
Citation: Ni, J.; Gu, Y.; Tang, G.; Ke,

C.; Gu, Y. Cooperative Coverage Path

Planning for Multi-Mobile Robots

Based on Improved K-Means

Clustering and Deep Reinforcement

Learning. Electronics 2024, 13, 944.

https://doi.org/10.3390/

electronics13050944

Academic Editor: Fernando De la

Prieta Pintado

Received: 24 January 2024

Revised: 21 February 2024

Accepted: 28 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Cooperative Coverage Path Planning for Multi-Mobile
Robots Based on Improved K-Means Clustering and
Deep Reinforcement Learning
Jianjun Ni 1,2,* , Yu Gu 1 , Guangyi Tang 1 , Chunyan Ke 2 and Yang Gu 1

1 College of Artificial Intelligence and Automation, Hohai University, Changzhou 213200, China;
gyguyu@hhu.edu.cn (Y.G.); tang_gy@hhu.edu.cn (G.T.); 20231153@hhu.edu.cn (Y.G.)

2 College of Information Science and Engineering, Hohai University, Changzhou 213200, China;
chunyanke@hhu.edu.cn

* Correspondence: jianjun_ni@hhu.edu.cn

Abstract: With the increasing complexity of patrol tasks, the use of deep reinforcement learning
for collaborative coverage path planning (CPP) of multi-mobile robots has become a new hotspot.
Taking into account the complexity of environmental factors and operational limitations, such as
terrain obstacles and the scope of the task area, in order to complete the CPP task better, this
paper proposes an improved K-Means clustering algorithm to divide the multi-robot task area. The
improved K-Means clustering algorithm improves the selection of the first initial clustering point,
which makes the clustering process more reasonable and helps to distribute tasks more evenly.
Simultaneously, it introduces deep reinforcement learning with a dueling network structure to better
deal with terrain obstacles and improves the reward function to guide the coverage process. The
simulation experiments have confirmed the advantages of this method in terms of balanced task
assignment, improvement in strategy quality, and enhancement of coverage efficiency. It can reduce
path duplication and omission while ensuring coverage quality.

Keywords: coverage path planning; deep reinforcement learning; dueling network; improved
K-Means clustering algorithm; multi-mobile robots

1. Introduction

The core purpose of coverage path planning (CPP) is to formulate an algorithmic
strategy that enables mobile agents to efficiently traverse every point in a specific area.
The strategy aims to achieve maximum coverage of the designated space through precise
calculation and planning while minimizing path duplication and omissions [1–3]. Cur-
rently, coverage path planning has shown its importance in multiple practical applications,
including precision agriculture [4], automated cleaning [5,6], disaster response and search
and rescue [7], patrol monitoring [8,9] and so on.

With the development of the social economy, people pay more attention to economic
benefits and the optimal allocation of resources in all aspects. In patrol monitoring, if
traditional manual patrols are still employed, not only can cost reduction objectives not be
achieved but also, due to the complexity of the patrol environments, it may reduce resource
allocation efficiency and increase dependence on human resources. With the continuous
advancement of mobile robot technology, especially innovations in autonomous navigation
and remote operation, the application of coverage path planning in patrol monitoring
has been significantly promoted. The use of mobile robots can reduce reliance on a large
number of manpower and achieve wider monitoring coverage under conditions of limited
resources. In addition, the coverage path planning of mobile robots can provide real-time
monitoring and assessment, speeding up response speed and decision-making efficiency.
Therefore, using mobile robots for patrol monitoring can not only effectively reduce costs
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and reduce dependence on human resources, but also improve monitoring coverage and
efficiency, speed up response speed, and improve decision-making efficiency. It is also in
this context, that this paper uses an improved algorithm for coverage path planning to
carry out patrol monitoring.

In the process of mobile robot path planning, there are many different methods, such
as graph-theoretic methods, heuristic methods, machine learning-based methods, and so
on. Methods based on graph theory include approaches based on Voronoi diagrams [10]
and edge probability heat graph [11]. Heuristic methods include the genetic algorithm [12],
ant colony algorithm [13], particle swarm optimization algorithm [14], virus-evolutionary
genetic algorithm [15], Dragonfly Algorithm [16], etc. In machine learning-based methods,
many methods such as deep learning and reinforcement learning are used at present,
such as [17–19]. The application of deep reinforcement learning (DRL) in coverage path
planning mainly benefits from its effective learning and decision-making in complex
environments. Compared with traditional algorithms, deep reinforcement learning has the
following advantages: (1) It can process high-dimensional input data so that the model can
learn directly from the raw perceptual data; (2) DRL learns strategies through interaction
with the environment and can be used in environments that are difficult to accurately
describe by the model. (3) In the case of environmental changes, DRL’s adaptive ability
can continuously optimize the strategy, which is very important for CPP in unknown
environments. Therefore, the coverage path planning in this paper also uses a deep
reinforcement learning algorithm and introduces a dueling network.

At present, both single-mobile robots and multi-mobile robots are applied in CPP [20,21].
To some extent, a single mobile robot can perform coverage path planning tasks effectively.
Theile et al. [18], Shen et al. [22], and Xing et al. [23] used the improved DQN algorithm to
achieve good coverage results and can basically achieve the goal of full coverage. However,
the target environmental areas in these papers are relatively small. In Theile et al. [24], due
to the expansion of the target coverage area and the increased complexity of the entire map
area, the final coverage performance is much worse than that in the small map area. At
this moment, utilizing multiple agents for coverage path planning would be a great choice.
Through collaboration among multiple agents, coverage can be achieved in broader and
more complex areas. At present, many methods are to allow multiple robots to cooperate
throughout the entire map space. Ruan et al. [25] used a rolling optimization and dispersed
predator–prey model to perform coverage tasks on the entire map and achieved good
results; Zhang et al. [3] proposed a multi-mobile robot coverage path planning based on
Monte Carlo tree search and finally completed the coverage task successfully.

However, since the above-mentioned collaboration between multiple robots is carried
out in the entire map area, there will inevitably be problems such as high coverage repetition
and excessively long total coverage paths. Therefore, it would be a good choice to divide
the entire map area into small areas, and then use multiple robots to cover the small areas.
Luo et al. [26] first used the fuzzy C-means clustering method to divide the entire area, and
then performed the coverage task; Li et al. [27] first used the regional growth strategy to
divide the area into K sub-areas and then used a single robot in each sub-area to complete
the task. Finally, these methods not only complete the coverage task well but also reduce
the path repetition ratio and path length. Therefore, in this paper, the strategy of dividing
the whole area into small areas first, and then using multi-robots for cooperative coverage
is also adopted.

After rasterizing the map, there are many methods to further divide it into small
areas, and then use multi-robots to perform coverage path planning, such as Trapezoidal
decomposition [28], Boustrophedon decomposition [29,30], Morse decomposition [31,32],
and clustering algorithms [26,33]. These methods can effectively reduce environmental
complexity and improve coverage efficiency. In this paper, the K-Means clustering algo-
rithm is selected and improved to better divide the map. Compared with other algorithms,
it has the advantages of simplicity, efficiency and wide adaptability [34]. Mobile robots have
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the advantages of long running time, continuous completion of tasks, and more economical
and practical advantages [35].

In summary, this paper uses an improved K-Means clustering algorithm to divide the
map, introduces dueling networks and improved reward functions in deep reinforcement
learning, and uses multi-mobile robots for coverage path planning, which brings the
following benefits:

1. Using the improved K-Means clustering method, the location of the initial value of k
is arranged more reasonably, and a better map division effect is obtained, thus making
the tasks of each robot more balanced;

2. The dueling network is introduced and the reward function of deep reinforcement
learning is improved, which improves the strategy quality and learning efficiency;

3. Using the cooperation of multi-robots, the overall coverage ratio is effectively im-
proved, and the repeated coverage and coverage paths are reduced.

The rest of this paper is organized as follows. The second section is a description of the
CPP problem; the third section is the introduction of the improved K-Means clustering algo-
rithm and deep reinforcement learning algorithm; the fourth section is the experiment and
result analysis, and the fifth section is the summary of the article and the future prospects.

2. Problem Description

In this paper, when performing coverage path planning, the environmental map is
divided, and each divided small map is assigned to the robot that performs the coverage
task. Multiple robots use deep reinforcement learning to complete their respective coverage
tasks, ultimately achieving coverage of the entire map. The framework of the proposed
method is shown in Figure 1. This approach builds upon existing methodologies in the
field of multi-robot systems and deep reinforcement learning, as discussed in [3,18]. Next,
this paper will define CPP from two aspects: the environment and the objectives.

Figure 1. The overall framework of the method proposed in this paper.

2.1. Environment and Multi-Mobile Robot Model

In order to simplify the map space, this paper converts the real environment into a
two-dimensional grid map. The size of this map is M×M ∈ N2, where N2 is the set of
natural numbers. In the built grid map, the environment of the mobile robot can be divided
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into departure and return areas, prohibited areas and obstacles. The entire map can be
represented by the tensor M ∈ BM×M×3, where B = {0, 1}. M × M × 3 indicates that
the map contains three layers, namely: (1) departure and return area; (2) combination of
prohibited areas and obstacles; (3) obstacles alone.

In a grid map, a mobile robot occupies exactly one grid cell. The current position of
the mobile robot can be defined by ϕt ∈ N2. According to the division of the task area, the
departure and return area of the mobile robot is set nearby. Therefore, in the process of
executing the task, first of all, the multi-mobile robots will start from their respective set
departure and return areas and go to different divided small map areas (that is, the target
coverage area). Then, each mobile robot must cover the designated target coverage area as
completely as possible without entering prohibited areas or encountering obstacles. Finally,
the mobile robots return to their respective set departure and return areas.

2.2. Task Objective

The task objective of CPP is to ensure that the robot comes to its designated target
coverage area and observes the target coverage area through the camera sensor. The entire
target coverage area can be described as Tt ∈ BM×M, and each element in Tt represents
whether the grid cell corresponding to this element needs to be covered. For each mobile
robot, Ti

t ∈ BM×M represents the i-th small target area to be covered after the entire target
area is divided; the corresponding i-th mobile robot is required to perform the coverage
task. Vi

t ∈ BM×M represents the current field of vision of the mobile robot, which is a
square area of 1× 1, that is to say, the mobile robot can just cover the current position.

Therefore, every time the mobile robot takes an action, the corresponding remaining
target coverage area is:

Ti
t+1 = Ti

t ∧ ¬Vi
t, (1)

where ∧ and ¬ are logical unit symbols AND and NOT, respectively. In addition, the
departure and return areas can be used as target coverage areas, while obstacles and
prohibited areas cannot be used as target coverage areas. Finally, the goal of this paper is to
maximize the coverage area and return to the departure and return area in the cooperation
of multiple mobile robots under safe conditions.

3. Proposed Method
3.1. Improved K-Means Clustering Algorithm

In the process of using multi-robots for coverage path planning, in order to avoid
collisions between robots, which will damage the robots and reduce the completion ratio of
tasks, this paper divides the target coverage area in the entire map into several small areas,
and each area is covered by a robot. An approach like this not only avoids collisions between
robots but also reduces the complexity of the task, which is helpful in improving the
coverage ratio. In order to divide the target coverage area more reasonably, the improved
K-Means clustering algorithm is applied.

The K-Means clustering algorithm is a classic unsupervised learning algorithm that
is widely used in data mining and statistical data analysis [36]. The main purpose of this
algorithm is to divide a data set containing n data points into k clusters so that data points
in the same cluster are as similar as possible and data points in different clusters are as
different as possible. The core of the K-Means clustering algorithm is to minimize the
intra-cluster variance, which is the sum of squares of the distance from each point to the
cluster center. This can be expressed as follows:

J = ∑k
i=1 ∑x∈Si

∥x− ci∥2, (2)

where J is the sum of variance within the cluster; k is the number of clusters; Si is the set
of data in the point of the i-th cluster; ci is the center of the i-th cluster, and ∥x− ci∥ is the
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Euclidean distance from point x to cluster center ci. According to the obtained data in the
cluster center, the new cluster center is obtained by using the following equation:

ci =
1
Si

∑x∈Si
x, (3)

Using the K-Means clustering algorithm to divide the target area is helpful in simplifying
complex problems and obtaining a more balanced and consistent area division. However,
in practice, the number of clusters (i.e., k value) and the selection of initial cluster centers
will greatly affect the final practical effect [37,38].

In the choice of the number of clusters, if the k value is too small, the clustering results
will be over-generalized, and ultimately lead to inappropriate merging of data; while if
the k value is too large, the clustering will be overfitted, increasing the running time of the
algorithm and the consumption of computing resources. In order to obtain the appropriate
k value, the elbow rule is applied in this paper to help determine the appropriate k value.
The core idea of the elbow rule is to find the “elbow point” where the gain decreases as
the k value increases, that is, after this point, adding more clusters will not significantly
improve the clustering performance.

After choosing the value of k, it is necessary to initialize the cluster center. Random
initialization is a common practice, but it may lead to unstable results and convergence
to suboptimal solutions [39]. The K-Means++ algorithm can optimize the selection of the
initial cluster center. It will first randomly select a point as the first cluster center:

c1 = random(X), (4)

where X = {x1, x2, · · · , xN} is the set of data, and c1 ∈ C, C is the current cluster center set.
Then, calculate the distance from each point to the nearest cluster center, which is usually
the Euclidean distance. The calculation equation is:

D(xi) = minc∈C∥xi − c∥2, (5)

Then, the probability of the data selected as the next cluster center is proportional to D(xi).
It can be expressed as:

P(xi) =
D(xi)

∑N
j=1 D

(
xj
) , (6)

where ∑N
j=1 D

(
xj
)

is the sum of the distances from each point to its nearest cluster center,
which is used to normalize the probability distribution. Then, according to the above
probability distribution, the remaining initial cluster centers are selected in sequence until
the predetermined k value is reached.

However, in the above process, although the selection of the subsequent initial cluster
center becomes reasonable under the optimization of the algorithm, the selection of the
first cluster center is still random, which may affect the selection process of the subsequent
cluster center and the final clustering quality. In order to select the first initial cluster
center more reasonably, this paper introduces the method of Minimum Spanning Tree
(MST). Minimum spanning tree is a concept in graph theory, which connects all vertices
in a graph without forming a loop, and ensures that the total edge weight connecting all
vertices is the minimum [40], as shown in Figure 2. There are 7 points A-G. The numbers
on the connection line represent the weight of the edges. After the MST process, a graph is
generated that does not form a loop but connects all vertices according to the weights. In
this paper, the distance between two vertices is used to represent the weight of edges, and
the distance equation is:

dij =

√
∑m

k=1

(
xik − xjk

)2
, (7)
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Among them, xik and xjk represent the coordinates of xi and xj in the k-th dimension, and
m represents the total dimension. Then, randomly start from a vertex and store it in the
empty set L. Use a greedy algorithm to select the unconnected point with the smallest
weight as the next vertex from the weight set of the points in L to the remaining points. The
equation is:

N = {x|x ∈ Xx /∈ L}, (8)

Dij = [di1, di2, . . . , dim], (9)

xnext = arg min(Dij), (10)

where the set N is to remove the connected vertices in the data set X, the data in Dij are
the weight between each vertex in the set L and each vertex in the set N, and xnext is to
obtain the point with the smallest weight from Dij as the next connection point through the
greedy algorithm. By repeating Equations (7)–(9) continuously, the minimum spanning tree
graph can be obtained. In this case, a longer edge usually means connecting vertices with a
larger weight, which is reflected in the distribution of points as a larger spatial spacing. In
K-Means++, the ideal initial cluster centers should be far away from each other to cover
different areas of the data space as much as possible. Therefore, applying the minimum
spanning tree algorithm to the selection of the first initial cluster center in K-Means++ and
randomly selecting the vertex connected with the largest weight in the minimum spanning
tree as the first cluster center is more conducive to improving the quality of clustering and
improve the effect of final coverage path planning. The corresponding pseudocode of the
improved k-clustering algorithm is shown in Algorithm 1.

Figure 2. Schematic graph of the results of the minimum spanning tree algorithm. Among them,
letters represent points, numbers represent the weights between points, and blue lines represent the
results of the minimum spanning tree algorithm.

Algorithm 1 Improved K-Means clustering algorithm

Require: Input the data set X to be clustered
Ensure: Output Cluster center k and data points in each cluster

1: According to the elbow rule, obtain the optimal number of k values
2: The MST method is introduced, and the minimum spanning tree graph is obtained

according to Equations (7)–(10). The vertices connected with the largest weights in
the minimum spanning tree are randomly used as the first initial cluster center in the
K-Means++ algorithm

3: Use the K-Means++ algorithm to obtain the remaining k− 1 initial clustering center
points according to Equations (5) and (6)

4: After obtaining k initial clustering center points, select new clustering center points
according to Equation (3), and perform clustering again based on new clustering
center points

5: Repeat the operation of Step 4 until the cluster center points no longer changes
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3.2. Environment Settings

Deep reinforcement learning (DRL) combines the principles of deep learning (DL) and
reinforcement learning (RL) to solve complex decision-making and control problems. Deep
learning enables agents to learn abstract expressions from large amounts of data through
neural networks to extract features. Reinforcement learning focuses on maximizing rewards
and optimizing the decision-making process through interactions with the environment.
The process of DRL is schematically illustrated in Figure 3.

Figure 3. Concept graph of deep reinforcement learning.

In this paper, the entire map has been divided by the improved K-Means clustering
algorithm in Section 3.1. However, when using mobile robots for coverage path planning,
there are still problems that need feedback on the observed information in real-time, and
the map features are complex, so it will be difficult to model and solve the CPP problem.
Therefore, in this paper, deep reinforcement learning is applied and converted into partially
observable Markov decision processes (POMDP), which are defined by tuples (S ,A, P, R, γ).
Among them, S represents the state space, A represents the action space, P : S ×A → R
is the probability transfer function, R : S × A× S is the reward function that maps the
current state, action, and the next state into real-valued rewards, and γ ∈ (0, 1) is the
discount factor. Therefore, the definition of state st in the environment of this article is:

st = (M,Tt, ϕt), (11)

State st consists of three parts: (1) M represents the current environment map, including
departure and return areas, prohibited areas and obstacles; (2) Tt represents the target map
that still needs to be covered at time t; (3) ϕt is the position of the mobile robot position at
time t. at ∈ A represents the possible actions of the mobile robot at time t. Use Bbehevior to
represent the set of actions in action space A:

Bbehevior = { f orward, backward, le f t, right, reach}, (12)

Among them, the first four elements represent the actions of the forward, backward, left and
right, and the last element represents whether the mobile robot returns to the designated
area. The reward function during the entire task is:

r = r1 + r2, (13)
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where r1 is some conventional action reward values, which can be expressed as:

r1 =


−1, boundary penalty
−0.2, movement penalty
0.4, coverage reward

, (14)

r2 is a newly introduced reward value in this paper. Since the process of deep reinforce-
ment learning is unsupervised, it is easier to produce repeated coverage paths, while the
introduction of r2 can reduce the repetition ratio and improve coverage efficiency. The
position of the mobile robot at time t is ϕt, so at time t, eight grid points around the position
of the agent can be expressed as ϕ′t. r2 can be expressed by the following equation:

r2 =


0.4, i f ϕt /∈ Tt and ∃ϕ′t ∈ Tt and ∀ϕ′t−1 /∈ Tt−1
0.2, i f ϕt /∈ Tt and ∃ϕ′t−1 ∈ Tt
0, i f ϕt /∈ Tt and ∀ϕ′t /∈ Tt and ∀ϕ′t−1 /∈ Tt−1
−0.4, i f ϕt /∈ Tt and ∀ϕ′t /∈ Tt and ∃ϕ′t−1 ∈ Tt−1

, (15)

For instance, if there is no unit to be covered around the agent at time t− 1, at time t, the
location of the agent is not the cell that needs to be covered, and there are cells that need to
be covered in the eight grids around the location; then r2 = 0.4, and the rest of the reward
values are obtained, and so on. By introducing r2, the mobile robot can not only be guided
to avoid those covered areas but also be guided to uncovered areas.

3.3. Deep Reinforcement Learning Using Dueling Network Structure

In the process of cooperative coverage path planning by using multi-mobile robots,
due to the narrow field of view of the mobile robot, it can only cover one grid cell in
the grid map at a time. Therefore, in a complex environment, in order to improve the
coverage, mobile robots will inevitably enter those areas that are prone to collision. The
deep reinforcement learning process is unsupervised. Entering these areas will not only
increase the difficulty of training but also greatly reduce the safety in the coverage path
planning process. Value-based deep reinforcement learning, such as DQN and DDQN
algorithms, will directly output the Q-value function, which reduces the adaptability to
complex environments, increases computing costs, and reduces learning efficiency [41].
Therefore, this paper introduces the dueling network on the basis of DDQN and optimizes
the algorithm by optimizing the structure of the neural network to more effectively focus
on obstacles in action [42].

The schematic structure of the dueling network is shown in Figure 4. It divides the
Q-value network into two parts. The first part is only related to the state s and has nothing
to do with the action a to be taken. This part is the value function, denoted as V(s; ω, α).
The second part is related to both the state a and the action a. This part is the advantage
function, denoted as A(s, a; ω, β), then the Q-value function can be expressed as:

Q(s, a; ω, α, β) = V(s; ω, α) + A(s, a; ω, β), (16)

where ω refers to the network parameters of the public part, α is the parameter of the value
function part, and β is the parameter of the advantage function part. V and A here are
not unique. If the two networks fluctuate up and down with the same amplitude and in
opposite directions, then the output of the networks is the same, but since both networks
are fluctuating up and down, neither network is stable. To solve this problem, we force the
advantage function estimator to have zero advantage over the chosen action. That is, we
let the last module of the network implement forward mapping:

Q(s, a; ω, α, β) = V(s; ω, α) +

(
A(s, a; ω, β)− 1

|Bbehevior|∑a∗
A(s, a∗; ω, β)

)
, (17)
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where 1
|Bbehevior | ∑

a∗
A(s, a∗; ω, β) is the average of all possible advantage functions, and a∗ is

used here to represent a general iteration for all actions. In this way, the stability of the
network can be improved.

Figure 4. Structure of the dueling network. Blue represents the convolutional layer operations, and
red represents the fully connected layer operations related to the dueling network.

On the basis of DDQN, the dueling network is introduced, and there is still an esti-
mation network and a target network. The parameters are θ and θ, and θ, θ are the set of
{ω, α, β}. Then, the loss function of DDQN with the dueling network is:

L(θ) = Est ,at ,st+1∼D

[
(Qθ(st, at)−Yt)

2
]
, (18)

The target value is:

Yt = r(st, at) + γQθ̄

(
st+1, arg max

a′
Qθ

(
st+1, a′

))
, (19)

The Q value iteration equation is:

Qθ(st, at) = Qθ(st, at) + ξ(Yt −Qθ(st, at)), (20)

where ξ is the learning rate. In deep reinforcement learning, a neural network is used to
approximate the Q value. In this paper, the Adam optimizer is used to train and estimate
the parameter θ of the network, and the iterative Q value is updated by updating the
parameters. The updating formula of parameter θ of the target network is:

θ̄ ← (1− τ)θ̄ + τθ, (21)

As shown in Figure 5, it is a schematic diagram of the whole network structure. After
inputting the whole grid map into the convolutional neural network after a convolution
operation, the output data are flattened into a one-dimensional array that is output to the
fully connected layer; the value function V and advantage function A are output; the final
Q value is obtained. Then, based on the obtained Q value, the sampling softmax strategy is
used to obtain the next action. The equation can be expressed as:

π(at|st) =
eQθ(st ,at)/η

∑∀a∈A eQθ(st ,a)/η
, (22)

where the parameter η ∈ R+ is used to balance the relationship between exploration and
utilization during training.
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Finally, the improved K-Means clustering algorithm and DDQN algorithm with a
dueling network are combined and applied to the coverage path planning of multi-mobile
robots. The pseudocode of the final algorithm is shown in Algorithm 2.

Figure 5. The overall process of this algorithm.

Algorithm 2 The overall process of the algorithm

Require: Input the grid map to be covered, set of target coverage points X
Ensure: Output the parameters θ, θ of the model

1: According to Algorithm 1, the data in X are reasonably divided to obtain small target
coverage areas

2: Input the grid map into the convolutional neural network, introduce the dueling
network, obtain the Q value according to Equations (16) and (17), guide the next action
of the agent through Equation (22), obtain the next state, and store the experience data
in the experience pool

3: Obtain a small batch of experience data from the experience pool, obtain the loss
function according to Equation (18), and then use the gradient descent method to
update θ

4: Update θ according to Formula (21)
5: Repeat Step 2–Step 4 until the specified training period is reached, and the best θ and θ

are output

Therefore, the algorithm proposed in this paper first uses the minimum spanning
tree to improve the selection of the first initial clustering point in the clustering algorithm,
thereby improving the final clustering effect and thus better dividing the coverage of each
mobile robot. A complex task is divided into simple tasks to be completed by multiple
mobile robots, which reduces the complexity of tasks and optimization strategies. Then,
the reward function in deep reinforcement learning is improved to reduce randomness in
the training process, guide the agent’s exploration, and improve the exploration efficiency.
Finally, a dueling network is introduced to improve sample efficiency. Through the above
process, the coverage path planning problem in this paper can be better solved.

4. Experiment and Discussion
4.1. Simulation Settings

This paper cites the map “Manhattan 32” in the literature [24], which is a 32× 32 grip
map. In order to adapt to the coverage path planning of multi-mobile robots in this
paper, based on the “Manhattan 32” map, more departure and return areas are set up
according to the effect of improved K-Means clustering. In terms of experimental hardware
configuration, this study uses an NVIDIA RTX 2080 graphics card. In terms of software
environment, the experiment is based on the Ubuntu 20.04 operating system, uses Python
3.7 as the programming language, and uses TensorFlow 2.4 as the main deep learning
framework for development and testing.
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In this paper, clustering is performed first, followed by coverage path planning. In
order to evaluate the effect of the improved K-Means clustering algorithm, the average
silhouette coefficient, Calinski–Harabasz Index, Davies–Bouldin Index and Iteration are
used. The higher the average silhouette coefficient, the better the clustering quality; the
larger the Calinski–Harabasz Index, the more tightness within clusters and more separation
between clusters; the smaller the Davies–Bouldin Index the better the distribution of the
clusters; the Iteration is an index to measure the speed of obtaining the final cluster center.
When conducting coverage path planning, the evaluation metrics include coverage ratio
(CR), repetition ratio (RR), return to specified area Reached, and coverage ratio and reached
(CRAR). CR represents the ratio of the target area covered at the end of the task to the
initial target area, RR represents the ratio of the repeated parts when covering the target
area, Reached refers to the ratio of returning to the designated area, and CRAR is the
comprehensive index of covering and being able to return to the designated area. In the
simulation process, the target area is randomly generated, and we select the average of
1000 test results as our experimental results. The parameter settings of the algorithm in this
paper are shown in Table 1, and the legend of the “Manhattan 32” map is shown in Table 2.

Table 1. Related parameters.

Parameter 32 × 32 Description

|θ| 1,175,302 Trainable parameters
nc 2 Number of conv. layers
nk 16 Number of conv. kernels
sk 5 Conv. kernel size
D 50,000 Experience pool size
m 128 Small batch sample size

Table 2. Some legends in the “Manhattan 32” map.

Symbol Description

Departure and return area

Prohibited area

Need to cover area

Obstacle area

Remaining need to be covered area

4.2. Experimental Results

In the cooperative coverage path planning of multi-mobile robots in this paper, the
map in the literature [24] is cited. The improved K-Means clustering algorithm is first
applied, and the elbow rule is used to select the appropriate k value, as shown in Figure 6.
It can be seen from the figure that as the number of clusters k increases, the sum of squared
errors (SSE) gradually decreases. At k = 4 and k = 5, the decline rate of SSE begins to slow
down, which is the appropriate number of clusters. In this paper, in order to reduce the
complexity of the environment and have better coverage, k = 5 is selected as our number
of clusters.

Then, the introduced minimum spanning tree algorithm is used to select the first initial
cluster center in K-Means++ to obtain better clustering results, as shown in Figure 7 and
Table 3. The comparison algorithms used in Table 3 include K-Means [36], K-Means++ [37]
and K-MeansII [43].
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Figure 6. Selection of the number of clusters k in the clustering algorithm.

Figure 7. Effect graph using improved K-Means clustering.

Table 3. Average clustering effect after 100 experiments.

Metrics Average Silhouette Coefficient Calinski–Harabasz Index Davies–Bouldin Index Iteration

K-Means 0.375 91.59 0.843 7.16
K-Means++ 0.396 93.78 0.792 4.66
K-MeansII 0.402 95.73 0.778 4.61

Improved K-Means 0.412 101.790 0.770 4.58

From the results of three indexes: average silhouette coefficient, Calinski–Harabasz
Index and Davies–Bouldin Index, it is obvious that the improved algorithm proposed in
this paper has higher clustering quality and better clustering distribution than the general
clustering algorithm. At the same time, clusters are tighter internally and more separated
from each other.
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Finally, in the divided map, the improved algorithm in this paper is used for multi-
robot coverage path planning. Each robot is responsible for a small divided area. The final
renderings are shown in Figure 8 and Table 4. Figure 8a shows the effect of cooperative
coverage of multiple mobile robots in this paper, and Figure 8b shows the effect of the
algorithm in [24] using a single mobile robot for coverage.

(a) Multi-robots’ coverage effect in “Manhattan 32”. (b) Single-robot’ coverage effect in “Manhattan 32”.

Figure 8. Comparison of coverage effects between multi-mobile robots and single-mobile robot.
Figure 8a is the result of multi-robot cooperation of the algorithm proposed in this article, and
Figure 8b is the result of the algorithm in [24].

Table 4. Comparison of average results of 1000 experiments with single robot and multi-robot
collaboration.

Metrics CR RR Reached CRAC

Multi-mobile robots 0.990 1.180 0.989 0.98
Single-mobile robot 0.690 1.460 0.985 0.682

The simulation results show that the coverage effect of multi-mobile robots is better
than that of a single-mobile robot, the map is better divided and the coverage repetition
ratio is reduced. In this paper:

1. The minimum spanning tree algorithm is introduced, and the improved K-Means
clustering is used for map division in this paper, which makes the map division
effect better, helps reduce the complexity of the environment, and improves the
coverage effect;

2. The introduction of reward r2 can prevent the mobile robot from entering a position
that has been covered and has no uncovered area around it. At the same time, there
will be guidance to guide the mobile robot to take action towards the uncovered area;

3. The dueling network is introduced to separate the state value function and the action
advantage value function, which helps the mobile robot pay attention to the obstacles
ahead and take actions to avoid them;

4. Using multiple mobile robots to complete the coverage task will help reduce the task
complexity of each mobile robot and better complete the coverage task.
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4.3. Discussion

In order to further verify that the reward r2 proposed in this paper, that is, Equation (15),
can effectively reduce the repetition ratio of robots in the coverage process. This paper
selects the map in reference [18]. It adds and does not add reward r2 to the algorithm
proposed in this paper, it obtains the coverage path planning graph as shown in Figure 9,
and it takes the average value after 1000 experiments to obtain the repetition ratio as shown
in Table 5.

(a) Introducing the coverage map of r2. (b) Coverage map without introducing r2.

Figure 9. The impact of reward r2 on coverage results. Figure (a,b) test the impact of r2 on the RR
index based on the main algorithm of this article.

Table 5. Comparison of the average results of 1000 experiments with and without r2.

Metrics CR RR

Add reward r2 0.987 1.21
Without reward r2 0.98 1.32

As can be seen from Figure 9 and Table 5, after applying the reward r2, not only the
coverage ratio can be improved, but also the path repetition ratio can be greatly reduced.
Obviously, on the premise that the coverage ratio is slightly improved, i.e., 0.07, the
repetition ratio is reduced by 0.11, which shows that the algorithm in this paper can further
reduce the repetition ratio. It reflects the effect of r2 proposed in this paper.

From the boxplot provided in Figure 10, we can observe the difference in repetition
rates between the two sets of data. Having r2 exhibits a lower median repetition rate and
a smaller data distribution range, which indicates that the consistency and reliability of
coverage path planning are improved after considering the r2 factor. The absence of r2
shows a higher median repetition rate and a wider data distribution, which means the
results are more variable. Therefore, based on the analysis of the boxplot, we can conclude
that the coverage path planning after introducing the r2 factor shows better performance.
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Figure 10. Repetition rate boxplot with and without r2.

5. Conclusions and Future Work

In this paper, an improved K-Means clustering algorithm is proposed to re-divide the
map areas that need to be covered. Then, the deep reinforcement learning and dueling
network model is used and the reward function is improved so that the multi-mobile robots
can cover the target area through cooperation. Through the above improvements and
experimental results, we draw the following conclusions: (1) The clustering method used
in this paper can further improve the clustering effect and provide a more reasonable basis
for regional division for the collaborative coverage of multiple mobile robots; (2) the use
of dueling networks and improved reward functions, combined with the collaboration of
multiple mobile robots, can significantly improve coverage while reducing repeated cover-
age and coverage path length, thus improving the efficiency and quality of path planning.
(3) Compared with a single robot, using multiple robots reduces the task complexity.

Of course, the use of mobile robots in this paper mainly focuses on their long running
time, economy, practicality and safety. It gives up the advantage of the wide vision of the
UAV. Therefore, the next part of the work is to combine the mobile robot in this paper with
the UAV to further divide the coverage area in the map, use the mobile robot to load the
UAV to the designated coverage area, and then use the UAV to patrol the designated area.
This can take into account the advantages of the long running time of the mobile robot
and the wide vision of the UAV. In addition, clustering and deep learning can be further
combined in this process, for example, [44–46].
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Abbreviations
The following abbreviations are used in this manuscript:

CPP Coverage path Planning
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DL Deep Learning
RL Reinforcement Learning
POMDP Partially Observable Markov Decision Processes
DDQN Double Deep Q-Network
CR Coverage Ratio
RR Repetition Ratio
CRAR Coverage Ratio and Reached
SSE Sum of Squared Errors
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