th conducting SM are Cpi, ujpi,
and Wjpi, respectively. We draw the circuit diagram of phase j, as shown in Figure 2.

From Figure 2, we can see that the upper bridge j-phase capacitor voltage ujp and the
stored energy Wjp are

ujp =

npj

∑
i=1

ujpi (4)

Wjp =

npj

∑
i=1

Wjpi (5)

Similarly, according to Equations (4) and (5), the lower-bridge j-th phase capacitor
voltage ujn, and capacitor stored energy Wjn are received. If the SM initial voltages are
all the same, at the ti moment, SMpi conducts, and the upper-bridge output voltage is Ui,
and its variation is Ui − Ui−1 and remains constant. Taking a charge cycle of SMp1 as an
example, the upper bridge j-phase output voltage ujp varies, as shown in Table 2.
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Table 2. The turn-on relationship between the output voltage ujp and SM in the upper-bridge j-phase.

Time ujp Voltage Variation Upper-Bridge
Conductive SM

0 0 0 0
t1 U1 U1 SMp1
t2 U2 U2−U1 SMp1, SMp2
t3 U3 U3−U2 SMp1, SMp2, SMp3
. . . . . . . . . . . .

tN−1 UN−1 UN−1−UN−2
SMp1, SMp2,
SMp3. . .SMpN−1

tN UN UN−UN−1
SMp1, SMp2,
SMp3. . .SMpN

tN+1 UN−1 UN−UN−1

SMp2,
SMp3. . .SMpN-1,
SMpN

Ideally, the SM capacitor values are equal and SMpi conducts according to Table 2,
making the voltage changes Ui − Ui−1 similar. In practice, due to capacitor production
error or degradation, the SM capacitor values are not identical [27]. Suppose SMpi is turned
on according to Table 2. In that case, the actual value for the SMpi capacitor voltage deviates
from the theoretical value, which causes the difference between the real value of the output
voltage ujp and the theoretical value, resulting in the voltage changes Ui − Ui−1 being
dissimilar to the upper-bridge j-phase output voltage ujp, as shown in Figure 3.
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Similarly, if the lower-bridge SM capacitor values are not similar, then they cause
discrepancies between the actual and theoretical values for the lower-bridge j-phase output
voltage ujn.

Combined with Figure 2, ideally, according to Kirchhoff’s law:

ujn + ujp = Udc (6)

ijp = ij + ijn (7)

The circulating current icirj in phase j is

icirj =
1
2
(
ijp + ijn

)
(8)

Combining Equations (7) and (8), ijp and ijn are displayed:

ijp =
1
2

ij + icirj (9)

ijn = −1
2

ij + icirj (10)

The output voltage uj in phase j is

uj =
1
2
(
ujn − ujp

)
(11)

If the SM capacitor values are not the same, then the actual value uj deviates from the
theoretical value, exacerbating uj fluctuations.

If Uj is the j-th phase output voltage uj fundamental voltage rms value on the AC side,
then the output voltage modulation index m is

m =

√
2Uj

0.5Udc
=

2
√

2Uj

Udc
(12)

Then, the voltage utilization rate n is

n =

√
6Uj

Udc
m (13)

In operation, assuming uj =
√

2Uj sin(wt), ij =
√

2Ij sin(wt + ϕ), then the output
instantaneous power pout in phase j is

pout = ujij = 2Uj Ij sin(wt) sin(wt + ϕ) (14)

In phase j, the interphase circulating current icirj is

icirj =
pout

Udc
=

√
2m
4

Ij[cos ϕ− cos(2wt + ϕ)] (15)

Substituting Equation (12) into (15) yields

icirj =
1
3

Idc −
Idc

3 cos ϕ
cos(2wt + ϕ) (16)

When the SM capacitor Ci is not equal, meaning that the equivalent capacitance
decreases in each bridge, causing Idc to increase, the circulating current icirj in the j-th phase
is shown in Figure 4.
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From Figure 4, we can see that the SM capacitor Ci is not the same, causing the
circulating current icirj in the actual case to be larger than in the ideal case, making the
output voltage modulation ratio m and the DC voltage utilization n smaller than in the
ideal case.

2.2. Modulation Scheme

Currently, there are two main modulation methods for MMC: carrier pulse width and
step-wave modulation. The carrier pulse width mainly compares the voltage-modulating
waveform generated by the vector control link with the triangular carrier waveform to
yield a modulating signal and perform the MMC triggering.

Nearest-level modulation (NLM) is commonly employed as step-wave modulation.
According to the MMC’s control target, the voltage-modulated waveform is generated by
using the vector control method; the number of SMs to be conducted in the upper and
lower bridges is counted in real time so that the output voltage on the AC side comes close
to the modulating waveform, which is often applied in flexible DC transmission projects
because of its simple design, fast response, and wide range of applications. The NLM
modulation diagram is shown in Figure 5.
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From Figure 5, we can see that the step wave varies with the sinusoidal modulated
wave and gradually approaches it. Each arm contains N SMs. Each SM has a capacitor
value and voltage of C0 and UC, respectively. For phase j, the number of conductive SMs in
the upper- and lower-bridge arms are npj and nnj, separately. According to the modulation
strategy, the number of conductive SMs n in each bridge meets 0 ≤ n ≤ N. Then, npj, nnj,
satisfy the following relation:

npj + nnj = N (17)

Combined with Equation (6), the ideal value of the SM capacitor voltage UC is

UC =
Udc

npj + nnj
=

Udc
N

(18)
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Whenever the NLM is used, the number of SMs on the upper and lower arms are

nnj(t) =
N
2
+ round

(
u∗vj(t)

Uc

)
(19)

npj(t) =
N
2
− round

(
u∗vj(t)

Uc

)
(20)

u∗vj(t) denotes the ideal modulating wave in the j-th phase at t time.
The SM capacitor voltage is positively related to its stored energy according to the

bridge SM connection. We define the discharge rate Ki of the SMi(i = 1, 2, 3. . .) as

Ki =

∣∣∣∣U1i −U0i

t1i − t0i

∣∣∣∣ (21)

U1i and U0i represent the SMi(i = 1, 2, 3. . .) capacitor voltage Ui after conduction and
before the on-time, respectively; t1i and t0i indicate the SMi(i = 1, 2, 3. . .) after the on-time
and the time before conduction, separately. For example, an MMC requires SMi(i = 1, 2,
3. . .N) to conduct at t0 moment, and the SM voltage is U0 before it is on. According to the
modulation principle of the NLM, the on-time is4t. Then, ideally, the SMi(i = 1, 2, 3. . .N)
discharge diagram is shown in Figure 6.

Figure 6. Ideally, the SMi(i = 1, 2, 3. . .N) discharges schematically.

As seen in Figure 6, ideally, C1 = C2 = C3 = . . .= CN causes the SMi(i = 1, 2, 3. . .N)
to have a matching discharge rate to K. After modulation, the SMi(i = 1, 2, 3. . .N) still
maintains equal capacitor voltage, the same discharge power, and balanced stored energy.
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However, in actual engineering, the SM capacitor values are not exactly alike; for example,
C1 6= C2 6= C3 = . . . = CN. At this time, according to the theoretical on-time4t, the actual
SMi(i = 1, 2, 3. . .N) discharge schematic is shown in Figure 7.

Figure 7. The SMi(i = 1, 2, 3. . .N) discharge schematic diagram for the actual case.

Comparing Figures 6 and 7, C1 6= C2 6= C3 = . . . = CN causes the SMi(i = 1, 2, 3. . .N)
discharge rate K1 < K3 = . . .KN < K2 in practice. If the SMi(i = 1, 2, 3. . .N) is discharged
according to the theoretically figured on-time4t, making the SMi(i = 1, 2, 3. . .N) capacitor
voltage U1i(i = 1, 2, 3. . .N), then the discharging power P1i and the stored energy W1i are not
exactly alike after the on-time, triggering the SM2 to over-discharge and vibrate. Similarly,
if the SMi(i = 1, 2, 3. . .N) is charged according to the theoretically reckoned on-time, it will
induce some SMs to store energy excessively.

In engineering, the SM capacitor values C1 6= C2 6= C3 6= . . . 6= CN prompt the SMi(i = 1, 2,
3. . .N) to charge and discharge at entirely different rates Ki. The SMi(i = 1, 2, 3. . .N) on-time
theoretical time 4t1i differs from the conduction 4ti calculated by the NLM modulation
strategy. After modulation, the SM capacitor voltage deviates from the theoretical value,
resulting in unequal energy stored in the different SM capacitors, inducing some SMs to be
overcharged and discharged, and reducing the SMs’ service life.

3. Traditional SM Capacitor Voltage Balancing Control

In engineering applications, the NLM modulation strategy requires the collaboration
of SM capacitor voltage sequencing to decline the bridge SM capacitor voltage imbalance.
The specific control process is shown in Figure 8.
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The number of arm SMs, to-be-conducted SMs, and sequencing times are all intercon-
nected, as demonstrated in Figure 9.
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From Figures 8 and 9, it can be seen that the number of sequencing times is positively
correlated with that of bridge SMs and to-be-conducted SMs.

4. Presentation Methodology

Upon investigation, it was discovered that each bridge in the ±500 kV Yanqing con-
verter station of the Zhangbei Flexible HVDC Transmission Project contains 264 SMs [28,29].
During operation, relying on multiple sensors to gather the output voltage and bridge
current from each SM in real time is essential. Furthermore, the complexity of voltage
balancing control is evidently increased by employing the traditional sorting algorithm,
highlighting the higher requirements for the controller’s performance. If we suppose that
the predictive method is used to derive every SM capacitor voltage and bridge current,
then, by doing so, the sensor’s measurement delay and number can be shortened, and the
system’s cost can be decreased. The deviation between the actual and theoretical values
of capacitor voltage is estimated, a mixed Gaussian distribution with voltage deviation is
constructed, and the predicted voltage is compensated to reduce the capacitor voltage devi-
ation. The neural network is utilized to predict the SM triggering sequence and complete
the activation to enhance the SM capacitor voltage balancing control speed.

4.1. Time Series Prediction

The time series method is introduced to predict the SM capacitor voltage and arm
current. The forecasting model changes with MMC’s operating status variation. When the
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MMC operates steadily, the SM capacitor voltage and arm current are periodic, and the
auto-regressive (AR) model is invoked. Conversely, the auto-regressive integrated moving
average (ARIMA) model is required. The estimation procedure for the SM capacitor voltage
is shown in Figure 10.
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Figure 10. Prediction process for SM capacitor voltage.

As shown in Figure 10, when the time series prediction method is exploited, it is crucial
to ensure that the SM capacitor voltage and arm current are stable. The time series uc(t)
is generated from the SM capacitor voltage’s historical record value, and the smoothness
test is performed. If the steadiness is not satisfied, then a new sequence uc1(t) is formed
to meet the stability requirement by implementing d-order differences. Assuming the
period T = 0.02 (s), the time series uc1(t) is examined to ascertain whether it conforms to
the following equation:

uc1(t) = uc1(t− Tk)(k = 1, 2, 3 · · ·) (22)

If the time series uc1(t) satisfies Equation (22), the MMC is operating steadily. The AR
model is invited to determine its order by combining the Akaike information criterion (AIC)
and the Bayes information criterion (BIC). The specific AIC and BIC criteria are as follows:

AIC(k) = 2k− 2In(L) (23)

BIC(k) = kIn(n)− 2In(L) (24)

Here, k is the number of parameters or the order of the model; n is the number of
samples; and L is the likelihood function of the sample composition.

If we suppose the sampling time T1 = 0.000002 (s), then the SM capacitor voltage
predicted value uc1(t + T1) is

uc1(t + T1) =
n

∑
i=1

kiuc1(t + T1 − iT) (25)

In Equation (23), ki satisfies the following relationship:

n

∑
i=1

ki = 1 (26)
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If the time series uc1(t) does not satisfy Equation (22), then an ARIMA model is
established, which means that MMC is working in an unstable state. Then, the order
p and q are determined, respectively, by the autocorrelation function (ACF) and partial
autocorrelation function (PACF). According to the auto-regressive moving average (ARMA)
model, the prediction of the stationary sequence uc1(t + T1) is completed:

u(t + T1) = ϕ0 +
p

∑
i=1

ϕiuc1(t− iT1) (27)

l(t + T1) = ε(t) +
q

∑
i=1

θiε(t− iT1) (28)

uc1(t + T1) = u(t + T1) + l(t + T1) (29)

Here, ϕi is an autoregressive coefficient; θi is a moving average coefficient; and ε(ti) is
a random disturbance in this term.

Finally, the SM capacitor voltage uc(t + T1) is found via the d-order inverse difference
of the stationary sequence uc1(t + T1). The arm current i(t + T1) can be obtained utilizing
the aforementioned method. We define the prediction error h as

h =
|pr− tr|

tr
× 100% (30)

Here, pr and tr represent the predicted and actual values, respectively.
According to Equation (30), the SM capacitor voltage and arm current prediction

inaccuracy are revealed.

4.2. Constructing Mixed Gaussian Distributions

In actual operation, the SM capacitor parameters are not the same, making the SM
charging and discharging rates differ, resulting in a deviation between the virtual and
theoretical values for the capacitor voltage and causing an imbalance in the SM stored
energy. Therefore, assessing the capacitor voltage error is necessary to establish a mixed
Gaussian deviation distribution and estimate the deviation compensation value. The
construction process for the mixed Gaussian distribution is shown in Figure 11.
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Electronics 2024, 13, 795 12 of 21

From Figure 11, it can be seen that, firstly, it is vital to perform a standard distribution
test (Jarque-Bera test, jbtest) [30] on SM capacitor voltage deviation samples, compute the
skewness and kurtosis of this offset, and fabricate the JB statistic:

skewness = E

[(
X− µ

σ

)3
]

(31)

kurtosis = E

[(
X− µ

σ

)4
]

(32)

JB =
n
6

[
S2 +

(K− 3)2

4

]
(33)

According to Equations (31)–(33), the corresponding probability (p) is produced and
compared with the set significance level (alpha) if p > alpha, indicating that the deviation sat-
isfies the normal distribution. Conversely, it is necessary to use the Box–Cox transformation
to contend the normal distribution. The specific transformation rules are as follows:

y(λ) =

{
xλ−1

λ , λ 6= 0
ln x, λ = 0

(34)

Here, represents the variation parameter. If the error x < 0, then it is important to add
the deviation x to the constant c and continue Equation (34).

Secondly, the outliers are eliminated based on the significance level (alpha), and the
Gaussian samples are reshaped by combining the calculated means so that the number of
samples in each Gaussian distribution is the same. Thirdly, each Gaussian distribution’s
mean and variance and their corresponding weights are received by using the expectation–
maximization algorithm (EM) to form the mixing Gaussian distribution at the i-th moment,
as shown in Figure 12. Finally, the compensated value of the SM capacitor voltage deviation
is determined by employing the mixed Gaussian distribution.
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4.3. SM Trigger Sequence Prediction

Figure 9 shows that the traditional voltage balance control strategy largely depends
on the sorting results for SM capacitor voltage. The time consumption of traditional
voltage balancing control increases as the number of SMs grows, resulting in an apparent
enlargement in the complexity of the sorting algorithm. When the neural network is
applied in the SM capacitor voltage balance control link, it can not only achieve the goal of
predicting the SM triggering sequence but also raise the MMC’s response speed. Its model
is shown in Figure 13, below.

In Figure 13, Xi(k − a)(a = 1, 2, 3. . ., m) and Yi(k) denote the a-th input and the k-th
output from the i-th sample, respectively. In the neural network, Xi, W(1)

nm , W(2)
n , Yi are

represented as shown in Table 3, below.
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Table 3. Different letter sizes in neural networks and their meanings.

Matrix Size (Rows × Columns) Connotation

Xi m × 1 The i-th input sample
W(1)

nm n × m Input layer to hidden layer weights

W(2)
n n × 1 Weighting of hidden layers to

output layers

Yi k × 1 Output generated by the neural
network for the i-th sample

It is assumed that the actual output and the computed output of forward propagation
from the i-th training sample are Qi and Yi, respectively. Then, the error e1 is

e1 = Qi −Yi (35)

The relationship between the calculation error e1 and the setting error e_ref is

e_re f > |e1| (36)

If Equation (36) holds, it means that the neural network training meets the require-
ments. Therefore, the threshold B1 of the neural network hidden layer neurons, the weight
W1 from the input layer to the hidden layer, the threshold B2 of the output layer neurons,
and the weight W2 from the hidden layer to the output layer are saved. Conversely, back-
propagation is performed, and B1, W1, B2, and W2 are updated using the learning factor α.
The specific update rules are

W1 = W1_t−1 + α
(
(1− b1)

(
e1
′W2

)′)Xi
′ (37)

B1 = B1_t−1 + αb1(1− b1)
(

e1
′W2 _t−1

)′ (38)

W2 = W2_t−1 + αe1b1
′ (39)

B2 = B2_t−1 + αe1 (40)

Here, W1_t−1, B1_t−1, W2_t−1, and B2_t−1 represent W1, B1, W2, and B2, respectively, at
the previous moment. b1 indicates the hidden layer output of the neural network, and its
value is

b1 =
1

1 + e−(W1Xi+B1)
(41)

When the neural network is used to estimate the SM trigger sequence, firstly, a
timetable named “SM capacitor voltage—conduction sequence” is built based on the SM
conduction sequence history; secondly, the neural network is operated to train the timetable,
so that the accepted conduction sequence can be close to the actual SM conduction order.
Finally, a “multiple-input–single-output” anticipating model is generated and merged
with the latest collected SM capacitor voltages to complete the SM conduction sequence
prediction; the specific flow is shown in Figure 14.
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Figure 14. Neural network predicts the SM’s conduction sequence.

Figure 14 shows a strong correlation between the selected SM conduction sequence
samples and the neural network’s forecasting precision. Depending on whether the training
sample N fluctuates, the prediction method is further separated into fixed data sample
prediction, fixed timescale prediction, and variable timescale prediction.

5. Simulation Results

Firstly, the MMC model with three phases, six bridges, and eight SMs is built in Mat-
lab/Simulink. Together with the MMC control target, the NLM modulation strategy is used
to perform the SM capacitor voltage balancing control by combining the bubbling method.

Secondly, the SM capacitor voltage, arm current, and conductance sequence are
recorded in real time under the traditional voltage balancing control strategy.

Thirdly, time series prediction, grey prediction, Gaussian prediction, exponential
smoothing, and other approaches are exploited to predict the SM capacitor voltage and
arm current. The above methods’ forecasting precision and time delay are measured
and compared.

Finally, the mixed Gaussian distribution of the voltage deviation is produced, and its
compensation value is computed. The SM trigger sequence is determined and completed
by manipulating the neural network. The feasibility of the prediction method is verified
via simulation.

Taking the passive inverter as an example, when the MMC is operating in the inactive
inverter state, the parameters of the MMC are configured, as shown in Table 4, below.

Table 4. Parameter configuration of MMC working in the passive inverter state.

Parameter Symbol Unit Numerical Value

Number of SMs per bridge n Individual 8
Size of each SM capacitor Cn µF 0.11

Bridge reactor size Ln mH 0.08
Output resistance R Ω 5000

Output inductance L H 1 × 10−5

Initial input voltage Udc0 kV 6.52
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Table 4. Cont.

Parameter Symbol Unit Numerical Value

Input voltage after change Udc1 kV 8
Output phase voltage

amplitude before change ua0 kV 2.85

Output phase voltage
amplitude after change ua1 kV 3.5

5.1. Voltage and Current Prediction

When the MMC operating parameters are not changed, the SM capacitor voltage
variation curve, the arm current variation curve, and their prediction curve are as shown in
Figure 15.
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Combined with Equation (28), different methods’ prediction delay and accuracy are 
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When the MMC operating parameters are changed, the SM capacitor voltage variation
curve and its prediction curve are as shown in Figure 16.
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Figure 16. SM capacitor voltage variation curve and its prediction curve. 
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Combined with Equation (28), different methods’ prediction delay and accuracy are
evaluated, respectively, as shown in Table 5.
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Table 5. Prediction delay and error of different methods.

Access Method Time Delay (ms) Error

Measurement devices

Hall sensor 0.01 1.0%
PCB sensor 0.015 0.2%

Analog-to-digital
converter / 0.2%

Voltage controlled
oscillator / 0.2%

Predictions

Time series prediction 0.0001 0.19%
Grey prediction 8 0.02%

Gaussian predictions 80 0.5%
Exponential

smoothing prediction 0.0015 0.7%

According to the standard, the devices’ measurement accuracy reaches 0.2 grade [31,32].
The PCB sensor is frequently employed to convey real-time voltage and current in the
power system [29]. Two methods are reported in the literature to collect the SM capacitor
voltage: the analog-to-digital converter and voltage-controlled oscillator [33]. Comparing
Table 5, when the time series prediction tool is utilized, its time delay is much lower than
the measurement delay of the PCB sensor. Meanwhile, the time series estimation approach
meets practical engineering requirements.

5.2. Constructing Mixed Gaussian Distributions for Voltage Deviations

Under the conditions in Table 4, the offset voltage is formed and its compensation
value is counted separately, as shown in Figure 17, below.
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As shown in Figure 17, when the mixed Gaussian distribution of voltage offset is
fabricated using the EM algorithm and the sampling frequency, its received compensation
voltage amount is closest to the ideal voltage deviation compensation amount. Then, the
deviation compensation effect is as shown in Figure 18.

5.3. SM Trigger Sequence Prediction

When the neural network is manipulated to predict the SM trigger sequence, its predic-
tion accuracy and speed are easily influenced by the number of hidden layer neurons and
the training samples when the training, validation, and test sets meet different proportions,
as shown in Table 6.
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Figure 19. Relationship between the accuracy (%) of the training set and the number of neurons in 

the neural network’s hidden layer on different scales. 

Figure 19 indicates that the neural network forecast accuracy will fluctuate drastically 

when the training, validation, and test sets encounter different proportions. In particular, 

when the training, validation, and test sets are 90%, 5%, and 5%, respectively, there is an 

Figure 18. Before and after compensation, the SM capacitor voltage compensation effect and its
error comparison. (a) SM capacitor voltage compensation effect. (b) Error content before and
after compensation.

Table 6. Different proportions of the training, validation, and test sets.

Different
Proportions Training Set Test Set Validation Set

A 70% 15% 15%
B 80% 10% 10%
C 80% 15% 5%
D 90% 5% 5%

A bar graph represents the training set’s accuracy, and a line graph reflects the test set’s
accuracy. At this point, the relationship between the accuracy (%) of its training set and the
hidden layer neuron number of the neural network varies, as shown in Figure 19, below.
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Figure 19. Relationship between the accuracy (%) of the training set and the number of neurons in
the neural network’s hidden layer on different scales.

Figure 19 indicates that the neural network forecast accuracy will fluctuate drastically
when the training, validation, and test sets encounter different proportions. In particular,
when the training, validation, and test sets are 90%, 5%, and 5%, respectively, there is
an excellent linear relationship between the neural network prediction accuracy and the
number of neurons in the hidden layer. When the number of hidden layer neurons is
greater than 40, the accuracy of the training, validation, and test sets gradually slows down.
Meanwhile, its mean-square-error variation is shown in Figure 20, below.
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It can be seen from Figure 20 that with an increasing number of iterations, the mean
square error of the training set gradually decreases. At 237 iterations, the mean square error
is the smallest. Therefore, in this prediction mode, the number of hidden layer neurons and
iterations is 40 and 300, respectively.

When the neural network is employed to predict the SM conduction sequence, the
parameter configuration of the neural network is as shown in Table 7, below.

Table 7. Parameter configuration of the neural network.

Parameters Input Implicit
Layers Output Input Implicit

Neurons Output Iterations Error Activation
Function

Size 8 1 1 1 40 1 300 1 Sigmoid

In addition, the prediction method also exerts an essential impact on the forecast
accuracy and speed of the neural network. When the neural network uses the fitting
approach for estimation, the SM trigger sequence is shown in Figure 21, below.
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Figure 21. Neural network predicting the conduction order of SM via fitting under different sample
training options.

When the neural network uses the classification approach for prediction, the SM
trigger sequence is shown in Figure 22, below.

Combining Figures 21 and 22, the neural network forecast accuracy is assessed for
various training samples using different methods to predict the SM conduction order, as
shown in Table 8.
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Table 8. Prediction accuracy and speed of SM trigger sequence.

Prediction Methodology Sample
Space Iterations Control Link

Steps
Prediction
Accuracy

Classification
prediction

Fixed data sample / 0 13 83.53%

Variable data
samples
(random

initialization)

The sample scale is 1 1 1 31 85.63%
The sample scale is 4 4 3 157 83.75%
The sample scale is 40 40 9 3685 82.58%

The sample scale is 400 400 21 84,181 81.98%
The sample scale is 800 800 30 240,253 82.02%
The sample scale is 2000 2000 40 800,333 79.26%
The sample scale is 4000 4000 56 2,240,461 80.38%

Variable data
samples

(fixed
initialization)

The sample scale is 1 1 1 31 85.65%
The sample scale is 4 4 3 157 83.69%
The sample scale is 40 40 6 2461 82.60%

The sample scale is 400 400 7 28,069 82.22%
The sample scale is 800 800 8 64,077 82.13%
The sample scale is 2000 2000 10 200,093 79.06%
The sample scale is 4000 4000 11 440,101 80.33%

Fitting
prediction

Fixed data sample / 0 13 43.34%
Fixed timescale 4000 45 1,800,373 60.56%

Variable timescale / / / 80.71%

As seen in Table 8, the neural network estimation speed is closely related to the training
samples. The smaller the scale of the samples, the fewer iterations in the training session,
and the faster predictions are made. Fixed initialization under the same sample scale
significantly improves the neural network forecast speed.

In practical engineering, firstly, the fixed data samples are selected to train the neural
network; secondly, the trained neural network is fine-tuned with the variable data samples
to generate a suitable model; and, finally, the prediction of the SM conduction sequence is
accomplished by merging the latest SM capacitor voltage. At this time, the output voltage
uj of the harmonic content is as shown in Table 9, below.

Table 9. Harmonic content of uj before and after prediction.

Ideal Pre-Modulation Traditional
Method

Forecast
Methodology

Harmonic
content (THD) 6.68% 10.13% 7.38% 8.89%
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From Table 9, it can be seen that the neural network prediction method satisfies the
accuracy of control requirements. If we imagine that the number of SMs in each bridge
and hidden layer in the neural network are m and n, separately, then, as a result, the
time complexity of the neural network and the sorting algorithm are O(2mn + m + n) and
O(m2), respectively. When m− n

m − 2n ≥ 1 is satisfied, the forecast time delay of the neural
network will be less than that of the bubble sort.

6. Conclusions

The reasons for SM capacitor voltage imbalance are examined in this paper from two
perspectives: the SM capacitor values and the modulation mechanism. The adverse impacts
of SM capacitor voltage imbalance are explored in detail, such as boosting the circulating
current, relaxing the usage of the DC voltage, and giving rise to overheating and vibration
in specific SMs.

The time series prediction technique is implemented based on historical values to
forecast the SM capacitor voltage and arm current in real time. The mixed Gaussian
distribution of the capacitor voltage offset is developed, and the compensation voltage is
calculated. The usual sorting method is used to produce the trigger sequences, regarded
as a sample to train the neural network. Then, the prediction of the SM trigger sequence
and the completion of the control are achieved by uniting the anticipated values for the SM
capacitor voltage, the arm current, and the compensation value for voltage deviation.

The SM capacitor voltage balancing control strategy based on neural network predic-
tion is verified via Matlab/Simulink simulation. It improves the speed while satisfying
the accuracy and provides an idea for the subsequent intelligent control of the capacitor
voltage balance.
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