
Citation: Han, H.; Chen, S.; Xu, Z.;

Dong, X.; Zeng, J. Trust Management

Scheme of IoV Based on Dynamic

Sharding Blockchain. Electronics 2024,

13, 1016. https://doi.org/10.3390/

electronics13061016

Academic Editor: Zbigniew Kotulski

Received: 23 January 2024

Revised: 3 March 2024

Accepted: 5 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Trust Management Scheme of IoV Based on Dynamic
Sharding Blockchain †

Hongmu Han 1 , Sheng Chen 1, Zhigang Xu 1,*, Xinhua Dong 1 and Jing Zeng 2

1 School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
hanhongmu@hbut.edu.cn (H.H.); 202111167@hbut.edu.cn (S.C.); xhdong@hbut.edu.cn (X.D.)

2 China Gridcom Co., Ltd., Shenzhen 518031, China
* Correspondence: xzg@hbut.edu.cn
† This paper is an extended version of our paper published in Han, H.; Chen, S.; Xu, Z.; Dong, X.; Tian, W.

GPChain: Optimizing Cross-Shard Transactions and Load Imbalance in Sharded Blockchain Networks. In
Proceedings of the Internet of Things—ICIOT 2023, Shenzhen, China, 17–18 December 2023.

Abstract: With the rapid development of communication technologies, the demand for security and
automation of driving has promoted the development of the Internet of Vehicles (IoV). The IoV aims
to provide users with a safer, more comfortable, and more efficient driving experience. However,
the current IoV also faces a series of potential security risks and privacy breaches, which has further
propelled research on trust management for vehicular networks. The introduction of the blockchain
has resolved the issue of data security in IoV trust management. However, the blockchain is limited
by its own performance and scalability, making it unsuitable for large-scale networks. In order
to enhance the transaction-processing efficiency of blockchain-based trust management solutions
and address their scalability limitations, this paper presents a graph partition-based blockchain-
sharding protocol. Simulation results on real-world datasets demonstrate that the proposed scheme
exhibits better scalability compared to existing blockchain-based approaches and can accommodate
larger-scale device access.

Keywords: IoV; blockchain; sharding; trust management; graph partitioning

1. Introduction

Vehicle-to-Everything (V2X) refers to a system that uses wireless communication
technology and the Internet to interconnect vehicles, the road infrastructure, and traffic
management centers. Within V2X, the Vehicular Ad-Hoc Network (VANET) is an important
component that utilizes vehicle-to-vehicle and vehicle-to-road infrastructure communica-
tions to facilitate information exchange and the sharing of road conditions among vehicles.
This aims to improve traffic safety, efficiency, and driving comfort. The VANET enables
real-time data exchange, sharing of real-time road condition information, and cooperative
driving among vehicles, providing new opportunities and challenges for the development
of traffic management and intelligent transportation systems.

In the open, highly mobile, and dynamically changing topology of VANETs, security
mechanisms based on authentication and access control cannot fully defend against attacks
from authenticated and authorized internal nodes. Trust-management mechanisms, by
establishing, maintaining, and verifying trust relationships between nodes, can reduce
the risk of node interactions, improve system security and robustness, and complement
authentication and access control. Traditionally, trust-management models are divided into
three types: centralized, semi-centralized, and distributed. Most existing trust-management
models use semi-centralized or distributed models because they can respond more quickly
to changes in vehicle reputation than centralized models and can better address single
point of failure issues.

Electronics 2024, 13, 1016. https://doi.org/10.3390/electronics13061016 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061016
https://doi.org/10.3390/electronics13061016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6909-5242
https://doi.org/10.3390/electronics13061016
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061016?type=check_update&version=2


Electronics 2024, 13, 1016 2 of 17

The blockchain is a decentralized distributed ledger technology that ensures the
security, immutability, and decentralization of data through encryption and distributed data
storage. The core concepts of the blockchain include cryptography, consensus mechanisms,
and smart contracts, and its emergence provides a new approach to solving data security
and trustworthiness issues. The significant advantages of the blockchain, such as high
security, decentralization, consistency, and reliability, make it the best distributed solution
for establishing trust models between entities in the IoV.

However, existing blockchain-based trust-management solutions have focused more
on how to calculate trust values more efficiently and accurately, while overlooking the
impact of the blockchain’s operational efficiency and scalability on the solutions. In fact,
existing blockchains still face significant performance and scalability limitations before they
can be widely applied. Although mainstream improvement solutions, such as blockchain
sharding [1], can greatly enhance the theoretical performance of blockchains and offer
excellent scalability, research has also discovered the issue of hot shards, which significantly
reduces the actual throughput compared to the theoretical performance.

Hot shards [2] refer to the situation in a sharding blockchain where transactions in-
volve parties that are unreasonably distributed across different shards, resulting in an
excessive cross-shard transaction volume that blocks the normal operation [3] of the af-
fected shards. This issue primarily arises from the power-law distribution of transaction
addresses, where popular account addresses attract a large number of accounts from differ-
ent shards to transact with them. Since transactions require confirmation from both shards
involved, the shard containing the popular account experiences a longer authentication
time, and other shards also need to wait for the same duration for confirmation from the hot
shard. Consequently, network congestion occurs. This phenomenon creates a centralized
network spontaneously formed by users through transactions in a decentralized network,
significantly affecting the actual performance of sharded blockchains.

In this paper, we propose a graph partition-based blockchain-sharding protocol and
employ it for evidence storage in trust management. By extracting the community graph [4]
of trust evidence transactions stored on the chain and partitioning it accordingly, we achieve
a more efficient transaction processing and reduce the load imbalance between partitions,
thereby minimizing the occurrence of hot shards. The main contributions of this paper are
as follows:

• We redefine the challenges of cross-shard transactions and the load imbalance caused
by hot shards in the blockchain as a graph-partitioning problem. By utilizing our
newly developed graph-partitioning algorithm, we are able to effectively address these
challenges and achieve more balanced graph partitioning outcomes for power-law
graphs, utilizing vertex-cut.

• In order to address the shortcomings of existing blockchains in transaction processing
efficiency and scalability, we employ an enhanced graph-partitioning algorithm to
optimize the sharding of the blockchain. This enables more efficient storage of trust
transaction data and provides higher scalability, thereby accommodating larger-scale
vehicle trust data.

• Through a comparison with other similar approaches on existing real-world datasets,
our proposed solution demonstrates better performance in terms of accuracy, scalabil-
ity, and various other aspect.

The remainder of this paper is organized as follows. Section 2 analyzes related work
in the field. Section 3 introduces the system architecture. Section 4 describes the trust-
management model. In Section 5, a graph partition-based blockchain-sharding protocol is
proposed. Section 6 presents the simulation results. Finally, Section 7 provides a summary
of this paper.



Electronics 2024, 13, 1016 3 of 17

2. Related Work
2.1. Blockchain-Based Trust Management

Blockchain-Based Trust-Management models (BC-TMS) [5] typically utilize blockchain
as a storage infrastructure for trust assets to achieve trust management. The consensus
algorithm of the blockchain ensures the consistency of trust values across multiple regions,
while the incentive mechanism encourages more vehicles to actively participate in VANET.
In Ref. [6], a combination of Dirichlet distribution, reputation regression, and revocation
punishment is proposed, showcasing improved trust management effectiveness compared
to beta distributions. Ref. [7] considers direct and indirect feedback, along with additional
factors, resulting in better identification outcomes. Refs. [8,9] focus more on blockchain-
based trust management, with a distinction between Ref. [8] leaning towards incentive
mechanisms and [9] emphasizing blockchain sharding schemes and smart contracts. It is
evident that existing solutions primarily focus on accurate trust management and incentives,
without addressing the performance metrics of the blockchain, such as TPS and scalability.

2.2. Blockchain Sharding

Numerous sharding solutions have been suggested by researchers to improve the
scalability of blockchain systems. For instance, in Monoxide [10], a new relay transaction
mechanism is employed to manage cross-shard transactions. Huang et al. [11] introduced
a state-sharding protocol named Brokerchain, which accomplishes load balancing across
shards by partitioning states and relaying transactions through brokers. Additionally, Xi
et al. [12] proposed a dynamic sharding scheme based on a hidden Markov model, enabling
adaptive updates of shards through finer-grained partitioning. Additionally, Xu et al. [13]
put forward a clustering-based non-exhaustive genetic algorithm for solving the sharding
problem. Furthermore, articles [14–16] optimized blockchain sharding by leveraging deep
learning techniques to achieve enhanced performance. Finally, Cai et al. [17] presented
a solution named Benzene, which reduces the cross-shard communication and storage
overhead using a Trusted Execution Environment (TEE) and a dual-chain collaborative
architecture. Current approaches primarily center on addressing sharding’s scalability issue
using machine learning techniques, often neglecting the fundamental factors contributing
to the sharding problem.

2.3. Balanced Graph Partitioning

The objective of balanced graph partitioning is to achieve load balancing and minimize
communication costs simultaneously. However, as this problem has been proven to be NP-
hard, it is challenging to identify the optimal solution within a limited time frame. Graph-
partitioning algorithms can be categorized into static and dynamic graph partitioning based
on their running processes. Static graph-partitioning algorithms require access to the global
data of the graph before partitioning, and typically employ spectral methods, heuristic
methods, or multi-level partitioning methods to partition the graph data. For instance,
the classic algorithm Metis [18] utilizes a multi-level partitioning strategy, while other
methods, such as NE [4] and PowerLyra [19], use vertex-cut and hybrid-cut, respectively.
By contrast, dynamic graph partitioning, also known as streaming graph-partitioning
algorithms, does not require access to the global data of the graph before partitioning.
Instead, it partitions the graph by continuously traversing the information of each edge
(or vertex). Typical examples include Greedy [20], Grid [21], and HDRF [22]. Dynamic
graph-partitioning methods offer better scalability and can accommodate larger-scale data.
However, compared to static graph-partitioning methods, they typically exhibit lower
accuracy. Both approaches have their respective strengths in handling different types of
graph data. Previous research has indicated that for power-law distributed data, vertex-cut
demonstrates better performance compared to edge-cut [22,23].



Electronics 2024, 13, 1016 4 of 17

2.4. Cross-Shard Transaction

In sharded blockchains, maintaining the atomicity of transactions across shards is crit-
ical in scenarios where each shard does not possess the complete state. In Omniledger [24],
the authors utilized a client-driven two-phase commit (2PC) mechanism with lock/unlock
operations to ensure atomicity for cross-shard transactions. RapidChain [25] achieves
atomicity by directing all involved UTXOs to the same shard, thereby converting cross-
shard transactions into intra-shard transactions. In Monoxide [10], deduction and deposit
operations are separately performed, and a relay transaction mechanism is employed to
ensure the final atomicity for cross-shard transactions. Brokerchain [11] uses intermediary
nodes called brokers to serve as relays and guarantors for cross-shard transactions. Addi-
tionally, in the S-store scheme [26], consistent hashing combined with an Aggregate Merkle
B+ (ABM) tree methodology is proposed to reduce data migration between shards. It is
evident that the focus of existing solutions is often centered on maintaining the transaction
consistency between the involved shards, but the accounts of the entities involved are
often overlooked.

3. Scheme Overview
3.1. System Model

As shown in Figure 1, to achieve rapid responsiveness to the Internet of Vehicles (IoV),
the proposed blockchain-based trust-management model in this paper is divided into three
layers: (1) a services layer, (2) a transactions layer, and (3) a VANET layer. The functions of
each layer are as follows:

Transactions Layer

Services Layer

TA Other Services

VANET Layer

RSU RSU

OBUOBU

OBU

OBU OBU

OBU V2I

V2V

Cloud Storage

Shard1 Shard2

Figure 1. System model.

The services layer consists of entities such as the traffic authority (TA), certification
authority (CA), cloud service storage, and service providers. The traffic authority serves as
the supreme authority center responsible for registering and managing the authentication
of all vehicle information. The CA is responsible for maintaining certificate information
for vehicles in its domain, verifying the identities of users within the CA’s domain, issuing
digital certificates, and publishing certificate revocation lists (CRLs) or an online certificate
status protocol (OCSP) to report revoked certificates. The cloud service provider offers users
data storage and information services, such as real-time high-precision map navigation
and media distribution services.

The transactions layer consists of sharded blockchains running on multi-access edge
computing (MEC). It is responsible for storing the received VANET data on the blockchain



Electronics 2024, 13, 1016 5 of 17

and providing tamper-proof and traceable data support for the services in the services
layer. To ensure the scalability of the blockchain network, the blockchain is composed of
multiple shards. When vehicle information is stored at the corresponding address on the
blockchain, the data are saved within the corresponding shard. The detailed architecture
will be described later.

The VANET layer consists of roadside units (RSUs) and vehicles. Generally, data are
generated through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-
tion and uploaded to the blockchain for storage. After the computation and verification of
a vehicle’s trust value, it is stored and managed by the shard where the vehicle is located,
as well as the nearest RSU.

3.2. Sharding Blockchain

In this section, we will describe the sharding blockchain protocol, called the Graph
Partition Chain (GPChain), designed for our trust management scheme. Serving as a
sharding solution for the hot shards problem, this paper addresses the issue of hot shards
caused by random node allocation and the power-law distribution of transactions by
partitioning the transaction state graph, with the aim of increasing scalability. Considering
the blockchain’s operation in the context of the vehicular ad-hoc network environment,
the proposed blockchain in this paper is based on a permissioned chain design. The
symbols used in this paper are shown in abbreviation section. Similar to most state-
sharding methods, an epoch is defined as a fixed period of blockchain operation, upon
which the consensus and account reconfiguration processes are performed. All shards
have the same structure and run the Practical Byzantine Fault Tolerance (PBFT) consensus
protocol to handle shard transactions. The protocol conducts transaction packaging and
consensus during the consensus period, partitions the account state graph, and achieves a
consensus on the results during the account-reconfiguration period. The proposed solution,
as illustrated in the Figure 2, describes three main stages of this process.

Shard1

Shard2

Shard3

Vertex Cut

Transaction status of all accountsTransaction status of all accounts

Figure 2. Process of GPChain.

Transaction State Graph Generation Phase: During the account reconfiguration
period of each epoch, the primary node, PShard, from the previous round, which successfully
achieved PBFT consensus within each shard, assumes the role of the primary node for that
shard. It is tasked with gathering shard transactions for the current round and creating the
sub-transaction state graph G′ for that shard, where v represents the account address and e
denotes a transaction between two accounts. Subsequently, the Raft consensus protocol
selects a leader node, denoted as PLeader, from all the PShard nodes in the shards. The shard
where PLeader is located is responsible for collecting the sub-transaction state graphs G′

from each shard and creating the weighted undirected global state graph G for that epoch.
State Graph Partitioning Phase: The shard containing the PLeader is responsible for

partitioning the state graph. Initially, PLeader loads the weighted undirected state graph
and executes a vertex-cut algorithm based on community detection to divide transactions
into various partitions, each representing a blockchain shard. Subsequently, the result of
the partitioning for each account is determined according to its associated transactions



Electronics 2024, 13, 1016 6 of 17

and the partition it is part of. In cases where a transaction linked to an account exists
in multiple shards, duplicate accounts are created to ensure state synchronization across
multiple shards.

State reconfiguration phase: Once the state graph-partitioning result is obtained,
PLeader shares it with other shards and attains consensus on the result using the Raft protocol.
Subsequently, each shard configures its account information based on the partitioned state
graph. As a new round of transactions commences, the transactions are assigned to the
appropriate shard for processing.

4. Trust-Management Model Using Blockchain

The proposed blockchain-based trust-management model stores transaction evidence
between vehicles on the blockchain. In order to derive the trust value of vehicles through
this mutual evaluation evidence, we utilize the Dempster–Shafer theory (DST) to integrate
the evidence and accurately evaluate the positive and negative behaviors of vehicles. The
specific steps of the proposed method are as follows:

Step 1. Vehicle Joining VANET: When a vehicle, which has been authenticated by
the TA, intends to join the VANET, it needs to apply for a certificate from the nearest
CA. Once the CA verifies the vehicle’s identity, it issues a digital certificate to the vehicle.
The certificate includes the vehicle’s public key, the owner’s identity information, and the
CA’s digital signature. After obtaining the certificate, the vehicle registers its on-chain
address in the shard nearest to it as its on-chain account, which will be used for subsequent
data management.

Step 2. Evidence Collection: When a vehicle’s onboard sensors detect unexpected
events, such as traffic accidents or other anomalies on the road, the event, its location, and
relevant information are packaged into a message block and broadcast to the RSU and
nearby vehicles. Upon receiving the broadcast message, the RSU enters a fixed-duration
waiting state, awaiting evidence from other vehicles that received the message within
that time period as a response to participating in the event. Due to variations in sensor
capabilities among different vehicles, the level of confirmation of the event may differ.
To accurately describe the event, we define the evidence provided by vehicles regarding
the event as θ = {“True”, “False”, “TrueorFalse”, and “NULL”}, representing the degree
of support for the vehicle’s confirmation, disconfirmation, ambiguity, or unknown status
of the event. For example, θ = {“0.99”, “0.00”, “0.01”, “0.00”} signifies that the vehicle
believes there is a 99% probability that the event is true, with a 1% probability that both
true and false are possible. After the waiting period for the RSU concludes, all vehicles that
submit evidence are considered to have participated in the event, and the message block is
subsequently uploaded to the blockchain.

Step 3. Event Inference: The process of fusing all the evidence for an event using
DST [27] can be carried out by a smart contract running on the blockchain, ensuring
transparency and reliability. This process aims to derive a more accurate description of
the veracity of the event based on the fusion of evidence from all vehicles involved [28,29].
The fused result, similar to the aforementioned θ, represents the probability of the event
being in different states, with the state having the highest probability considered as the
current result of the event. In cases where the collected evidence is insufficient to calculate
an accurate result, the event is deemed invalid.

Step 4. Trust Adjustment: After confirming the veracity of the event, the trust values
of the vehicles uploading the event are adjusted based on the discrepancy between the
provided evidence confidence and the actual event. For example, if the evidence provided
by a vehicle leans towards supporting the event, its trust value is increased. Conversely,
if the evidence contradicts the event, the trust value of the vehicle is decreased. If the
evidence is uncertain or unknown, the trust value of the vehicle remains unchanged.
Vehicles with higher trust values have their evidence treated as more valuable and given
higher priority in the evidence-fusion process. Similarly, trust values that are too low can
result in evidence being assigned lower priority. When a vehicle’s trust value falls below a



Electronics 2024, 13, 1016 7 of 17

certain threshold, its evidence is considered completely unreliable and will be removed
from the vehicular network.

Step 5.Vehicle State Update: When a vehicle joins the blockchain, it is assigned to
the shard where the nearest MEC resides. This allocation ensures faster response times
for the vehicle and facilitates data exchange with other vehicles within the same shard.
When a vehicle moves out of a shard, its account transfer to a new shard is determined
based on the transaction state within the new shard, as dictated by the results of the
graph partitioning on the blockchain, which will be described in the following section. For
example, when a vehicle consistently conducts evidence transactions with vehicles located
in another shard’s region, it increases the probability of being allocated to that shard in
the next round of graph partitioning. Conversely, in the absence of such partitioning, a
shard has a higher probability of becoming a hot shard due to cross-shard transactions
when a vehicle frequently provides evidence to vehicles in multiple shards. This process
ensures that vehicles within each shard have closer transaction associations, enhancing the
efficiency of data exchange.

5. Sharding-Based Blockchain Optimized through Graph Partitioning

This section presents a blockchain sharding scheme aimed at improving the perfor-
mance and scalability of the sharded blockchain by addressing the issue of hot shards.
The proposed approach utilizes community detection-based graph partitioning to parti-
tion the state graph of the transaction data, with the goal of reducing the occurrence of
cross-shard transactions. Additionally, a more granular shard state tree is employed to
establish a state-synchronization scheme to ensure the consistency of account states across
shards. Ultimately, the blockchain will validate new transactions based on the reconfigured
account state.

5.1. Community-Based Graph Partitioning

In existing state-sharding blockchains, the manner in which nodes are assigned to
shards often overlooks node attributes, such as their degree information, which signifies
the number of transactions they engage in with other nodes. Community detection, which
aggregates nodes v in graph G into distinct communities based on modularity, offers a
viable approach for considering node relationships. This aggregation can strengthen the
connectivity within communities and weaken the connectivity between them. The Lou-
vain algorithm [18] is a well-known community-detection method used to determine the
community distribution in transaction graphs, grouping nodes with shared characteris-
tics into the same community. When applied to blockchain transaction graphs, the aim
is to reduce cross-shard transactions by identifying the same community for addresses
with more shared transaction counterparts. While the Louvain algorithm appears effec-
tive for this purpose, it primarily partitions nodes based on account addresses, whereas
our objective is to partition communities based on transaction edges. Prior studies have
demonstrated that vertex-cut algorithms outperform edge-cut algorithms when handling
power-law distributed data. Hence, by effectively combining node degree relationships
with Louvain’s community relationships, we have devised a greedy algorithm rooted in
vertex cutting. When implemented to partition power law-distributed blockchain state
graphs, this algorithm efficiently segments transaction-associated edges into communities
within a finite time, as detailed in the Algorithm 1.



Electronics 2024, 13, 1016 8 of 17

Algorithm 1: Community detection

Input: Ge : A set of transactions in epoch;
N : number of shards
Output: CTx : Community of TX

1 Function community detection(Ge,N):
2 C ← Louvain(Ge)
3 //Divide the transaction graph into vertex set communities
4 C′ ← Vector2Edge(C, Ge)
5 Avgc = total(Ge) ÷ N //Calculate the average size of the divided community
6 foreach c ∈ C′ do
7 if sum(c > Avgc) then
8 CTx ← HDRF(c,total(Ge) ÷ Avgc)
9 //Dividing Large Communities through HDRF

10 else
11 CTx ← c
12 end
13 end
14 return CTx
15 end
16 Function Vector2edge(C, Ge):
17 foreach Tx ∈ Ge do
18 if Two accounts belong to the same community then
19 Tx is divided into this community
20 //Two accounts belonging to Tx are placed in the same community
21 else
22 Tx is divided into smaller communities
23 //smaller community among the two accounts that Tx belongs to
24 end
25 end
26 return C′ //Convert Vertex communities to Edge communities
27 end

In our proposed solution, we initially utilize the Louvain algorithm to designate
communities for each vertex. Subsequently, we iterate through each transaction in graph
G and prioritize assigning the transaction to the community of the node with the lower
degree among the transaction participants. This approach is aimed at minimizing the
replication factor in the vertex-cut and ensuring that high-degree vertices possess fewer
copies. Furthermore, to prevent excessively large communities, we utilize the High-Degree
Replicated First (HDRF) algorithm to trim oversized communities and divide them into
suitable sizes. The HDRF algorithm is tailored for power-law distributions and performs
effectively in datasets featuring highly connected vertices. Through these techniques, we
partition transactions into communities of diverse sizes, thereby reducing communication
overhead between communities. Nonetheless, to fully implement our hybrid-cut algorithm,
it is essential to distribute the communities across multiple shards. The greedy method, a
widely applied heuristic algorithm known for its high accuracy and low computational cost,
is adopted to allocate communities of edge sets to shards, as delineated in Algorithm 2.

Like typical greedy approaches, we arrange the communities by edge count and
allocate them across multiple shards to reduce the imbalance in shard sizes. This method
aims to attain balanced loads across shards. Ultimately, we can determine the shards to
which each account is assigned based on the partitioned transactions in each shard.



Electronics 2024, 13, 1016 9 of 17

Algorithm 2: Greedy partition

Input: CTx : Community of TX ;
N : number of shards
Output: Ni : set shard n of vector i

1 Function greedy partition(CTx,N):
2 C′ ← Sort(CTx)
3 foreach c ∈ C′ do
4 minLoadShard← c
5 // Allocate edge set c to the minimum load shard
6 end
7 AvgLoad = totalLoad÷ N
8 di f f = maxLoad−minLoad
9 while di f f > AvgLoad do

10 cmin ∈ maxLoad
11 minLoad← cmin
12 di f f = maxLoad−minLoad
13 //Move the smallest community in maxLoad to minLoad
14 end
15 return Ni
16 end

5.2. Account Status Reconfiguration

The sharding protocol divides the blockchain into multiple smaller shards, each
capable of storing only the transaction blocks within its respective shard. In Ethereum,
four primary tree structures are used to store different types of information, with the most
important being the world state tree, which holds the current state of all accounts. In a
state-sharding blockchain, the absence of cross-shard states prevents individual shard state
trees from directly storing the states of vertices in other shards. Moreover, with each shard
block requiring a state tree as the root hash of the state, it becomes impractical for all shards
to collectively store the world state tree. Consequently, each shard is permitted to build its
own shard state tree, maintaining the mapping of accounts to addresses with the addition
of a mapping to indicate the associated shard for each account, as depicted in Figure 3.

Transaction

Shard1 Shard2 Shard3

Shard Ledger

Global account status

Shard Ledger Shard Ledger

B BB B

Figure 3. Mapping account addresses to multiple shards.



Electronics 2024, 13, 1016 10 of 17

For instance, if account B is assigned to both shard1 and shard2, both shard1 and
shard2 will have the state tree leaf vertex for account B, maintaining the balances Bshard1
and Bshard2 for account B within each shard. Transactions within a shard will only use
the balances within that shard. When checking the total balance of account B, it can be
obtained by querying the shard list where account B is located. Although it may appear
as if account B has been split into two accounts, the shard allocation list for each account
in each shard can easily retrieve the state of account B from all the shards it belongs to,
achieving the final global state. After account partitioning, it is essential to allocate the
balance owned by each account in each shard. Simply evenly distributing the balance
among each shard may lead to some shards running out of account balances earlier due to
varying numbers of transactions within each shard. Consequently, the allocation of account
balances is determined by the following formula:

Vi =
Txi

Txtotal
×Vtotal (1)

The formula utilizes Vi to denote the balance of the current shard after partitioning,
Txi for the shard’s transaction volume during that round of partitioning, Txtotal for the total
transaction volume related to the account, and Vtotal for the total balance of the account.

6. Simulation and Results
6.1. Environment and Settings

Experimental Prototype: In order to evaluate the proposed GPChain and trust model,
we implemented a shard simulator and trust-management process using Python, and
executed them on a local workstation. The workstation was equipped with two 2.4 GHz
20-core Intel Xeon E5 processors and 32 GB of memory. The shard simulator simulated the
operation of the sharded blockchain by replaying the historical transaction data collected.

DataSet: The blockchain dataset used in our evaluation was collected from the
Ethereum public transaction dataset, which includes approximately 500,000 transactions
between block heights 5,181,526 and 5,184,886. The distribution of the dataset is shown in
Figure 4. The dataset was replayed into the experimental prototype at a certain rate, and
accounts were assigned to different shards based on their respective baseline scheme methods.

100 101 102 103 104

Degree

100

101

102

103

104

105

Nu
m

be
r o

f n
od

es

Figure 4. Distribution of dataset.

The evaluation of the trust management utilized the T-drive dataset [30,31], which
includes the time, latitude, and longitude information of 10,357 taxis in the urban area
of Beijing.



Electronics 2024, 13, 1016 11 of 17

BaseLine: The blockchain considers three baseline scenarios: HDRF [22] represents a
dynamical vertex cut scheme, Monoxide [10] represents a random node partition scheme,
and Brokerchain [11] represents an edge cut followed by an account partitioning ap-
proach.The trust management compared the Dirichlet-Based Trust Management (DBTM)
from paper [6], keeping all parameters consistent with those in the reference paper.

Metrics: We first conducted experiments on our proposed graph-partitioning algo-
rithm and compared it with the existing vertex-cut HDRF algorithm, which is most suitable
for power-law graphs. We compared the replication factor, load standard deviation, and
runtime. Subsequently, we contrasted our approach with the bad reputation ratio of the
DBTM. Finally, we compared the workload and load standard deviation of our proposed
blockchain scheme with existing blockchain schemes. In all experiments, the replication
factor represents the number of partitions, with lower values indicating better performance.
The load standard deviation reflects the dispersion of the workload across different subsets,
with lower values indicating lower dispersion.

6.2. Experimental

To begin with, we compared the vertex-cut approach proposed in this paper with
the HDRF scheme, across various partition numbers and different dataset sizes, in terms
of their replication factor, load-relative standard deviation, and runtime. The results are
depicted in Figures 5–7:

8 12 16 24 32 48 64
Partitions

1.04

1.06

1.08

1.10

1.12

1.14

Re
pl

ica
tio

n 
Fa

ct
or

HDRF with 100,000 Txs
Our Scheme with 100,000 Txs
HDRF with 300,000 Txs
Our Scheme with 300,000 Txs
HDRF with 500,000 Txs
Our Scheme with 500,000 Txs

Figure 5. Replication factor of the two schemes.

Observing Figures 5 and 6, it is noticeable that an increase in the number of transactions
led to a higher replication factor and standard deviation of the partition load. The enhanced
vertex-cut algorithm, preserving community relationships between accounts, exhibited
better performance with smaller partitions, while HDRF maintained a relatively stable
replication factor across various partition sizes. In terms of the load standard deviation,
HDRF’s preference for partitioning strategies that minimize the replication factor is evident.
However, in scenarios with a high number of duplicate transactions, the penalty term
failed to effectively balance the partition load and replication factor. On the other hand,
the approach proposed in this paper, involving the secondary partitioning of communities,
achieved a more effective balance across multiple partitions.



Electronics 2024, 13, 1016 12 of 17

8 12 16 24 32 48 64
Partitions

0

20

40

60

80

Lo
ad

 R
el

at
iv

e 
St

an
da

rd
 D

ev
ia

tio
n 

(%
) HDRF with 100,000 Txs

Our Scheme with 100,000 Txs
HDRF with 300,000 Txs
Our Scheme with 300,000 Txs
HDRF with 500,000 Txs
Our Scheme with 500,000 Txs

Figure 6. Load-relative standard deviation of the two schemes.

8 12 16 24 32 48 64
partitions

0

100

200

300

400

500

Ru
nt

im
e(

se
c)

HDRF with 100,000 Txs
HDRF with 300,000 Txs
HDRF with 500,000 Txs

8 12 16 24 32 48 64
Partitions

5

10

15

20

25

30

Ru
nt

im
e(

se
c)

Our Scheme with 100,000 Txs
Our Scheme with 300,000 Txs
Our Scheme with 500,000 Txs

Figure 7. Runtime of the two schemes.

Figure 7 displays the disparity in the runtime performance of the two algorithms. It
is evident that HDRF’s runtime efficiency is more greatly influenced by the number of



Electronics 2024, 13, 1016 13 of 17

partitions and the size of the dataset. This is due to the fact that our proposed approach
reduces the data scale by performing community discovery prior to partitioning, whereas
HDRF requires a matching process for each edge for the number of partitions, resulting in
substantial overhead.

Subsequently, we compared the variation trends of negative reputations for normal
and malicious vehicles in the trust-management model based on the DST theory proposed
by us and the DBTM trust-management model under the same parameters, as shown
in Figure 8.

0 50 100 150 200 250 300
Epoch

0.10

0.15

0.20

0.25

0.30

Ba
d 

Re
pu

ta
tio

n 
Ra

tio

Malicous
Malicous(DBTM)

0 50 100 150 200 250 300
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Ba
d 

Re
pu

ta
tio

n 
Ra

tio

Normal
Normal(DBTM)

Figure 8. Bad reputation ratio of the two schemes.

It can be observed that with the increase in runtime, the negative reputation rates of
malicious vehicles in both models will eventually stabilize within a certain range; however,
in our proposed approach, normal vehicles attain lower negative reputation rates. This is
attributed to the fact that the DST approach is able to integrate a relatively more accurate
probability from multiple sources of evidence, indicating a lower probability of being
falsely accused or attacked, and thus obtaining a negative reputation.

Finally, we partitioned the blockchain transaction dataset in chronological order into
training and testing sets. We used the training set to obtain the properly partitioned
shard states and then replayed varying sizes of the testing set into the shards to assess the
performance of each approach.



Electronics 2024, 13, 1016 14 of 17

The results are as follows. Figure 9 compares the proposed solution in this paper
with existing sharding blockchain solutions in terms of cross-shard transaction rates. Our
proposed solution exhibits the lowest cross-shard transaction rates.

4 6 8 12 16 23 32
Partitions

20

40

60

80

100

Ra
tio

 o
f C

ro
ss

-S
ha

rd
 T

Xs
(%

)

GPChain
Brokerchain
Metis
Monoxide

Figure 9. Cross-shard Txs ratio for different schemes.

Figures 10–12 present the differences in the workload and the relative standard de-
viation of the workload under different numbers of shards and data scales for different
solutions. Table 1 contains more detailed information. It can be observed that GPChain
demonstrated superior workload performance across various data scales and shards, with
the relative standard deviation of the workload maintained at a lower level. This indicates
that our proposed solution can accommodate a larger transaction volume compared to
other solutions under similar hardware conditions. Monoxide, as a representative of a
sharding blockchain without any optimization, exhibited the highest workload, but also the
lowest relative standard deviation of the workload. Brokerchain, as an improved solution
on Metis, demonstrated similar performance across various parameters, outperforming
the Metis solution to a certain extent, indicating that edge-cut algorithms can significantly
optimize the workload, albeit at the expense of increasing the disparity in the workload
between shards.

4 8 16 32
Partitions

0

1

2

3

4

5

6

7

8

W
or

kl
oa

ds
(1

 ×
 1

0^
4)

4.2691
4.3908

5.0094

7.1404

4.4041
4.5238

5.1275

7.6425

4.5147
4.6348

5.6249

7.8853

4.587
4.7126

5.829

8.0034

GPChain
Brokerchain
Metis
Monoxide

Figure 10. Total load of different partitions.



Electronics 2024, 13, 1016 15 of 17

10 20 30 40
Transactions(1 × 10^4)

0

1000

2000

3000

4000

5000

6000

7000

W
or

kl
oa

ds

GPChain
BrokerChain
Metis
Monoxide

Figure 11. Total load of different transactions.

5 10 15 20 25 30 35 40
Transactions(1 × 10^4)

40

60

80

100

120

Lo
ad

 R
el

at
iv

e 
St

an
da

rd
 D

ev
ia

tio
n(

%
) GPChain

Brokerchain
Metis
Monoxide

Figure 12. Load standard deviation of different schemes.

Table 1. Detailed workload.

Partitions 8 16 32 64

Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.

Monoxide 18,514 17,017 17,851 11,769 8134 9553 7399 3401 4928 4445 1535 2501

Metis 24,100 7689 12,523 14,329 3470 6409 6888 1372 3515 4585 275 1821

Brokerchain 22,725 5401 10,977 13,141 2424 5654 6691 708 2896 4313 58 1472

GPChain 12,483 9608 10,672 6745 4137 5505 4357 1519 2821 2449 559 1433

7. Conclusions and Future Work

In this paper, we present a graph partition-based blockchain-sharding protocol and
employ a multi-layer architecture to achieve open, trustworthy, and efficient trust manage-
ment. The trust-management model based on the blockchain that we propose consists of
two parts: evidence collection and storage based on the blockchain. The collected evidence
between vehicles is fused using the DST theory to derive trust information, and the graph
partition-based sharding blockchain scheme provides a more efficient division and stor-
age for trust and evidence transactions among vehicles. Finally, simulation experiments



Electronics 2024, 13, 1016 16 of 17

using real-world datasets demonstrated better performance in both trust management
and scalability aspects. Currently, we have focused on the research and discussion of the
improved blockchain-sharding protocol for storage and scalability in blockchain-based
trust management. For trust management in the IoV, there are still numerous factors to
consider, such as the more detailed status information of vehicles. As future work, we aim
to conduct further research on how to utilize the blockchain and smart contracts for the
better management of these factors.

Author Contributions: Conceptualization, H.H. and S.C.; methodology, H.H.; software, S.C.; valida-
tion, Z.X.; formal analysis, H.H.; investigation, H.H.; resources, S.C.; data curation, H.H.; writing—
original draft preparation, S.C.; writing—review and editing, S.C.; visualization, S.C.; supervision,
Z.X. and X.D.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is supported by the Key-Area Research and Development Program of Hubei
Province 2022BAA040, the Science and Technology Project of Department of Transport of Hubei
Province 2022-11-4-3, and the Innovation Fund of Hubei University of Technology BSQD2019027,
BSQD2019020, and BSQD2016019.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: Author Jing Zeng was employed by the company China Gridcom Co., Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as potential conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

v Vertex of account
e Edge of transaction
G Transaction state graph
G′ Shard’s transaction state graph
PShard Primary Node of shard
PLeader Primary Node of all shard

References
1. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A Secure Sharding Protocol For Open Blockchains. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016. [CrossRef]

2. Li, Y.; Wang, J.; Zhang, H. A survey of state-of-the-art sharding blockchains: Models, components, and attack surfaces. J. Netw.
Comput. Appl. 2023, 217, 103686. [CrossRef]

3. Zhang, Z.; Wang, X.; Yu, G.; Ni, W.; Liu, R.P.; Georgalas, N.; Reeves, A. A Community Detection-Based Blockchain Sharding
Scheme. In Proceedings of the 5th International Conference, Held as Part of the Services Conference Federation, SCF 2022,
Honolulu, HI, USA, 10–14 December 2022. [CrossRef]

4. Zhang, C.; Wei, F.; Liu, Q.; Tang, Z.G.; Li, Z. Graph Edge Partitioning via Neighborhood Heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017.
[CrossRef]

5. Liu, Y.; Wang, J.; Yan, Z.; Wan, Z.; Jäntti, R. A Survey on Blockchain-Based Trust Management for Internet of Things. IEEE Internet
Things J. 2023, 10, 5898–5922. [CrossRef]

6. Yang, Z.; Wang, R.; Wu, D.; Yang, B.; Zhang, P. Blockchain-Enabled Trust Management Model for the Internet of Vehicles. IEEE
Internet Things J. 2023, 10, 12044–12054. [CrossRef]

7. Liu, Q.; Gong, J.; Liu, Q. Blockchain-Assisted Reputation Management Scheme for Internet of Vehicles. Sensors 2023, 23, 4624.
[CrossRef] [PubMed]

8. Yang, Z.; Yang, K.; Lei, L.; Zheng, K.; Leung, V.C.M. Blockchain-Based Decentralized Trust Management in Vehicular Networks.
IEEE Internet Things J. 2019, 6, 1495–1505. [CrossRef]

9. Singh, P.K.; Singh, R.; Nandi, S.K.; Ghafoor, K.Z.; Rawat, D.B.; Nandi, S. Blockchain-Based Adaptive Trust Management in
Internet of Vehicles Using Smart Contract. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3616–3630. [CrossRef]

http://doi.org/10.1145/2976749.2978389
http://dx.doi.org/10.1016/j.jnca.2023.103686
http://dx.doi.org/10.1007/978-3-031-23495-8_6
http://dx.doi.org/10.1145/3097983.3098033
http://dx.doi.org/10.1109/JIOT.2023.3237893
http://dx.doi.org/10.1109/JIOT.2021.3124073
http://dx.doi.org/10.3390/s23104624
http://www.ncbi.nlm.nih.gov/pubmed/37430536
http://dx.doi.org/10.1109/JIOT.2018.2836144
http://dx.doi.org/10.1109/TITS.2020.3004041


Electronics 2024, 13, 1016 17 of 17

10. Wang, J.; Wang, H. Monoxide: Scale out Blockchains with Asynchronous Consensus Zones. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019.

11. Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. BrokerChain: A Cross-Shard Blockchain Protocol for
Account/Balance-based State Sharding. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communi-
cations, London, UK, 2–5 May 2022. [CrossRef]

12. Xi, J.; Xu, G.; Zou, S.; Lu, Y.; Li, G.; Xu, J.; Wang, R. A Blockchain Dynamic Sharding Scheme Based on Hidden Markov Model in
Collaborative IoT. IEEE Internet Things J. 2023, 10, 14896–14907. [CrossRef]

13. Xu, M.; Feng, G.; Ren, Y.; Zhang, X. On Cloud Storage Optimization of Blockchain With a Clustering-Based Genetic Algorithm.
IEEE Internet Things J. 2020, 7, 8547–8558. [CrossRef]

14. Gao, N.; Huo, R.; Wang, S.; Huang, T.; Liu, Y. Sharding-Hashgraph: A High-Performance Blockchain-Based Framework for
Industrial Internet of Things With Hashgraph Mechanism. IEEE Internet Things J. 2022, 9, 17070–17079. [CrossRef]

15. Yang, Z.; Li, M.; Yang, R.; Yu, F.R.; Zhang, Y. Blockchain Sharding Strategy for Collaborative Computing Internet of Things
Combining Dynamic Clustering and Deep Reinforcement Learning. In Proceedings of the ICC 2022—IEEE International
Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022. [CrossRef]

16. Jia, D.; Xin, J.; Wang, Z.; Wang, G. Optimized Data Storage Method for Sharding-Based Blockchain. IEEE Access 2021,
9, 67890–67900. [CrossRef]

17. Cai, Z.; Liang, J.; Chen, W.; Hong, Z.; Dai, H.N.; Zhang, J.; Zheng, Z. Benzene: Scaling Blockchain with Cooperation-Based
Sharding. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 639–654. [CrossRef]

18. Karypis, G.; Kumar, V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 1998,
20, 359–392. [CrossRef]

19. Chen, R.; Shi, J.; Chen, Y.; Zang, B.; Guan, H.; Chen, H. PowerLyra: Differentiated Graph Computation and Partitioning on
Skewed Graphs. ACM Trans. Parallel Comput. 2018, 5, 13:1–13:39. [CrossRef]

20. Gonzalez, J.E.; Low, Y.; Gu, H.; Bickson, D.; Guestrin, C. PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), Hollywood,
CA, USA, 17–30 October 2012.

21. Jain, N.; Liao, G.; Willke, T.L. GraphBuilder: scalable graph ETL framework. In Proceedings of the International Conference on
Management of Data, New York, NY, USA, 23 June 2013. [CrossRef]

22. Petroni, F.; Querzoni, L.; Daudjee, K.; Kamali, S.; Iacoboni, G. HDRF: Stream-Based Partitioning for Power-Law Graphs. In
Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia,
18–23 October 2015. [CrossRef]

23. Xie, C.; Yan, L.; Li, W.; Zhang, Z. Distributed Power-law Graph Computing: Theoretical and Empirical Analysis. In Proceedings
of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, Canada, 8–13 December 2014.

24. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. OmniLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018.
[CrossRef]

25. Zamani, M.; Movahedi, M.; Raykova, M. RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018. [CrossRef]

26. Qi, X. S-Store: A Scalable Data Store towards Permissioned Blockchain Sharding. In Proceedings of the IEEE INFOCOM
2022—IEEE Conference on Computer Communications, London, UK, 2–5 May 2022. [CrossRef]

27. Urbani, M.; Gasparini, G.; Brunelli, M. A numerical comparative study of uncertainty measures in the Dempster-Shafer evidence
theory. Inf. Sci. 2023, 639, 119027. [CrossRef]

28. Bezerra, E.D.C.; Teles, A.S.; Coutinho, L.R.; Silva, F.J.d.S.e. Dempster-Shafer Theory for Modeling and Treating Uncertainty in IoT
Applications Based on Complex Event Processing. Sensors 2021, 21, 1863. [CrossRef] [PubMed]

29. Hamda, N.E.I.; Hadjali, A.; Lagha, M. Multisensor Data Fusion in IoT Environments in Dempster-Shafer Theory Setting: An
Improved Evidence Distance-Based Approach. Sensors 2023, 23, 5141. [CrossRef] [PubMed]

30. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011. [CrossRef]

31. Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.; Huang, Y. T-drive: driving directions based on taxi trajectories. In
Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA,
USA, 2–5 November 2010. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/INFOCOM48880.2022.9796859
http://dx.doi.org/10.1109/JIOT.2023.3294234
http://dx.doi.org/10.1109/JIOT.2020.2993030
http://dx.doi.org/10.1109/JIOT.2021.3126895
http://dx.doi.org/10.1109/ICC45855.2022.9838570
http://dx.doi.org/10.1109/ACCESS.2021.3077650
http://dx.doi.org/10.1109/TPDS.2022.3227198
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1145/3298989
http://dx.doi.org/10.1145/2484425.2484429
http://dx.doi.org/10.1145/2806416.2806424
http://dx.doi.org/10.1109/SP.2018.000-5
http://dx.doi.org/10.1145/3243734.3243853
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796800
http://dx.doi.org/10.1016/j.ins.2023.119027
http://dx.doi.org/10.3390/s21051863
http://www.ncbi.nlm.nih.gov/pubmed/33800039
http://dx.doi.org/10.3390/s23115141
http://www.ncbi.nlm.nih.gov/pubmed/37299866
http://dx.doi.org/10.1145/2020408.2020462
http://dx.doi.org/10.1145/1869790.1869807

	Introduction
	Related Work
	Blockchain-Based Trust Management
	Blockchain Sharding
	Balanced Graph Partitioning
	Cross-Shard Transaction

	Scheme Overview
	System Model
	Sharding Blockchain

	Trust-Management Model Using Blockchain
	Sharding-Based Blockchain Optimized through Graph Partitioning
	Community-Based Graph Partitioning
	Account Status Reconfiguration

	Simulation and Results
	Environment and Settings
	Experimental

	Conclusions and Future Work
	References

