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Abstract: Speech emotion recognition poses challenges due to the varied expression of emotions
through intonation and speech rate. In order to reduce the loss of emotional information during the
recognition process and to enhance the extraction and classification of speech emotions and thus
improve the ability of speech emotion recognition, we propose a novel approach in two folds. Firstly,
a feed-forward network with skip connections (SCFFN) is introduced to fine-tune wav2vec 2.0 and
extract emotion embeddings. Subsequently, ConLearnNet is employed for emotion classification.
ConLearnNet comprises three steps: feature learning, contrastive learning, and classification. Feature
learning transforms the input, while contrastive learning encourages similar representations for sam-
ples from the same category and discriminative representations for different categories. Experimental
results on the IEMOCAP and the EMO-DB datasets demonstrate the superiority of our proposed
method compared to state-of-the-art systems. We achieve a WA and UAR of 72.86% and 72.85% on
IEMOCAP, and 97.20% and 96.41% on the EMO-DB, respectively.

Keywords: speech emotion recognition (SER); wav2vec 2.0; contrastive learning

1. Introduction

In recent years, Speech Emotion Recognition (SER) has emerged as a pivotal com-
ponent in human–computer interaction and communication systems. It offers valuable
insights into the emotional states of individuals, enabling applications like voice assistants
(e.g., Siri, Alexa, Google Assistant) to adapt their responses accordingly, fostering more
effective and personalized interactions. SER technology, as demonstrated by Chen et al. [1],
has even been successfully integrated into emotional social robots, empowering them to
track and respond to various basic emotions in real time. Moreover, SER holds immense
potential for applications in diverse fields, such as fraud detection and psychological
testing [2,3].

However, the accurate recognition and interpretation of emotions pose a significant
challenge for computers. Humans can effortlessly perceive emotions through subtle cues like
changes in pitch, volume, and tempo, however, human programmers struggling to program
computers have a hard time capturing and comprehending these nuanced expressions. The
multifaceted nature of emotional expression further complicates the task of precise emotion
recognition. Therefore, this paper is dedicated to presenting a new approach to SER that can
more accurately recognize emotions in speech and better serve people.

A typical SER system comprises two key components: feature extraction and emotion
classification. So, we decided to improve the performance of the SER system from these two
parts, that is, to improve the feature extraction part so that the extracted features contain
more emotion-related information, and to improve the emotion classification part so that it
has better classification capability.
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Traditional SER systems involve the careful design of appropriate spectral features
and rhythmic features extracted from the speech signal [4]. In recent years, spectral features
such as Mel Frequency Cepstral Coefficients (MFCCs) [5] and log Mel-spectrograms (log-
Mels) [6] have gained widespread adoption as speech emotion representations. Further,
the study in [7] explored the combination of multiple spectral features.

Recent advances in deep learning have promoted the utilization of Deep Neural Net-
works (DNNs) for SER thanks to their strength in capturing intricate patterns. However,
the limited size of current emotion datasets, constrained by the costly and time-consuming
manual evaluation of verbal emotions, hampers the potential of DNNs in emotion recogni-
tion. Hence, researchers have dedicated efforts to address the challenge of training effective
SER models with minimal training data.

One approach to tackle the issue of limited training data is using data augmentation to
expand the size of the training set [8]. This approach improves the model’s robustness and
generalization to some extent. However, it also introduces certain drawbacks, such as the
potential inclusion of “dirty data” that do not correspond to the labels assigned to them,
which can negatively impact recognition accuracy. Therefore, striking a balance between
data augmentation and maintaining data quality is crucial in addressing the challenge of
small training datasets in SER.

Most of the recent emotion classification models use deep learning methods such
as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Long Short-Term Memory (LSTM) networks. Chen et al. proposed to use attention-based
convolutional recurrent neural networks for learning and emotion classification of 3-D log-
Mels [6]. Aftab et al. proposed a fully convolutional neural network for feature extraction
and classification of MFCCs [9]. Zhong et al. used separable convolution combined with
attention mechanism and focus loss, which can learn emotional information well [10].
Ye et al. proposed a temporal-aware bi-directional multi-scale network based on dilated
causal convolution to mine spatiotemporal information from MFCCs [11].

Deep learning methods, including CNN, RNN and LSTM, have dominated the land-
scape of emotion classification models. Chen et al. introduced attention-based Convo-
lutional Recurrent Neural Networks (CRNNs) for learning and classifying 3-D log-Mels,
yielding promising results [6]. Aftab et al. proposed a fully convolutional neural network
that leverages MFCCs for feature extraction and classification [9]. Zhong et al. employed
a combination of separable convolution, attention mechanism, and focus loss to capture
emotional information effectively [10]. Ye et al. developed a temporal-aware bi-directional
multi-scale network based on dilated causal convolution, enabling the extraction of spa-
tiotemporal information from MFCCs [11].

In addition, transfer learning has emerged as a promising technique [12]. Generally
speaking, transfer learning utilizes knowledge from previously learned tasks and applies it
to related or newer ones. Usually, a typical transfer learning system has two parts: (1) a
pre-trained model as a starting point; (2) new training data and the pre-trained model for
the related or newer task, which is also defined as fine-tuning. In this direction, a small
amount of emotional training data is used to tune the pre-trained model for SER.

When it comes to pre-training techniques, one prominent candidate is wav2vec 2.0
(W2V2) [13]. W2V2 utilizes self-supervised learning on a large-scale speech dataset to
acquire speech representations that prove valuable for various downstream tasks, including
automatic speech recognition (ASR) [13], speaker verification [14], and SER [12]. For
example, Pepino et al. [15] used pre-trained W2V2 and Dense models with unaltered
weights for SER. When employing W2V2 as the pre-training network, two commonly
adopted fine-tuning approaches are:

• Vanilla fine-tuning (VFT): The pre-trained model, such as W2V2 is directly updated
using data specific to the SER task. For example, Yue et al. [12] applied global
average pooling to the contextualized representations generated by the pre-trained
W2V2 model. Subsequently, a fully connected layer (FC) is employed for emotion
classification based on the pooled representations. Similarly, Morais et al. [16] used pre-
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trained W2V2 for feature extraction and used a mean average pooling aggregator and
a linear classifier for classification. This straightforward fine-tuning method enables
the pre-trained model to adapt and specialize for the SER task using task-specific data.

• Parameter-efficient fine-tuning (PFT): This approach involves selectively updating spe-
cific parameters while keeping others frozen, resulting in a more parameter-efficient
fine-tuning process. In [17], PFT was implemented by freezing all the parameters of
the CNN-based feature encoder in the pre-trained model W2V2. Only the parameters
of the Transformer, another component of the pre-trained model were fine-tuned on
the SER task. Additionally, an average pooling layer and a linear layer were incorpo-
rated as downstream classifiers to process the fine-tuned representations and perform
emotion classification. This parameter-efficient approach allows for targeted updates
to specific components of the pre-trained model while keeping the majority of the
parameters fixed, optimizing the fine-tuning process for the SER task.

Both VFT and PFT approaches have shown suboptimal performance in SER. One
possible explanation for this is the direct tuning of the W2V2 model for speech emotion
classification without considering the substantial differences between SER and ASR tasks.
Based on this, Wang et al. [18] proposed a two-stage approach for SER combining fine-
tuning and the k-nearest neighbor model.

In general, widely used SER models, such as CNNs, typically comprise two main
components: feature learning and classification. The feature learning component aims
to extract effective feature representations from the input signal by applying a series
of transformations. The classification component, on the other hand is responsible for
assigning labels to the input signal based on the learned feature representations. The
commonly used classification component consists of an FC layer and a softmax layer. The
FC layer performs feature weighting to match the dimensionality of the learned feature
representations to the number of classes and obtains a score for each class, while the softmax
layer converts the features into probability form.

From this analysis, it becomes evident that traditional classification models only consist
of feature learning and classification parts. Although the learned feature representations
are used as input for the classification part, there is a lack of direct supervision for these
representations. By introducing supervised learning to guide the feature representation
learning process, improved classification performance can be achieved.

In this work, we propose two strategies, which differ from VFT’s single-stage approach
of directly using pre-trained models for SER tasks. They can be used to enhance the extrac-
tion of emotion-related information from W2V2 and improve classification performance:

• Instead of directly applying a pre-trained W2V2 model for SER, the pre-trained W2V2
model is fine-tuned to learn the emotion representation. In specific, the pre-trained
W2V2 features are used as input to train an emotion extractor. The emotion classifier
is trained using emotion training data and corresponding label information, and the
component parameters in W2V2 are not frozen during the training process, which is
different from PFT. Once the classifier training is finished, the emotion extractor can be
obtained by removing the classification part of the trained classifier and accordingly,
the emotion embedding can be extracted from the trained emotion extractor.

• In order to supervise the feature representation in the process of model training, a new
model is proposed in this paper which has three parts: feature learning, contrastive
learning and classification. The contrastive learning part plays the role of supervis-
ing the feature representation by making samples belonging to the same category
exhibit similar feature representations while those from different categories exhibit
discriminative representations in the model training stage.

The contribution of the work can be summarized as:

1. Feed-forward network containing skip connections (SCFFN) is proposed to tune the
pre-trained W2V2 model by learning its output with the emotion training data and
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corresponding label information. Finally, the emotion embedding extractor can be
obtained by combining the tuned W2V2 model and the trained SCFFN.

2. A new model, ConLearnNet for short, has a contrastive learning function which can
make samples belonging to the same category exhibit similar feature representations
while those from different categories exhibit discriminative representations, is pro-
posed for SER, which can supervise the feature representation in the process of model
training.

3. The proposed emotion embedding and model are evaluated on the interactive emo-
tional dyadic motion capture (IEMOCAP) [19] and the Berlin emotional database
(EMO-DB) [20], respectively. The role of contrastive learning playing is revealed by
the experimental results comparison.

The rest of the paper is organized as follows. Section 2 introduces how to extract emotion
embedding by fine-tuning the W2V2 model. Section 3 introduces speech emotion recognition
based ConLearnNet. Section 4 reports the studies on the IEMOCAP and the EMO-DB datasets.
Finally, Section 5 provides a discussion, and Section 6 concludes the paper.

2. Emotion Embedding Extraction

In this section, we will introduce how to extract emotion embedding by fine-tuning
the pre-trained W2V2 model with the training data and corresponding label information.
Next, we first introduce the pre-trained W2V2 model and then W2V2 fine-tuning.

2.1. Pre-Trained W2V2 Model

W2V2 is a self-supervised learning model proposed by Facebook AI Research for speech
tasks deriving speech representations from raw audio data [13]. As shown in Figure 1,
the pre-trained W2V2 model consists of three sub-modules: feature encoder, Transformer
and quantization [13]. Transformer and quantization can output context representation and
quantized representation for the same input of the feature encoder, respectively.

CNN CNN CNN CNN

···      Transformer      ···

···

···

CNN CNN CNN CNN

···      Transformer      ···

c c c c

···

···

X

Z

q q q q

Context 
representations

Quantized 
representations

Figure 1. The architecture of pre-trained W2V2 model.

The feature encoder sub-module f : X → Z consists of a multilayer convolutional neu-
ral network that takes the original speech signal X as input and encodes the speech audio to
generate potential speech representations z1, . . . , zT with output time steps T = 25 ms. The
default setting of the feature encoder is constituted of seven CNN layers with 512 channels
per convolutional layer, step size (5, 2, 2, 2, 2, 2, 2, 2), and convolutional kernel width (10, 3,
3, 3, 3, 3, 3, 2, 2). The masked feature encoder output is used as input to the Transformer
sub-module to generate the contextual representation.

The transformer sub-module consists of multiple transformer encoders, in which the
self-attention mechanism is able to capture the global information and can fully extract the
high-dimensional contextual features.
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The quantization sub-module uses product quantization to discretize the output of
the feature encoder into a finite set of speech representations to perform quantization
separately, making the features more robust.

2.2. W2V2 Fine-Tuning

In this paper, the pre-trained W2V2 model is fine-tuned to extract the frame-level
emotional representation, and the fine-tuning framework is given in Figure 2.

Pre-trained W2V2 model

FC

ReLU

Dropout

Normalization

Emotion embedding

SCFFN

FC

Sk
ip

 c
on

ne
ct

io
n

Softmax

FC

Classification

Emotion labels

Figure 2. W2V2 fine-tuning framwork.

From Figure 2, it can be found that there are three parts in the W2V2 fine-tuning which
are the pre-trained W2V2 model, SCFFN and classification. Meanwhile, it also can be found
that the W2V2 fine-tuning is a classifier and the goal of the W2V2 fine-tuning is to train an
emotion extractor to extract emotion embedding.

As shown in Figure 2, the SCFFN consists of five modules and a skip connection. The
five modules contain two FC layers, one ReLU, one dropout, and one normalization. The
role of each module is as follows:

• The FCs are used to learn the input and help enhance the model capabilities.
• The ReLU activation function is used to improve the nonlinear fitting ability of the

network and accelerate the convergence of the model.



Electronics 2024, 13, 1103 6 of 19

• The dropout can prevent the model from over-fitting.
• The use of skip connections can alleviate the gradient disappearance problem and

prevent information loss.

The classification part is used to classify the output of SCFFN (emotion embedding),
which consists of one FC and one Softmax, and the cross-entropy loss function is used
as the loss function for this stage. The FC plays the role of converting the input feature
dimension into the number of emotion types while the Softmax is used to obtain the
corresponding probability, and then the output probabilities of the classes and the one hot
form of the true classes are used to calculate the cross-entropy loss function. In order to
extract emotion embeddings that are more applicable to the next stage, the classification
part of this stage is the same as the classification part of the next stage, which classifies
the four emotion classes of the IEMOCAP dataset and the seven emotion classes of the
EMO-DB dataset, respectively.

With the emotion training data and corresponding label information, the W2V2 fine-
tuning can be performed according to Figure 2. Once the W2V2 fine-tuning is finished, the
emotion embedding can be extracted from the tuned W2V2 model and the trained SCFFN.
Thus, we can regard the tuned W2V2 model and the trained SCFFN as an emotion extractor.

3. Speech Emotion Recognition Based on ConLearnNet

In this section, we will introduce the proposed model, i.e., ConLearnNet in detail. As
shown in Figure 3, the ConLearnNet consists of a feature learning module, contrastive
learning module and classification module. To be brief, the feature learning module is used
to learn the input feature, and the contrastive learning module plays the role of supervising
the feature representation by making samples belonging to the same category exhibit
similar feature representations while those from different categories exhibit discriminative
representations in the model training stage, the classification module is used to classify the
learned features. Next, we will introduce them one by one.

3.1. Feature Learning

The feature learning module consists of average pooling layers, a bidirectional LSTM
(BiLSTM) layer, half-step feed-forward (FFN) layers, and a Conv block. We introduce the
function of the module in detail below.

To simplify the computational complexity of the network and to prevent overfitting,
we add pooling layers to the network. The same as VFT in [21], average pooling is selected
in the pooling layer to map the speech features to a smaller feature space, which allows for
a smaller loss in the dimensional transformation of the speech features.

We introduce BiLSTM in this module that can handle feature information with a
long-distance interval [22]. BiLSTM combines the advantages of a long short-term memory
network and a bidirectional recurrent neural network which can better capture the bidirec-
tional contextual information of speech data in time and is more robust and suitable for
predicting time sequences.

Due to the complex network structure of our feature learning module, we propose to
use skip connections around the sub-layers FFN and Conv in order to avoid the problem of
gradient disappearance and at the same time to protect the information integrity during
information transfer. The skip structure is inspired by the Transformer [23] model, which
was proposed in [24].

In order to extract deeper features, we add a Conv block to the network. The Conv
block consists of pointwise convolution layers, depthwise convolution layers and a gated
linear unit (GLU), and also includes a batchNorm layer to accelerate the convergence of the
model. The convolution kernel in convolution layers can capture both time and frequency
domain information and has a remarkable ability to capture spatially advanced features.
The number of parameters can be effectively reduced by using pointwise convolution and
depthwise convolution to decompose a complete convolution operation into two steps.
The GLU uses CNN and gating mechanisms to implement the RNN function, which im-
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proves performance by retaining information strictly by temporal position when processing
temporal data and speeds up operations through parallel processing structures [25].

Emotion labels

Softmax

FC

1/2 × FFN

Conv

1/2 × FFN

AvgPooling

BiLSTM

AvgPooling

Emotion embedding

Classification

Feature learning

Contrastive learning

Ground truth labels

LConloss

Figure 3. Model architecture of ConLearnNet.

Both Macaron-Net [26] and the Macaron-style half-step FFNs used in Conformer [27]
have demonstrated that the Macaron structure can improve network performance. Based
on this, we propose to use half-step skip-connected FFNs in ConLearnNet, before and after
the Conv block, respectively, with the second feed-forward module followed by a final
LayerNorm layer.

3.2. Contrastive Learning

Representation learning, an important process to improve the performance of deep
learning models, can enhance the representation of raw speech data in the speech domain.
A good speech feature representation will help to improve the performance of SER tasks.
Contrastive learning is a representation learning method that optimizes the embedding rep-
resentation. Through contrastive learning, samples belonging to the same category exhibit
similar feature representations while those from different categories exhibit discriminative
representations. Therefore, we introduce supervised contrastive learning to form a good
classification model in this paper.

By contrastive learning, it is possible to achieve the clustering of points belonging
to the same class pulled together in the embedding space, while separating clusters of
samples from different classes [28]. In this paper, the above goal is achieved by using
contrastive learning. As shown in Figure 3, the contrastive learning part has two inputs,
one is the learned features obtained by the feature learning part and the other is their
ground truth label, contrastive learning is performed by calculating the contrastive loss
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between the learned feature and their ground truth label and then the features can be
updated by back-propagation to generate more suitable features for final SER.

3.3. Classification

We use a combination of the FC layer and softmax layer as the classification part.
The features obtained from the feature learning module are input into the FC layer for
feature weighting to obtain the score of each category and then mapped to the probability
of each category by the softmax layer for classification to obtain the emotion category
corresponding to the speech data.

3.4. Loss Function

The total loss function consists of contrastive loss and cross-entropy loss commonly
used for emotion classification, which is as follows:

L = LCE(ŷ, l) + αLConloss(y, l) (1)

where LCE represents the cross-entropy loss function, ŷ is the predicted probability distri-
bution obtained after classification by the FC and softmax layers and l is the ground truth
label corresponding to the input feature. LConloss represents the supervised contrastive
loss function, y is the feature learned by the model before the FC layer classification, and
α ∈ [0, 1] is the weight coefficient of the LConloss. Further,

LCE = −
C

∑
k=1

tklog(ŷk) (2)

where C is the number of classes, ŷk is the probability that the sample is predicted to be
in class k, and tk is the probability that the sample belongs to class k. tk can only take the
values 0 or 1.

LConloss = ∑
i∈I

LConloss,i

= ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
yi · yp/τ

)
∑a∈A(i) exp(yi · ya/τ)

(3)

In a batch, i ∈ I ≡ {1 . . . N} is the index of samples and p is the index of some other
sample in the same class as i. The index i is called the anchor, the index p is called the
positive, and P(i) is the index set of all positive called positives. Other indices are called
negatives. The · symbol denotes the dot product, τ ∈ R+ is a scalar temperature parameter,
a is the index of some sample other than i, and A(i) ≡ I \ {i}.

4. Experimental Results and Analysis

In this section, the proposed emotion embedding and ConLearnNet for SER are
evaluated and corresponding analysis is given. Next, the details of the used databases,
evaluation rule and experimental setup are introduced first.

4.1. Database

In order to evaluate the performance of the system, two of the most widely used
databases in SER were used: the IEMOCAP in English and the EMO-DB in German. The
use of databases in two different languages as datasets provides a better representation of
the generalization performance of the method in this paper.

The IEMOCAP database was collected by the SAIL Lab at the University of Southern
California and contains approximately 12 h of audio-visual recordings [19]. It contains
five sessions of interactive dialogue between two people, Session 1, Session 2, Session 3,
Session 4 and Session 5, performed by ten professional performers, with one male and one
female performer participating in each session. The four emotions chosen in this paper are
happy, neutral, angry and sad, with excited being categorized as happy. A total of 5531
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voices are used in the training and test sets, including 1636 for happy, 1708 for neutral, 1103
for angry, and 1084 for sad.

The EMO-DB was developed by the Department of Technical Acoustics at the Technical
University of Berlin and contains German speech presented by ten professional actors (five
women and five men, labeled with the serial numbers 03, 08, 09, 10, 11, 12, 13, 14, 15 and 16)
in seven emotions (neutral, anger, happiness, anxiety, sadness, disgust and boredom) [20],
which were sampled at 48 kHz (later compressed to 16 kHz). In this paper, all seven
emotions from the EMO-DB are used as the dataset, with a total of 535 speech items in the
training and test sets, including 79 neutral, 127 anger, 71 happiness, 69 anxiety, 62 sadness,
46 disgust, and 81 boredom.

In order to compare with state-of-the-art methods, we use methods consistent with
them for experiments and results analysis. For the IEMOCAP dataset, we use the speaker-
independent 10-fold cross-validation method for experiments and evaluation, which can
effectively avoid the possibility that the trained classifier is excellent for only a certain set
of speakers, and is also more consistent with the situation that real-world speakers’ speech
has not been trained. For the EMO-DB dataset, we also use the 10-fold cross-validation
method to experiment and evaluate the model. That is to say, we use nine pieces of the
dataset for training and validation and another piece for testing in each evaluation, and the
process is repeated ten times, using different pieces of training data each time.

4.2. Evaluation Rule and Experimental Setup

As mentioned above, we know that our system can be divided into two parts: the first
is to extract emotion embedding for the input raw speech signal, and the second part is to
classify the emotion embedding using the ConLearnNet. As the raw speech signals vary in
length, the batchsize is set as 1 in the process of emotion embedding, which means that
only one utterance is trained or validated at a time.

From Figure 1, we know that there are two types of representations that can be extracted
from the pre-trained W2V2 models, which are context representation and quantized representa-
tion, respectively. In our study, context representation rather than the quantized representation
of W2V2 is extracted from the pre-trained W2V2 models for the IEMOCAP and the EMO-DB
in our study, the reason behind this is that emotion has something with its context.

In this paper, the Pytorch platform is used to conduct the experiments, and the Adam
optimizer is used to optimize the classification cross-entropy. In the network parameters,
the batch size of the ConLearnNet model is set to 4, the learning rate is 10−4, and the
dropout is 0.2. In both the emotion embedding extraction phase and the ConLearnNet
emotion recognition phase, training is stopped when the training accuracy on the training
set reaches 100% and the model is saved as the optimal model.

As shown in Table 1, there are two types of pre-trained wav2vec 2.0 large models used in
our experiments, which are W2V2-large and W2V2-53, respectively. Wherein, W2V2-large is
used for IEMOCAP while W2V2-53 is used for the EMO-DB. The reason is that W2V2-large is
pre-trained on English databases and IEMOCAP is an English database, while W2V2-53 is
pre-trained on multilingual databases and the EMO-DB is a German database.

Table 1. Some details about pre-trained W2V2 models.

Type Model Type Data for Pre-Training

W2V2-large wav2vec 2.0 large Librispeech
W2V2-53 wav2vec 2.0 large Multilingual LibriSpeech, CommonVoice, BABEL

Due to the uneven distribution of labels, the use of traditional evaluation metrics such
as accuracy alone may lead to over-optimism for emotion categories with large sample
sizes. Therefore, both weighted average accuracy (WA) and unweighted average recall
(UAR) are used as evaluation metrics [11] in this study. WA uses class probabilities to
balance the recall metric across categories, while UAR treats each category equally to avoid
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the model overfitting a particular category. WA is obtained by calculating the ratio between
the number of correctly classified discourses in the training or testing set and the total
number of discourses. UAR is computed as:

UAR =
1
K

K

∑
i=1

Aii

∑K
j=1 Aij

(4)

where A is the column association matrix, Aii corresponds to samples that are actually
class i and are correctly classified as class i, Aij corresponds to samples that are actually
class i but are classified as class j, and K is the total number of emotion categories in the
dataset [29]. Since we use the 10-fold cross-validation method, the WA and UAR results are
averaged over all ten results.

4.3. Studies on IEMOCAP
4.3.1. Experimental Result and Analysis

Table 2 reports the experimental results on the IEMOCAP in terms of WA and UAR.
From the table, we can find that our system can achieve a WA of 72.86% and a UAR of
72.85% on the IEMOCAP database.

Table 2. Experimental results on the IEMOCAP in terms of WA (%) and UAR (%).

Feature Emotion embedding

Model ConLearnNet

WA 72.86

UAR 72.85

Figure 4 shows the results of visualizing the obtained embedding after feature learning
on the IEMOCAP test data using the t-SNE technique. The embedding is located before the
FC layer after contrastive learning shown in Figure 3. This shows the feature distribution
of the test data on the IEMOCAP after processing with ConLearnNet. It can be seen that
the feature points of the same emotion category are each aggregated and separated from
the feature points of different categories. However, there is still an overlap of feature points
from different categories because the feature processing capability is still lacking.

Figure 4. Visualization of t-SNE for feature distribution on the IEMOCAP dataset.

4.3.2. Ablation Experiment

Our system consists of two stages, the emotion embedding extraction stage and the
ConLearnNet classification stage. In the following, we perform ablation experiments on
the networks of the two stages separately.
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As shown in Figure 2, the emotion extractor consists of pre-trained W2V2 and SCFFN,
where SCFFN consists of a skip connection and an FFN. Here, we would like to analyze the
modules in the emotion extractor from the experiments, so we perform ablation experiments
on the IEMOCAP, including:

• w/o skip connection: To show the effect of the skip connection, the skip connection
structure in the SCFFN is removed.

• w/o FFN: To show the efficiency of the FFN structure, the FC is used to replace the
FFN in the SCFFN.

• w/o SCFFN: To show the importance of the SCFFN in fine-tuning, the SCFFN struc-
ture in the emotion extractor is removed.

From Table 3, it can be observed:

• The SCFFN using the skip connection structure improves the WA and UAR by 12.98%
and 13.00%, respectively, over the SCFFN without the skip connection structure.

• The use of FFN in the SCFFN model improved the WA and UAR by 11.33% and
11.63%, respectively, over the use of the FC.

• The use of SCFFN in the emotion extractor improves the emotion recognition results
WA and UAR by 13.43% and 9.70%, respectively, over that of no SCFFN.

Table 3. Ablation experiment results of the emotion extractor on the IEMOCAP dataset in terms of
WA (%) and UAR (%).

Models WA UAR

ConLearnNet 72.86 72.85
w/o skip connection 59.88 59.85

w/o FFN 61.53 61.22
w/o SCFFN 59.43 63.15

As shown in Figure 3, ConLearnNet consists of three parts: feature learning, con-
trastive learning, and classification. Further, there are several modules in feature learning,
which include Macaron, FFN, Conv and BiLSTM while there is one module in contrastive
learning. Here, we are interested to know the modules in ConLearnNet playing from the
experiments, ablation experiments are conducted on the IEMOCAP, which include:

• w/o contrastive learning: To display the role of contrastive learning playing, suppos-
ing the module of contrastive learning is removed from ConLearnNet, the obtained
model can be named ConLearnNet-w/o contrastive learning.

• w/o Macaron: To display the role of FFN using the Macaron structure, normal FFN is
used to replace the half-step FFN and is located after the Conv block.

• w/o FFN: To display the role of the FFN layer, the FFN layer is removed from Con-
LearnNet while keeping the other modules unchanged. The obtained model can be
named ConLearnNet-w/o FFN.

• w/o Conv: To display the role of Conv block playing, the Conv block is removed
while keeping the other modules unchanged. The obtained model can be named
ConLearnNet-w/o Conv.

• w/o BiLSTM: To display the role of the BiLSTM layer playing, the BiLSTM layer
is removed by adjusting the dimensionality of the pooling layer to eliminate the
effect of dimensional changes due to the removal of the BiLSTM layer, keeping the
other modules unchanged. In the same way, the obtained model can be named
ConLearnNet-w/o BiLSTM.

From Table 4, it can be observed:

• The introduction of supervised contrastive learning on ConLearnNet improves WA
and UAR by 2.09% and 3.09%, respectively, compared to without it.

• The FFN using the Macaron structure improves the WA and UAR by 1.75% and 1.36%,
respectively, over the FFN without the Macaron structure.
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• The addition of the FFN layer can improve WA and UAR by 1.56% and 0.69%, respec-
tively, over those without the layer.

• Adding the Conv block can improve the WA and UAR by 10.20% and 10.46%, respectively.
• Adding a BiLSTM layer at the start of the network for contextual information extraction

first, WA and UAR can be improved by 10.90% and 10.98%, respectively.

Table 4. Ablation experiment results of ConLearnNet on the IEMOCAP dataset in terms of WA (%)
and UAR (%).

Models WA UAR

ConLearnNet 72.86 72.85
w/o contrastive learning 70.77 69.76

w/o Macaron 71.11 71.49
w/o FFN 71.30 72.16
w/o Conv 62.66 62.39

w/o BiLSTM 61.96 61.87

From the above analysis, it is known that all the modules in the emotion extractor and
the ConLearnNet can contribute positively to the overall performance of the system on the
IEMOCAP dataset.

4.3.3. Comparison with Commonly Used Features

To verify the effectiveness of the proposed emotion embedding, under the model of
ConLearnNet, the commonly used features in the field of SER such as 3-D log-Mels and
W2V2 are compared with the proposed emotion embedding. In which,

• 3-D log-Mels: First, calculate the log-Mel feature of the speech signal and its correspond-
ing delta and delta-delta features, then, the static, delta and delta-delta are used as the
first channel, second channel and third channel features to form 3-D log-Mel feature.

• W2V2: The original speech signals are directly used as the input of the pre-trained
W2V2 model and W2V2 can be obtained.

The experimental results are shown in Table 5. From Table 5, it can be seen that the
WA and UAR obtained from 3-D log-Mel as the input features are only 59.63% and 59.38%,
respectively, which is much worse than emotion embedding. In addition, we also can
observe that emotion embedding also performs better than W2V2. The reason may be that
there is not so much emotion information in 3-D log-Mel and W2V2 while there is more
emotion-related information in emotion embedding, which also confirms the proposed
emotion embedding.

Table 5. Comparison with commonly used features on the IEMOCAP dataset in terms of WA (%) and
UAR (%).

Features WA UAR

3-D log-Mels 59.63 59.38
W2V2 59.42 59.30

Emotion embedding 72.86 72.85

4.3.4. Confusion Matrix Analysis

To further analyze the experimental results, the confusion matrix for the IEMOCAP
dataset is used to observe the actual recognition results of each type of emotion more
clearly, to obtain the recognition performance of the system for each type of emotion, and
then make targeted improvements to the system for the emotions with low recognition
rates. Figure 5 shows the confusion matrix of the system when the SER is performed on the
IEMOCAP database and the WA and UAR are 72.86% and 72.85%, respectively.
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64.81 5.09 13.47 16.63

8.98 80.24 2.18 8.61

10.61 1.66 81.00 6.73

14.36 8.01 9.29 68.34

angry sad happy neutral

angry

sad

happy
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Figure 5. Confusion matrix of ConLearnNet on the IEMOCAP dataset with WA of 72.86% and UAR
of 72.85%.

The confusion matrix on the IEMOCAP confirms that the system has excellent category
discrimination performance. Observing the confusion matrix in Figure 5, it can be found
that the system is good at recognizing happy and sad, probably because happy has more
data available for training and the system can learn its emotional properties well. However,
it is slightly worse at recognizing angry and neutral, which are easily recognized as each
other. It may be that the system has not yet been able to capture the characteristics of the
neutral category well because its own emotional factors are not prominent enough.

4.3.5. Comparison with the State-of-the-Art Systems

Table 6 shows the experimental results of our system and other state-of-the-art systems
on the IEMOCAP dataset. From the table, we can observe that our method outperforms
most of the systems in the table. Compared with the MFCC-TIM-Net [11] in Table 6, WA
can be absolutely improved by 1.21% and UAR by 0.35%, respectively. It can confirm the
effectiveness of the proposed method. In addition, by comparing the proposed W2V2
fine-tuning with VFT (systems 4) and PFT (system 5), we can say that the proposed W2V2
fine-tuning method can outperform the existing VFT and PFT. However, compared to the
W2V2-SCL-kNN system [18] (system 7), our system is slightly less effective in recognition.
We both used contrastive learning, while System 7 introduces the supervised contrastive
learning in the feature extraction part of the fine-tuning of the W2V2, and we added it
in the second stage of the classification part, which may result in our extracted feature
representation being inferior to theirs. Also, System 7 uses the kNN model for label
prediction and classification in the downstream inference classification task, which further
improves the model performance.

Table 6. Comparison with the state-of-the-art systems on the IEMOCAP dataset in terms of WA (%)
and UAR (%).

Systems Features Models WA UAR

1 log-Mel CNN+Bi-GRU [10] 70.39 71.72

2 MFCC SPU+MSCNN [30] 66.60 68.40

3 MFCC Light-SERNet [9] 70.23 70.76

4 Raw Speech VFT W2V2 [12] 62.68 65.11

5 Raw Speech PFT W2V2 [17] 70.99 -

6 MFCC TIM-Net [11] 71.65 72.50

7 Extracted features by
W2V2-SCL kNN [18] 74.13 75.14

Proposed Emotion embedding ConLearnNet 72.86 72.85
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4.4. Studies on the EMO-DB
4.4.1. Experimental Result and Analysis

Table 7 reports the experimental results on the EMO-DB in terms of WA and UAR.
From the table, we find that our system can achieve WA of 97.20% and UAR of 96.41% on
the EMO-DB database, which means that our system can nearly classify all the emotion
signals correctly.

Table 7. Experimental results on the EMO-DB in terms of WA (%) and UAR (%).

Feature Emotion embedding

Model ConLearnNet

WA 97.20

UAR 96.41

Figure 6 shows the results of visualizing the obtained embedding after feature learning
on the EMO-DB test data using the t-SNE technique. The embedding is located before the
FC layer after contrastive learning shown in Figure 3. This shows the feature distribution
of the test data on the EMO-DB after processing with ConLearnNet. It can be seen that the
feature points of each of the seven emotion categories are clustered separately and do not
intersect with the feature points of different categories with clear classification boundaries.
From the results, it can be seen that our system can obtain good results on two different
language datasets, which proves that the system has strong robustness.

Figure 6. Visualization of t-SNE for feature distribution on the EMO-DB dataset.

4.4.2. Ablation Experiment

In the same way, we would like to show the role of the skip connection, the FFN and the
SCFFN in emotion embedding extraction, as well as the role of the modules of contrastive
learning, Macaron, FFN, Conv and BiLSTM in ConLearnNet, from the experiments on
the EMO-DB database. Table 8 shows the results of the ablation study of the emotion
embedding extractor on the EMO-DB dataset. From the table, we have the following
observations.

From Table 8, several conclusions can be obtained:

• The SCFFN using the skip connection structure improves the WA and UAR by 1.72%
and 1.43%, respectively, over the SCFFN without the skip connection structure.

• The use of FFN in the SCFFN model improved the WA and UAR by 1.23% and 0.29%,
respectively, over the use of the FC.
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• The use of SCFFN in the emotion extractor improves the emotion recognition results
WA and UAR by 0.90% and 1.77%, respectively, over no SCFFN.

Table 8. Ablation experiment results of the emotion extractor on the EMO-DB dataset in terms of WA
(%) and UAR (%).

Models WA UAR

ConLearnNet 97.20 96.41
w/o skip connection 95.48 94.98

w/o FFN 95.97 96.12
w/o SCFFN 96.30 94.64

Table 9 shows the results of the ablation study of the ConLearnNet on the EMO-DB
dataset. From the table, we have the following observations.

Table 9. Ablation experiment results of the ConLearnNet on the EMO-DB dataset in terms of WA (%)
and UAR (%).

Models WA UAR

ConLearnNet 97.20 96.41
w/o contrastive learning 96.18 95.96

w/o Macaron 96.19 96.02
w/o FFN 95.85 95.60
w/o Conv 96.11 96.03

w/o BiLSTM 93.27 93.60

From Table 9, several conclusions can be obtained:

• The use of supervised contrastive learning absolutely improves WA and UAR by 1.02%
and 0.47%, respectively.

• The WA and UAR results after using the Macaron structure of the FFN improved by
1.01% and 0.39%.

• The addition of the FFN layer can improve the WA and UAR by 1.35% and 0.81%,
respectively.

• The use of the Conv block can bring an improvement of 1.09% and 0.38% to the WA
and UAR, respectively. The module does not improve as well on the EMO-DB as on
the IEMOCAP, as shown in Table 4, suggesting that the module is more useful for
the identification of datasets with larger amounts of data and that it has a greater
improvement for models with low identification performance.

• The addition of the BiLSTM layer can improve WA and UAR by 3.97% and 2.81%. The
improvement of the recognition effect of this module for the EMO-DB is also not as
good as that for IEMOCAP as shown in Table 4, mainly because of the small sample
size of the dataset, which itself is already able to achieve a good recognition rate, so
the improvement is not significant, but it can further improve the SER performance of
the model.

From the above analysis, it can be seen that all the modules in the emotion extractor
and the ConLearnNet contribute positively to the overall performance of the system on the
EMO-DB dataset.

4.4.3. Comparison with Commonly Used Features

To verify the effectiveness of the proposed W2V2 fine-tuning under the model of
ConLearnNet, the extracted emotion embedding is compared with commonly used features
in SER such as 3-D log-Mel and W2V2 on the EMO-DB dataset.

The experimental results are shown in Table 10. The results show that the WA and
UAR obtained using 3-D log-Mels are only 88.81% and 89.16%, respectively. Meanwhile,
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the WA and UAR obtained by W2V2 are 95.13% and 95.43%, respectively, while the WA
and UAR of emotion embedding can reach 97.20% and 96.41%, respectively. This means
that there is more emotion information in emotion embedding than that in 3-D log-Mels
(W2V2).

Table 10. Comparison with commonly used features on the EMO-DB dataset in terms of WA (%) and
UAR (%).

Features WA UAR

3-D log-Mels 88.81 89.16
W2V2 95.13 95.43

Emotion embedding 97.20 96.41

4.4.4. Confusion Matrix Analysis

To further analyze the experimental results, a confusion matrix is used on the EMO-DB
dataset to more accurately analyze the actual recognition results of each type of emotion.
By observing the recognition performance of the system for each type of emotion, we can
make targeted improvements to the system for the emotion with poor recognition effect.
Figure 7 shows the confusion matrix of the system when SER is performed on the EMO-DB
database and the WA and UAR are 97.20% and 96.41%, respectively.

99.21 0.16 0 0 0.31 0 0.31

0 98.52 0.25 0 0 0 1.23

0 1.30 96.96 0 0.43 1.30 0

0.87 0 2.61 95.36 1.16 0 0

7.89 0 0.56 6.20 84.51 0.85 0

0 0 0 0 0 100.00 0

0 0.76 0 0 0 0.51 98.73

anger boredom disgust anxiety happiness sadness neutral

anger

boredom

disgust

anxiety

happiness

sadness

neutral

Figure 7. Confusion matrix of ConLearnNet on the EMO-DB dataset with WA of 97.20% and UAR of
96.41%.

The confusion matrix on the EMO-DB shows that the system achieves good discrim-
ination for each category. Observing the confusion matrix in Figure 7, we can see that
the system recognizes each type of emotion very well on the EMO-DB database, and can
perform over 90% on each emotion category except happiness.

4.4.5. Comparison with the State-of-the-Art Systems

Table 11 shows the experimental results of our system and other state-of-the-art
systems on the EMO-DB dataset, and the results show that our method outperforms these
methods. Compared with the best system in Table 11 (MFCC-TIM-Net [11]) , WA can be
absolutely improved by 1.50% and UAR by 1.24%.
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Table 11. Comparison with the state-of-the-art systems on the EMO-DB dataset in terms of WA (%)
and UAR (%).

Systems Features Models WA UAR

1 Raw Speech 1BTPDN [31] 89.16 88.46

2 MFCC GM-TCN [32] 91.39 90.48

3 MFCC CPAC [33] 94.95 94.22

4 MFCC TIM-Net [11] 95.70 95.17

Proposed Emotion embedding ConLearnNet 97.20 96.41

5. Discussion

In our studies, ablation experiments were conducted on the IEMOCAP and the EMO-
DB databases, respectively. The experimental results show that the proposed model,
ConLearnNet is the optimal model among the sets examined, and the SER results on both
datasets can be greatly improved after adding contrastive learning, which fully reflects the
importance of contrastive learning for improving the feature representation. However, by
observing the t-SNE visualization results in Figures 4 and 6, we can find that even with the
introduction of the supervised contrastive loss function, the learned feature representation
on the IEMOCAP is still inadequate, and we would like to further optimize the loss function
afterward so that the model can generate a more easily classifiable feature representation.

In addition, under the model of ConLearnNet, 3-D log-Mel and W2V2 are used to
compare the proposed emotion embedding. The experimental results on both datasets
demonstrate the effectiveness of the proposed emotion feature. Compared with 3-D log-Mel,
our emotion embedding retains more emotion-related information and is better adapted
to the classification task. Compared to W2V2, the fine-tuned model is more adaptable
to extract emotion-related information and the extracted feature is more beneficial to the
emotion classification task.

To explore the system’s recognition effect for each emotion, we also used a confusion
matrix for observation. We observed that our system has average recognition for the angry
and neutral emotions on the IEMOCAP dataset, but is strong at recognizing sad and happy
emotions, whereas on the EMO-DB dataset, each emotion has a high recognition ability.
The accuracy of the IEMOCAP dataset is much lower than that of the EMO-DB dataset, and
the reasons for this include the following three. The first one is that the emotion recognition
of the EMO-DB contains seven categories of emotions, while the IEMOCAP only recognizes
four categories of emotions. The second is that the EMO-DB has fewer test utterances and
only 53 utterances need to be categorized. The third is that the EMO-DB dataset has no
spontaneous samples, so the emotion information in speech is more standardized.

Our studies also demonstrate that our system can obtain good recognition results on
both English and German corpora. Further work will be carried out on a wider variety of
corpora in order to further promote the system for practical applications.

6. Conclusions

In this paper, in order to extract emotional representation well, SCFFN is proposed
to train an emotion embedding extractor at the base of the pre-trained W2V2 model to
extract emotion embedding that can well characterize the emotion signals. In addition,
to classify the emotion signals better, different from the traditional model that usually
consists of the function of feature learning and classification, a new model that has a new
function of contrastive learning to supervise features in the model training stage is proposed.
Contrastive learning is used to make samples belonging to the same category exhibit
similar feature representations while those from different categories exhibit discriminative
representations.

The experimental results on the IEMOCAP and the EMO-DB datasets show that the
proposed emotion embedding can perform better than commonly used features such as
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3-D log-Mel and W2V2 extracted features, and that contrastive learning plays an important
role in the system. In addition, we also find that the proposed system can achieve better
performance than the state-of-the-art systems on each of the two datasets.
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