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Abstract: A triple-active bridge (TAB) can be used as a power conversion unit in a three-port DC
energy router (DCER) such as a triple-active bridge-based DC energy router (TAB-DCER). The
operational loss of a TAB can be seen as a key factor affecting the efficiency of a TAB-DCER. However,
the RMS value of the inductor current of the TAB-DCER increases under single-phase shift (SPS)
control, and this greatly increases the system operating losses. The use of phase-shifted plus PWM
(PS-PWM) control can reduce the RMS value of the inductor current, but its mathematical model is
complex, and involves difficult calculations. To address this problem, in the study reported here, we
developed an optimal control strategy for the RMS value of the inductor current based on TAB-DCER.
First, the working principle of a TAB-DCER under PS-PWM control was analyzed, and a circuit
decomposition model was established. Second, the operating modes under PS-PWM control were
analyzed, and corresponding expressions of port power and the RMS value of the inductor current
were obtained. Third, an optimized mathematical model of the sum of squares of the RMS value
of the inductor current of the TAB-DCER was constructed. Finally, a genetic algorithm was used
to solve the mathematical model and derive the optimal phase shift angle; this resulted in a lower
RMS value of the inductor current in the TAB-DCER and reduced the system operating losses. The
simulation and experimental results show that the TAB-DCER used in the present study can reduce
operating losses, improve system efficiency, and deliver coordinated power control.

Keywords: DC energy router; triple-active bridge; inductor current optimization; genetic algorithm;
phase-shifted plus PWM

1. Introduction

With recent large-scale growth in distributed renewable energy sources, electric vehi-
cles, and energy storage systems connected to power systems, DC microgrids may represent
the best possible access solution. Adjacent DC microgrids can be interconnected to form a
DC microgrid group which is characterized by complementarity and coordination among
distributed energy sources; this, in turn, can improve the reliability of the power supply.
Levels of performance with respect to interconnection, energy scheduling, and coordinated
methods can be seen as key factors in determining whether mutual support control can be
achieved between different DC microgrids [1,2]. A triple-active bridge-based DC energy
router (TAB-DCER) can interconnect three adjacent DC microgrids and achieve a reasonable
distribution of energy among multiple DC microgrids. A TAB-DCER can also be used to
realize a flexible coordination of renewable energy and storage across regions and further
realize complementary energy support [3–5]. Figure 1 presents a schematic diagram of the
structure of an interconnected multiple DC microgrid system based on a TAB-DCER.
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Figure 1. Multi-DC microgrid interconnection system based on TAB-DCER.

Single-phase shift control (SPS) is the most basic control strategy of a TAB-DCER. Using
an SPS control strategy, the authors of [6,7] analyzed expressions of port power in different
operating modes and used model predictive control to achieve port power decoupling. The
authors of [8,9] eliminated the AC component of the current and carried out a real-time
calculation of the decoupling phase shift angle to reduce the power coupling between ports.
The authors of [10] proposed an active damping method that not only achieved port power
decoupling but also effectively eliminated oscillation in the TAB-DCER’s input current.
The authors of [11] designed a structure for a multi-resonant TAB-DCER; this realized
power decoupling and also improved the efficiency of the system. However, this method is
suitable only for TAB-DCER converters with specific resonant structures. In some related
studies [6–11], the efficiency of the TAB-DCER was not assessed. The authors of [12,13]
analyzed the ZVS condition of a TAB-DCER in detail, but these analyses were only based on
SPS control, which is characterized by limited control degrees of freedom and low flexibility.
In addition, and as reported in the literature [14], in the presence of return power, the RMS
value of the inductor current increases, increasing the loss in the TAB-DCER and reducing
the operational efficiency of the system. The authors of [15] proposed a phase-shifted plus
PWM (PS-PWM) control strategy; this was found to effectively reduce the system operating
losses and improve operational efficiency. The authors of [16] briefly analyzed the ZVS of
all switching modes under PS-PWM control; such control was found to broaden the ZVS
range and improve the system’s efficiency. However, these authors did not analyze the
efficiency of the TAB-DCER from the perspective of the RMS value of the inductor current.
In addition, due to the increase in control degrees of freedom obtained under the PS-PWM
control strategy, the mathematical model of the TAB-DCER becomes more complex, making
it difficult to analyze and solve using the traditional modal analysis method. The authors
of [17] proposed a simple unified solution model for a TAB-DCER inductor current. By
such means, a unified expression for an inductor current was derived, and the difficulty of
analysis was reduced. In another study [18], a frequency domain-generalized harmonic
approximation technique was used to optimize the RMS value of the inductor current.
However, such a technique cannot be used to determine the expression of the inductor
current in the time domain.

To make the RMS current easier to calculate in the time domain, the intelligent op-
timization algorithm may be of potential utility [19–24]. In some recent studies [19–21],
researchers used particle swarm optimization and a genetic algorithm to calculate the phase
shift angle of DAB to optimize the RMS value of the inductor current and the current stress.
In another study [22], a multi-objective and comprehensive control strategy to optimize
efficiency was proposed; this can not only achieve soft switching of a TAB-DCER, but also
reduce current RMS and loss. The authors of [23] used a neural network to optimize the
RMS value of the inductor current and thus reduce system losses. Finally, the authors of [24]
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compared the effectiveness of methods such as an offline gradient descent search and an
artificial neural network for optimization of the RMS value of the inductor current. Using
an intelligent optimization algorithm, the appropriate phase shift angle for all operating
conditions of the DC–DC converter can be calculated and embedded in the program code
for the controller to look up the table; this effectively reduces the number of real-time
calculations. Compared with a control algorithm of the real-time computing class, the
design of the system was simplified, and calculation speed was increased. No applications
of a genetic algorithm for TAB modulation were found in the literature.

In summary, in the present study, we focused on creating an efficiency improvement
strategy for a three-port energy router in DC microgrids. A circuit decomposition model
of a TAB-DCER under PS-PWM control was constructed, and a unified expression of the
power and the RMS value of the inductor current of each port under different working
modes was obtained. An optimal mathematical model of the sum of squares of the RMS
value of the inductor current for each port was constructed to calculate the appropriate
phase shift angle to reduce the system operating losses using the genetic algorithm. Using
the proposed strategy, it was found that a TAB-DCER can quickly adjust load power,
maintain stable operation of the system, achieve power coordinated control, optimize the
levels of the system operating losses, and achieve high-efficiency operation. The feasibility
and effectiveness of the proposed strategy were then verified by experiments.

2. The Topology and Working Principle of TAB-DCER

The TAB-DCER topology is shown in Figure 2. Each port is connected to a high-
frequency transformer via three H-bridge modules. The presence of the high-frequency
transformer provides electrical isolation to the ports. When a short-circuit fault occurs at
one port, the short-circuit inrush current does not flow through the DC bus to the other
ports. This system also enables port interconnections at various voltage levels by adjusting
the transformer turns ratio. The TAB-DCER converter is safe and stable and delivers
high-efficiency energy conversion.
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Figure 2. Topological diagram of the TAB-DCER.

In the present study, we define the output power flow of port one and the input power
flows of ports two and three as being in a positive direction. L1, L2, and L3 represent the
power transfer inductance of ports one, two, and three, respectively, and the transformer
winding ratio is N1 : N2 : N3. For ease of analysis, ports two and three are commuted to
the port one side to obtain the ∆-type and Y-type equivalent circuits of the TAB-DCER, as
shown in Figure 3.
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2.1. Control Strategy of TAB-DCER
2.1.1. SPS Control Strategy

The SPS control strategy of TAB-DCER regulates the output power of each port by
controlling the phase shift angle, φij, between the square-wave voltages, VHi(i = 1, 2, 3), of
the H-bridge at each port. The operating waveforms of the H-bridge square-wave voltage
at each port under SPS control are shown in Figure 4. The transmitted power between each
port can be adjusted simply by adjusting the size of the phase shift angle.
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The transmission power of each port is determined to have the maximum value, Pmaxij,
when φij = 0.5 under SPS control, as shown in Equation (1).

Pmaxij =
nijViVj

8 fsLij
(1)

Here, nij = Ni/Nj, fs is the switching frequency, and Lij is the inductance in the ∆-type
equivalent circuit.

2.1.2. Phase-Shifted Plus PWM Control

PS-PWM control of TAB-DCER introduces an inward phase shift angle, δi(i = 1, 2, 3),
based on the SPS control, as shown in Figure 5. This is because control of the duty cycle of
VHi is added under the SPS control strategy. Under the phase shift plus pulse width control
strategy, there are various values and combinations of the internal shift ratio δi(i = 1, 2, 3)
at each port of the TAB-DCER. In addition, there is increased freedom of TAB-DCER control,
making it more flexible. The range of values of δi(i = 1, 2, 3) satisfies 0 ≤ δi ≤ 1.
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2.2. Power Flow Analysis of TAB-DCER-based DC Microgrids

DC microgrids contain distributed energy sources such as photovoltaics and wind
turbines. The output of these distributed energy sources may be affected by weather and
other factors. They may also exhibit seasonal and spatial fluctuations in electrical loads.
TAB-DCER enables bi-directional power flow between ports. The power-flow schematic of
the TAB-DCER-based DC microgrid is shown in Figure 6.
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To maximize the use of distributed energy resources and achieve a rational power
distribution among the DC microgrids. TAB-DCER can quickly regulate the power of
each DC grid and load according to the load connected to each port, thus maintaining the
internal power balance of the system when the load changes and delivering coordinated
control of the system’s power.

3. Optimal Control of the RMS Value of the Inductor Current for TAB-DCER

The TAB-DCER can effectively convert and distribute energy between different ports,
realize the coordinated control of the power of the system, and ensure the efficient use of
energy. Therefore, in order to improve the efficiency of the three-port DC energy router, we
propose in this paper an optimal control strategy for the RMS value of the inductor current
based on the TAB-DCER. Use of this strategy can effectively reduce the RMS value of the
inductor current, reduce losses, and improve system efficiency.

3.1. The Optimal Mathematical Model of the RMS Value of the Inductor Current for TAB-DCER
Based on Circuit Decomposition

According to Figure 5, the VHi are all three-electrode square waves with a duty cycle
of 1 − δi under the control of PS-PWM. As shown in Figure 7, a three-electrode square
wave can be decomposed into two symmetrical two-electrode square waves. S(t) is a
two-electrode square-wave function with amplitude 0.5 and period 2T, and S(t − dT) is
a two-electrode square-wave function with phase lag S(t). Therefore, a three-electrode
square wave with a duty cycle of 1 − δi can be expressed as the sum of S(t) and S(t − dT)
with an amplitude of 1 and a period of 2T.
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VHi under the control of PS-PWM can be expressed as shown in Equation (2).
VH1 = V1

[
S(t) + S

(
t − δ1

π T
)]

VH2 = V2

[
S
(

t − φ12−δ2
π T

)
+ S

(
t − φ12

π T
)]

VH3 = V3

[
S
(

t − φ13−δ3
π T

)
+ S

(
t − φ13

π T
)] (2)

Here, S(t) denotes the standard two-level square-wave function, V1 is the amplitude
of the input DC voltage VH1, V2 is the amplitude of the DC voltage VH2 of port two, and V3
is the amplitude of the DC voltage VH3 of port three.

The equivalent circuit after the decomposition of the TAB-DCER circuit can be trans-
formed under the control of PS-PWM, as shown in Figure 8.
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Figure 8. Equivalent model of the decomposed TAB-DCER circuit (taking ports one and two
as examples).

To simplify the analysis, we assume that the switching devices and the magnetic
components in the circuit are both ideal. According to Figure 8, the differential equation
for the inductor current after the circuit decomposition can be expressed as:

L12
diL12

dt = VH1 − n12VH2

L13
diL13

dt = VH1 − n13VH3

L23
diL23

dt = n12VH2 − n13VH3

(3)

Substituting Equation (2) into Equation (3), the expression for each port’s inductor
current can be solved based on the volt-second balance of the inductor, i.e., Equation (4):

iL12(t) =
V1
L12

S1(t)− n12V2
L12

S2(t)

iL13(t) =
V1
L13

S1(t)− n13V3
L13

S3(t)

iL23(t) =
n12V2

L23
S2(t)− n13V3

L23
S3(t)

(4)

where 
S1(t) = Tr(t)− Tr(t − δ1T/π)

S2(t) = Tr(t − (φ12 − δ2)T/π)− Tr(t − φ12T/π)

S3(t) = Tr(t − (φ13 − δ3)T/π)− Tr(t − φ13T/π)

(5)

Because the inductor current waveform exhibits half-period central symmetry, Tr(t)
is a symmetric triangular wave with amplitude 0.25T and period 2T obtained by integrat-
ing S(t).

The addition of three internal phase shifts increases the number of variables and makes
the analysis more complicated. For analytical purposes, in this paper, we only consider
the case of adding a single internal phase shift δ2 (i.e., δ1 = δ3 = 0, δ2 ̸= 0). According
to the relationship between the control quantities, φ12, φ13, δ2, the PS-PWM control mode
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can be divided into five operating modes, as shown in Figure 9. The transmission power
expression of each port can be expressed as:

Pij =
1
T

∫ T

0
VHiiLijdt (6)
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According to the power transfer relationships between each port, the power expression
of each port in each of the five operating modes can now be expressed as follows:

• Mode 1, 0 < φ12 < φ13 < 1, 0 < φ12 + 1 − δ2 < φ13
P1 =

TV2
1

2L∆
[(1 − δ2)(2φ12 − δ2) + 2φ13(1 − φ13)]

P2 =
TV2

1
2L∆

(1 − δ2)(4φ12 − 2φ13 − 2δ2)

P3 =
TV2

1
2L∆

[2φ13(1 − φ13)− (1 − δ2)(2φ12 − 2φ13 − δ2)]

(7)

• Mode 2, 0 < φ12 < φ13 < 1, φ13 < φ12 + 1 − δ2 < 1


P1 =

TV2
1

2L∆
[(1 − δ2)(2φ12 − δ2) + 2φ13(1 − φ13)]

P2 =
TV2

1
2L∆

(
2φ13 − 2φ13δ2 − 2φ2

12 − 2φ2
13 + 4φ12 φ13

)
P3 =

TV2
1

2L∆

(
2φ12 − δ2 − 2φ12δ2 + 2φ13δ2 + δ2

2 + 2φ2
12 − 4φ12 φ13

) (8)

• Mode 3, 0 < φ12 < φ13 < 1, φ12 − δ2 > 0


P1 =

TV2
1

2L∆

[
−
(
2φ2

12 + δ2
2 − 2φ12 + δ2 − 2φ12δ2

)
+ 2φ13(1 − φ13)

]
P2 =

TV2
1

2L∆
=

[
2φ13 + 4φ12δ2 − 2φ13δ2 − 2δ2

2 − 4φ2
12 − 2φ2

13 + 4φ12 φ13
]

P3 =
TV2

1
2L∆

(
2φ12 − δ2 − 2φ12δ2 + 2φ13δ2 + δ2

2 + 2φ2
12 − 4φ12 φ13

) (9)

• Mode 4, 0 < φ13 < φ12 < 1, φ13 < φ12 + 1 − δ2 < 1


P1 =

TV2
1

2L∆
[(1 − δ2)(δ2 − 2φ12) + 2φ13(1 − φ13)]

P2 =
TV2

1
2L∆

(1 − δ2)(−2φ12 − 2φ13)

P3 =
TV2

1
2L∆

[2φ13(1 − φ13) + (1 − δ2)(2φ13 + δ2)]

(10)
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• Mode 5, 0 < φ13 < φ12 < 1, φ12 − δ2 > 0


P1 =

TV2
1

2L∆

[
−
(
2φ2

12 + δ2
2 − 2φ12 + δ2 − 2φ12δ2

)
+ 2φ13(1 − φ13)

]
P2 =

TV2
1

2L∆

[(
−2φ2

12 + 4φ12 − 2δ2
)
− 2φ13 + 2φ13δ2

]
P3 =

TV2
1

2L∆
[2φ13(1 − φ13)− (1 − δ2)(2φ12 − 2φ13 − δ2)]

(11)

According to the calculation formula for the RMS current:

I2 =
1
T

∫ T

0
i2(t) dt (12)

the expression of the RMS value of the inductor current based on the circuit decomposition
model can be calculated:

I2
L12 =

T2V2
1

π2L2

(
φ2

12 +
1
4 δ2

2 − φ12δ2

)
I2
L23 =

T2V2
1

π2L2

(
φ2

12 + φ2
13 +

1
4 δ2

2 − φ12δ2 − 2φ12 φ13 + φ13δ2

)
I2
L13 =

T2V2
1

π2L2 φ2
13

(13)

where L = L12 = L13 = L23.
According to the expression

I2
RMS = I2

L12 + I2
L23 + I2

L13 (14)

we can now obtain an expression for the sum of squares of the RMS value of the inductor
current based on the circuit decomposition model as follows:

I2
RMS =

T2V2
1

π2L2

(
2φ2

12 + 2φ2
13 +

1
2

δ2
2 − 2φ12δ2 − 2φ12 φ13 + φ13δ2

)
(15)

The optimal mathematical model of the sum of squares inductor RMS current based
on the circuit decomposition algorithm can now be expressed as follows:

min I2
RMS = f (φ12, φ13, δ2)

s.t.g
(

φ12, φ13, δ2, P∗
i
)
= 0

lj(φ12, φ13, δ2) ≤ 0

(16)

where f (φ12, φ13, δ2) is the expression of the sum of squares of the RMS value of the
inductor current, g(φ12, φ13, δ2) = 0 is the port power constraint, and lj is the phase shift
angle constraint in the operating mode j.

For analytical purposes, the power reference value and the reference value of the sum
of squares of the RMS value of the inductor current are as follows:

Pb =
TV2

1
2πL

, I2
b =

T2V2
1

4π2L2 (17)

3.2. Optimal Control of the RMS Value of the Inductor Current

Because multiple combinations of phase shift angles may give the same power output
under PS-PWM control, algorithms must be combined to determine the optimal combi-
nation that minimizes the RMS value of the inductor current. The genetic algorithm is an
optimization algorithm that simulates natural selection. Local optimization results can be
effectively avoided by adjusting the initial parameters of the genetic algorithm.
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The specific process of the genetic algorithm is shown in Figure 10, including coding,
decoding, genetic operation, fitness calculation, evaluation, etc. The initialization param-
eters are shown in Table 1. First, the parameters of the genetic algorithm are initialized.
The initial parameters (φ12, φ13, δ2) are obtained for each individual in the population, and
fitness is calculated. The individuals are then encoded. Next, selection, crossover, and
mutation operations are performed on the population according to the set parameters;
the new population after the operations is then decoded. The fitness of this iteration is
compared with the optimal fitness, and the better result is used to update the optimal
fitness and optimal solution. Finally, the operation is ended when the termination principle
is satisfied.
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Table 1. Initial parameters of the genetic algorithm.

Parameter Numeric Value

Population size 100
Evolutionary algebra 50
Crossover probability 0.6

Probability of variation 0.01

Figure 10 shows a flowchart of the genetic algorithm optimization strategy (GAOS)
for an inductor current based on the circuit decomposition model. Figure 11 shows a block
diagram for the implementation of the GAOS for an inductor current based on the circuit
decomposition model. Firstly, before the system runs, the calculation results of the genetic
algorithm need to be stored in the microcontroller. We obtain the shift ratio (φ12, φ13) after
passing through the PI controller by detecting the difference between the inductor current
of port two and the reference value and the difference between the voltage of port three and
the reference value. Next, the optimized shift ratio combination is obtained by checking the
online table of δ2 based on the port power. The optimized shift ratio is input to the PWM
modulation module to achieve control of the TAB-DCER.
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4. Simulation and Experimental Verification
4.1. Simulation Analysis of Power Coordination Control in TAB-DCER

In this section, we describe the TAB-DCER simulation model based on the MAT-
LAB/Simulink 2018b platform that we used to verify the power coordination control
capability of the TAB-DCER. The main simulation parameters are shown in Table 2. Port
one is connected to the DC microgrid to access the distributed micro source. Port two is
connected to the DC microgrid to access the distributed micro source and load. Port three
is connected to the DC microgrid to access the load. The DC bus of a DC microgrid is
simulated with a DC power supply and a 0.8 Ω series resistor.

Table 2. Main simulation parameters.

Parameter Stats

Port one voltage V1 (V) 120
Port two voltage V2 (V) 120

Port three voltage V3 (V) 240
Switching frequency fs (Hz) 20,000

Transformer ratio N1 : N2 : N3 1:1:2
Power transmission inductance L1, L2, L3

(Mh) 21.33, 21.33, 85.32

During normal operation, the DC microgrid load resistance of access ports two and
three is set to 100 Ω and 200 Ω, respectively. Figure 12 shows the waveforms of port-power
and load-power consumption in each port of TAB-DCER when there is a sudden change
in load power in port two. As shown in Figure 12, the load resistance of the port two DC
microgrid changes from 100 Ω to 50 Ω at 0.8 s, and then to 100 Ω at 1.6 s. As can be seen
from the figure, the load power within the port three DC microgrid still maintains constant
power after a short fluctuation when the load of the port two DC microgrid increases or
decreases. The load fluctuation in the port two microgrid does not affect the stability of the
port three DC microgrid.
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Figure 12. Waveforms of port-power consumption and load-power consumption in each port of
TAB-DCER with a sudden load-power change in port two.

Figure 13 shows the waveforms of port-power and load-power consumption in each
port of TAB-DCER when there is a sudden change in load power in port three. As can
be seen in Figure 13, the load resistance of the port three DC microgrid changes from
200 Ω to 100 Ω at 0.8 s, and then to 200 Ω at 1.6 s. It can also be seen from the figure that
the load power within the port two DC microgrid still maintains constant power after
a short fluctuation when the load of the port three DC microgrid increases or decreases.
Furthermore, this does not affect the stability of the port two DC microgrid.
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Figure 13. Waveforms of port-power consumption and load-power consumption in each port of
TAB-DCER with a sudden load-power change in port three.

As can be seen from Figures 12 and 13, TAB-DCER is able to quickly regulate load
power in the DC microgrid according to operating conditions, so that the system continues
to run stably. In addition, power coordinated control is realized when the operating
conditions of the system change.

4.2. Simulation Verification and Analysis of GAOS Control Strategy

Figure 14 shows the three-dimensional relationship between the sum of squares of
the RMS value of the inductor current (I2

RMS) and the power of ports two and three under
the SPS and GAOS control strategies of TAB-DCER. It can be seen from the figure that the
sum of squares of the RMS value of the inductor current is proportional to the port power
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and that the I2
RMS is significantly smaller under the GAOS control strategy than the SPS

control strategy.
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Figure 14. Three-dimensional plot of I2
RMS vs. power at each port under the two control strategies.

Figure 15 shows waveforms for voltage and inductor current at each port under both
control strategies when P2 = 0.6 (per unit) and P3 = 0.1 (per unit). In this condition, the
inward shift ratio is calculated by the GAOS control strategy as D = 0.07, and the sum of
squares of the RMS value of the inductor current (per unit) at each port is 1.452. The sum
of squares of the RMS value of the inductor current (per unit) at each port under the SPS
control strategy is 1.478. In Figure 14, the optimization of the RMS value of the inductor
current under GAOS control is obvious; current values are significantly smaller than those
obtained under SPS control.
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Figure 15. Waveforms at each port with P2 = 0.6 (per unit), P3 = 0.1 (per unit). (a) Voltage waveform
of each port under two control modes. (b) Inductor current waveform of each port under two
control modes.

Figure 16 presents a schematic diagram of the input power at another port versus
the sum of squares of the RMS value of the inductor current when the input power at
either port two or three is constant. As shown in Figure 16a, the sum of squares of the
RMS value of the inductor current is proportional to the port two input power, P2, when
the input power, P3, at port three is constant. The sum of squares of the RMS value of the
inductor current is significantly smaller under GAOS control than under SPS control. It can
be seen in Figure 16b that the sum of squares of the RMS value of the inductor current is
proportional to P3 when the input power, P2, at port two is constant. The sum of squares of
the RMS value of the inductor current is significantly smaller under GAOS control than
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under SPS control. As shown in Figure 16, the GAOS control strategy can effectively reduce
the RMS value of the inductor current.
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Figure 16. Two-dimensional plot of I2
RMS versus power at each port. (a) Schematic of the relationship

between P2 and the sum of squares of current RMS when P3 is constant. (b) Schematic of the
relationship between P3 and the sum of squares of current RMS when P2 is constant.

4.3. Experimental Validation and Analysis

To confirm the effectiveness of the GAOS control strategy described in this paper, it
was necessary to validate the experiments on a semi-physical experimental platform based
on Star Sim hardware, as shown in Figure 17. The main parameters of the experiment are
presented in Table 3.
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Figure 17. Star Sim hardware-in-the-loop semi-physical experimental platform.

Table 3. Main parameters of the experiment.

Parameter Stats

Port 1 voltage V1(V) 120
Port 2 voltage V2(V) 120
Port 3 voltage V3(V) 240

Switching frequency fs(Hz) 5000
Transformer ratio N1 : N2 : N3 1:1:2

Power transmission inductance L1: L2: L3 (Mh) 21.33

Figure 18 gives the experimental waveforms of each port under the two control
strategies when P2 = 960 W and P3 = 480 W. The sum of squares of the RMS value of the
inductor current (per unit) at each port for the SPS control strategy was 0.096. The sum
of squares of the RMS value of the inductor current (per unit) at each port for the GAOS
control strategy was 0.078. These experimental results were consistent with the simulation
analysis. We conclude, therefore, that the optimized control strategy proposed in this paper
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can effectively reduce the sum of squares of the RMS value of the inductor current and thus
reduce conduction loss.
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5. Conclusions

Operational losses can be seen as a crucial factor affecting the efficiency of TAB-DCER
converters. Under SPS control, TAB-DCER is characterized by a large RMS value of the
inductor current and low operational efficiency. Under PS-PWM control, the mathematical
model is complicated, and analysis of current is difficult to achieve; this also affects levels
of operational loss. In the study reported in this paper, the working principle of TAB-
DCER under PS-PWM control was first analyzed, and the equivalent circuit was then
decomposed into a circuit in which two square-wave power supplies acted together based
on the superposition theorem. Next, a unified expression for the power and the RMS
value of the inductor current at each port in different operating modes was constructed. A
mathematical optimization model of the sum of squares of the RMS value of the inductor
current for each port was then established; this was used to calculate the appropriate phase
shift angle using a genetic algorithm. It was found that TAB-DCER running at the optimal
phase shift angle greatly reduced losses. Finally, an experimental platform was built to
verify the feasibility and effectiveness of the control strategy. The following conclusions
were drawn from the work described above:

1. The sum of squares of the RMS value of the inductor current of the TAB-DCER is
related only to the phase shift angle between the ports and the duty cycle of the
switching tubes. TAB-DCER can quickly adjust the load power according to the
working condition to keep the system running stably and realize power-coordinated
control when the working condition of these system changes.

2. The circuit decomposition model based on PS-PWM control effectively reduces the dif-
ficulty of analyzing TAB-DCER. In addition, the use of a genetic algorithm reduces the
complexity and computational difficulty of the mathematical model for optimization
of the RMS value of the inductor current.

3. The GAOS control strategy proposed in this paper can effectively reduce the sum of
squares of the RMS value of the inductor current, decrease converter pass-state losses
of the TAB-DCER, and improve the power transfer efficiency of TAB-DCER.

The control strategy proposed in this paper does not take into account the effects of
voltage mismatch on RMS values of the inductor current of the TAB-DCER. Consequently,
our next study will prioritize how to reduce the RMS value of the inductor current during
voltage mismatch.
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