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Abstract: Cryptocurrencies have experienced a surge in popularity, paralleled by an increase in
phishing scams exploiting their transactional networks. Therefore, detecting anomalous transactions
in the complex structure of cryptocurrency transaction data and the imbalance between legitimate and
fraudulent data is considered a very important task. To this end, we introduce a model specifically
designed for scam detection within the Ethereum network, focusing on its capability to process long
and complex transaction graphs. Our method, Deep Graph traversal based on Transformer for Scam
Detection (DGTSD), employs the DeepWalk algorithm to traverse extensive graph structures and a
Transformer-based classifier to analyze intricate node relationships within these graphs. The necessity
for such an approach arises from the inherent complexity and vastness of Ethereum transaction data,
which traditional techniques struggle to process effectively. DGTSD applies subgraph sampling to
manage this complexity, targeting significant portions of the network for detailed analysis. Then,
it leverages the multi-head attention mechanism of the Transformer model to effectively learn
and analyze complex patterns and relationships within the Ethereum transaction graph to identify
fraudulent activity more accurately. Our experiments with other models demonstrate the superiority
of this model over traditional methods in performance, with an F1 score of 0.9354. By focusing on
the challenging aspects of Ethereum’s transaction network, such as its size and intricate connections,
DGTSD presents a robust solution for identifying fraudulent activities, significantly contributing to
the enhancement of blockchain security.

Keywords: graph traversing; graph neural network; DeepWalk; transformer; cryptocurrency security;
fraud detection

1. Introduction

Since Bitcoin’s emergence, the cryptocurrency sector has seen exponential growth,
driven by its core attributes of decentralization, scalability, transparency, security, and sta-
bility. Ethereum has been at the forefront of this expansion, extending blockchain’s utility
beyond simple transactions to a broader range of applications through smart contracts
and decentralized applications (DApps). Statistics show that, as of 2022, there are over
250,000 transactions per day for Bitcoin and 1,130,000 for Ethereum [1]. However, this
rapid growth has not been without challenges. The inherent features of cryptocurrencies,
particularly their anonymity and the complexity of their transaction networks, have made
them a target for various cybercrimes, including investment fraud and exploitation of soft-
ware vulnerabilities. A report by the Australian Competition and Consumer Commission
highlighted a significant rise in cryptocurrency-related fraud, noting a 190% increase in
losses between 2017 and 2018 [2].

A key challenge in combating cybercrimes lies in cryptocurrency transaction data.
Ethereum’s network, for instance, has accumulated approximately 2196.75 million trans-
actions, according to Etherscan (https://etherscan.io/, accessed on 27 February 2024).
As illustrated in Figure 1, visualizing just 500 nodes from Ethereum’s transaction graph
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shows the density and intricacy of these networks, with many interconnected nodes and
edges. This graphical representation highlights how each node, representing a transaction
or contract, intertwines with others to form a complex web that is both vast and intri-
cate. This complexity makes traditional data analysis methods inadequate for processing
and analyzing such vast, intertwined datasets. Governments, financial institutions, and
investment advising agencies are trying to bring solutions, but the knowledge and under-
standing of blockchain technology and cryptocurrencies among officials and investors is
still insufficient [3]. This creates a need for technology that can predict and proactively
prevent fraudulent schemes on cryptocurrency networks.

In this study, we specifically chose the DeepWalk algorithm to effectively explore
and understand the complex structure of the Ethereum transaction graph. DeepWalk is
a useful algorithm for generating embeddings that do not consider the order of nodes
in graph-structured data and works by randomly walking through each node to capture
its neighbors. This approach is particularly effective at capturing deep connections and
interactions between nodes, which is essential for identifying important patterns and
structures in complex networks like Ethereum. By using DeepWalk, we gain important
insights into each node’s position within the network and its relationships with other nodes.

The output of DeepWalk is a dense vector-like embedding that reflects the key charac-
teristics and relationships of nodes in a high-dimensional graph, enabling the numerical
representation of complex relationships and patterns between nodes. This embedding
is analyzed by advanced techniques such as Transformer, which, using a multi-headed
self-attention mechanism, learns various node relationships and identifies complex patterns.
The properties of the embeddings from DeepWalk allow the Transformer model to analyze
semantic and structural node relationships more precisely. This approach outperforms
traditional graph analysis methods in accurately identifying anomalous patterns, such as
fraudulent behavior within the Ethereum transaction network. Therefore, we propose a
novel methodology combining DeepWalk and Transformer for in-depth fraud detection in
the Ethereum transaction graph, marking a significant advancement in blockchain security
and showing great potential for future research and applications.

Our paper introduces a novel methodology that merges graph traversal techniques
with Transformer-style neural network models by leveraging the power of DeepWalk to
effectively navigate Ethereum’s vast graph structure and skillfully capture the complex
web of transactional interactions that define the network. This initial step is critical because
it makes it possible to map out the complex and long paths and connections between
transactions and contracts. Subsequently, the application of the Transformer model [4],
specifically the multi-headed self-attention mechanism, facilitates a nuanced analysis of
these structures. This mechanism allows the model to focus on multiple parts of the input
simultaneously, highlighting the complex node relationships and transaction interactions
within the Ethereum network. By computing the attention scores of different representation
subspaces at different locations, the Transformer model can capture the complex dynamics
and dependencies between transactions and contracts without losing sight of the overall
structure. This combined approach is specifically designed to meet the unique demands of
cryptocurrency transaction data analysis, providing a comprehensive and nuanced insight
into the network that is vital for pinpointing fraudulent activities.

The significance of this paper lies not only in its methodological proposition but also
in addressing and potentially resolving a fundamental issue in the field of cryptocurrency
security. The major contributions of this research are threefold:

• A new technical approach to improve cybersecurity: The DGTSD model provides a
new technical approach to enhance the security of cryptocurrency transactions and
prevent fraudulent behavior. By analyzing semantic and structural node relationships
in complex transaction networks, the model identifies vulnerabilities exploitable
by cybercriminals. Especially, its ability to accurately detect abnormal transaction
patterns in large blockchain networks like Ethereum significantly boosts the safety
and reliability of blockchain technology. DGTSD introduces a new dimension to
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cybersecurity research through its detailed analysis of the Ethereum transaction graph,
paving the way to strengthen the security posture of blockchain-based systems.

• Deep graph traversal and classification: The DeepWalk–Transformer model, DGTSD,
significantly improves the process of traversing and classifying complex and long
structures in the Ethereum transaction network. By directly addressing the complexity
inherent in large-scale cryptocurrency transaction data, we can simplify the task of
identifying and categorizing complex patterns within vast networks. This approach
marks a substantial step forward in graph-based classification methods by directly
addressing the intricacies of large-scale cryptocurrency transaction data.

• Empirical validation in a real-world dataset: The DGTSD model has been rigorously
tested and validated against real Ethereum transaction data, showing notable improve-
ments in performance compared to existing methods. Its effectiveness in accurately
analyzing and classifying large volumes of transactions underscores the practical
utility of the model in enhancing the security of cryptocurrency networks.

The remainder of this paper is organized as follows. In Section 2, we introduce related
work on fraud detection using cryptocurrency transaction data. Section 3 introduces the
technical details of our proposed DGTSD. Section 4 describes the experimental evaluation
of the effectiveness of the proposed approach in detecting Ethereum money laundering.
Section 5 concludes this paper and presents future research directions.
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Figure 1. Ethereum transaction graph visualization. The graph depicts the complex and extensive
structure of the Ethereum network, highlighting the density of interconnected nodes and edges
characteristic of large-scale transaction data.

2. Related Works

In this section, we review various methodologies in the field of cryptocurrency fraud
detection, ranging from traditional machine learning algorithms to advanced graph-based
neural networks. Table 1 provides a detailed overview of these methodologies and catego-
rizes them into two main types: traditional approaches and graph-based techniques.

A study focused on collecting and pre-processing Ethereum address-by-address data
and then implementing the K-nearest-neighbor algorithm demonstrated the effectiveness
of traditional machine learning techniques in identifying scam nodes in cryptocurrency
transactions [5]. A unique approach to applying time series models to Ethereum trans-
action data provided insights into the temporal aspects of Ethereum transactions and
demonstrated the potential of time series analysis in this area [6].

Slightly differently, a study enhanced LSTMs with an attention mechanism, improving
the analysis of Ethereum transaction dynamics [7]. Another study integrated a genetic
algorithm with Cuckoo Search to avoid local optima, enhancing scam node detection [8]. A
study focusing on wash trades, a specific type of fraud in Ethereum, used a heuristic algo-
rithm to detect scam nodes, highlighting the adaptability and effectiveness of traditional
methodologies to address specific types of cryptocurrency fraud [9]. As detection algo-
rithms, they proposed two approaches: circular detection using DFS (Depth-first search)
and interactions between neighboring nodes.

Graph family methodologies utilize graph neural networks to capture complex node
relationships. Research with temporal graph attention layers has aimed at understanding
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node interactions in graphs, emphasizing the importance of temporal relationships in net-
work data, representing a significant advance in graph-based approaches [10]. Highlighting
the problems in aggregating neighbor information with different relationships, a study
using reinforcement learning with GNNs reduced computational costs while maintaining
transactional information. This provided an innovative direction for graph-based analy-
sis by integrating reinforcement learning and GNNs to not only maintain transactional
integrity but also reduce computational expenses [11].

As the discussion of graph-like methodologies continues, especially with advances
such as integrating graph neural networks (GNNs) and attention mechanisms to capture
complex relationships and temporal dynamics within network data, there is an imperative
need to bridge the gap between these approaches and applying a Transformer in a tradi-
tional classification context. Our model exemplifies this intersection and underscores the
need to explore aspects of the Transformer model in the context of graph-based analytics
by leveraging the Transformer’s power as a classifier.

As part of exploring the Transformer, understanding its attention score measurement
is essential. Attention mechanisms let the model focus on various input parts, enhancing
context and relevance comprehension. The prime method is scaled dot-product attention,
using three inputs: Query (Q), Key (K), and Value (V), and computes similarity by calcu-
lating the dot product of Q and K, scaling it, and applying softmax to compute attention
weights. These weights are applied to V for the output. Dot product scaling by the root of
K’s dimensionality ensures gradient stability.

Multi-head attention performs scaled dot-product attention multiple times in parallel,
each using different weight matrices. This allows the model to learn information from
different representations (subspaces) simultaneously. Self-attention computes the attention
between elements within a sequence. Q, K and V all come from the same input. This
approach is particularly useful for modeling long-range dependencies within a sequence.
Cross-attention computes the attention between two different sequences. For example, it
determines how much attention an element in one sequence should pay to an element in
another sequence. It is often used to learn the relationship between source and target texts
in tasks such as translation. Relative positional encoding [12] includes relative position
information in the attention calculation, rather than absolute position between words. This
allows the model to be more robust to changes in word order. These different methods are
greatly improving the flexibility and scalability of the Transformer model.

There are variations on existing transformers to better handle sequence data. Among
them is Transformer-XL [13], an attachment-based language model that can learn longer
dependencies beyond fixed-length contexts. This model outperforms existing models by
introducing a segment-level attachment mechanism and relative position embeddings. In
particular, the segment-level attachment mechanism is a technique that allows the model to
effectively incorporate information from previous segments into the current computation.
Segment-level attachment mechanisms enable information flow between segments and
improve model performance by addressing the problem of context fragmentation. This
approach contributes to Transformer-XL’s ability to capture a wider range of dependencies
and contexts beyond the limitations of fixed-length contexts.

There are various studies that have solved the problem by utilizing only Transformer’s
encoder. Table 2 categorizes Transformers according to their approach and modeling
method. In [14], Transformer was utilized for multiple classification of heart sound signals.
Transformer is based on a self-attention mechanism, and they proposed a method for
fine-tuning and classifying heart sound signals using a pre-trained Transformer encoder.
The input audio data were segmented into 16 × 16 spectrogram sequences to leverage
information in the time and frequency domains, and each patch was given a learnable
positional embedding for spatial information recognition. In the process, the input part of
the model included class tokens to clarify the classification task.

In [15], the image is represented as a sequence by dividing it into specific patch
sizes, converting each patch into a token, and projecting these tokens into an embedding
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dimension. In the process, classification tokens (CLS) were added to the sequence for image
classification, and location embeddings were added to all tokens so that Transformer’s
self-attention could incorporate location information. The tokens are processed through
multiple stacked Transformer encoders to extract and transform features, with the CLS
tokens used to classify the image. This approach explores the potential of the Transformer
model for image classification by utilizing the sequential nature of images to effectively
perform classification tasks. In [16], Transformers are utilized to extract global features
of an image to identify correlations between objects at a distance. CNNs were then used
to extract local features of the image, i.e., local information such as the texture of objects.
Through this global and local feature extraction method, they built a parallel decoupling
structure between the convolutional neural network and the Transformer to improve the
interaction ability. This was used to comprehensively analyze various features of the image.

Ref. [17] adopted Transformers as classifiers in multivariate time series classification
problems. The embedding process is enhanced to account for the continuity of time series
data, characterized by a fully connected layer and adding a nonlinear activation function,
tanh. In the model structure, the multivariate nature of time series data is captured by
introducing a two-tower structure, modeling the correlation between channels and between
time steps for more precise learning. A gating mechanism is then adopted to effectively
combine the outputs of these two towers, enabling the model to comprehensively analyze
information both channel-by-channel and time-step-by-time-step.

Ref. [18] solves the binary classification problem by applying Transformer to categor-
ical features. The model presented in this paper, TabTransformer, starts with a column
embedding layer, sequentially stacks N Transformer layers, and finally generates the output
through a multilayer perceptron. Each Transformer layer applies a multi-head self-attention
mechanism to learn feature interactions, and a position-specific feedforward layer is used
to model the nonlinear relationships between features. TabTransformer shows significant
performance improvements over traditional MLP models or algorithms like GBDT and
maximizes the understanding and expressiveness of deep learning models for categorical
data. Given that the embeddings generated by DeepWalk have similar features to typical
tabular data, it makes sense to adopt Transformer as a classifier.

Ref. [19] applied Transformer to a consumer electronics recommendation algorithm.
The key distinction of this research is that it models the complex dependency relationship
between users’ past purchase histories through a multi-head self-attention mechanism.
This allows us to understand the user’s interests and behavior patterns and provide more
personalized product recommendations more accurately. In the model design, we opti-
mized the performance of the model by combining a multi-head network with an automatic
gated recurrent unit (AUGRU) structure. This study is significant for its use of Transformer
to solve classification problems in graph-structured data.

In [20], node embedding was performed using Transformer. First, in the process of
generating node embeddings using Transformer, the target node is used as a query and
the neighboring nodes are used as keys to calculate the attachment weights. Then, they
generate the embedding of the target node by weighted averaging of the information
from the nodes. The node embeddings obtained with Transformer contain richer semantic
and topological information between nodes. They utilized Transformer to generate node
embeddings, which allowed us to perform efficient network analysis.

Based on this extensive body of work, it becomes apparent that the investigation into
detecting phishing nodes in Ethereum transactions is a continuing effort, utilizing a range
of methodologies from traditional to graph-based algorithms. However, certain studies
take a slightly different approach to detecting scam nodes or fail to reflect the extreme
imbalance in the original Ethereum transaction dataset. In contrast, we have designed
a model that performs reasonably well with a very small number of scam nodes while
considering real-world class imbalances. Furthermore, although the proposed methods
have been validated on observed data, there is limited observable data in the real-world
cryptocurrency transaction environment. Therefore, it is necessary to design an effective
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phishing node detection system in the real-world environment. For this purpose, it is
important to develop a model that fulfills the following requirements:

• Understand and use the practical features and workings of cryptocurrency networks.
• Selectively extract only the key information needed for analysis from complex and

long graph structures.
• Learn a disjoint feature space by utilizing a distance measure based on the similarity

between scam nodes and legitimate nodes.

Therefore, considering the above requirements and research trends, our work proposes
DGTSD, combining the advantages of DeepWalk [21] for graph embedding and Transformer
for classification. This model can effectively identify scam nodes in the complex structure of
the Ethereum network. DeepWalk embeds complex graph data for effective representation
for training, and Transformer is a powerful tool to analyze these data and accurately classify
legitimate and scam accounts.

Table 1. Related works on scam node detection in cryptocurrency transactions.

Approach Modeling Method Number of
Scam Addresses

Proportion of
Minority Characteristics

Machine learning K-nearest neighbors 5448 15.5% Enough phishing address

Neural network LSTM-FCN and BP neuralnetwork 4709 11.8% Enough phishing address

Neural network LSTM-attention - - No specific information
about dataset

Neural network Genetic algorithm with CNN
(GA-CS and CNN) 7662 78% Too high percentage of

scam address

Heuristic algorithm Heuristic algorithm with DFS - - Experiments focused on
wash trades

Graph neural network Graph attention network (GAT) - - Not specifying the number of
addresses in the experiment

Graph neural network Reinforcement learning with DFS 1165 10.8% Inject unlabeled nodes
in experiments

Table 2. Works utilizing only Transformer’s encoder.

Approach Modeling Method Characteristics

Neural network

Transformer encoder with self-
attention for audio

Fine-tuning and classifying heart sound signals with
spectrogram sequences and positional embeddings

Transformer encoder with cross-
attention for images

Sequential image representation with patch-based tokens,
classification tokens, and location embeddings

Convolutional Neural Network
and Transformer

Global and local feature extraction with a parallel decoupling
structure for crop disease classification

Gated Transformer Networks Multivariate time series classification with a two-tower structure
and gating mechanism for channel and time-step analysis

Transformer for categorical data Tabular data modeling with contextual embeddings and a
multi-layer perceptron for binary classification

Transformer with multi-head self-
attention for recommendations

Modeling complex dependency relationships in consumer
electronics recommendation using graph embedding

Graph neural network Transformer for node embeddings Generating node embeddings with richer semantic and
topological information for network analysis

3. Proposed Method

In this section, we take a closer look at the DGTSD architecture which is specifically
designed to categorize nodes within the Ethereum Scam Transaction Network. We offer a
detailed examination of our methodological framework, highlighting the novel strategy of
graph sampling and the utilization of DeepWalk for profound graph traversal. Additionally,
we discuss the implementation of a Transformer-based classifier, aimed at accurately
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identifying and predicting scams. Figure 2 provides an overview of the proposed model.
Algorithm 1 shows the pseudocode for the proposed model.
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3.1. Sampling Ethereum Transaction Paths

The original Ethereum transaction data consist of sizable graphs. Processing such
large data is computationally inefficient and memory-limited. To address these issues, this
work involves subgraph sampling, a method for extracting important parts of large graphs.
We use the BFS (Breadth-First Search) algorithm [22], which starts from a selected node and
systematically explores neighboring nodes:

S = {v ∈ V|d(v, v0) ≤ k} (1)

where the subgraph S consists of the nodes that are within a maximum distance k from the
starting node v0 out of the entire node set V. This method makes it possible to sample any
number of subgraphs from a given starting node. This methodological choice is particularly
advantageous for dissecting the intricate web of transactions, enhancing our understanding
of scam activities within the network.

The BFS (Breadth-First Search) algorithm enables the collection of subgraphs that
contain a specified number of nodes, starting from a chosen initial node. This targeted sam-
pling method is very efficient for managing large datasets because it selectively focuses on
the most relevant segments of the graph. It has also proven to be very effective in revealing
the intricacies of networks. It is also effective at capturing the inherent complexity of the
network by accurately representing key patterns and relationships within the Ethereum
transaction network.
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3.2. Embedding Transaction Paths with Transformer Network

To analyze a graph, it is very important to first decide how to represent it. General
methods include Graph Convolutional Networks (GCNs) using adjacency matrices [23].
However, in this study, we use one of the graph embedding algorithms, DeepWalk, which
utilizes random walks for graph traversing. It has good processing power for large graphs
and shows high performance on sparse data. This allows for better generalization of
graph data.

DeepWalk performs a random walk RW(vi) = [vi, vi1, vi2, . . . , vin] starting at node
vi. This allows DeepWalk to randomly traverse the graph using a random walk and then
generate an embedding for each node using the Skip-Gram model. This ensures effective
learning for all nodes, including those that appear infrequently in the random walk.

In particular, the Ethereum transaction graph is a digraph with directed edges. It is
important to note that DeepWalk takes this into account when performing random walks:
if a random walk has no neighbors, it will terminate, which means that the random walk
has a “from” edge but no “to” edge from that node. This shows that DeepWalk considers
the direction of the edges.

The embeddings generated by DeepWalk are fed to the Transformer classifier [4] to
handle the characteristics of graph data. Figure 3 is a visualization of how Transformer
plays a role in DGTSD. Transformer in the DGTSD model is designed specifically for the
characteristics of graph data. Unlike traditional Transformer models that handle sequential
data, this model is designed to effectively handle unordered graph data. It does not use
positional encoding because there is no notion of order among the vectors in the embedding.
Instead, we focus on analyzing the complex relationships between nodes and the unique
characteristics of each node. In the context of natural language processing, positional
encoding is a technique that allows a Transformer model to recognize the order or position
of words in sequence data.

The application of the Transformer model is essential for effectively interpreting the
complex nature of graph-structured data and the interactions between nodes. When an-
alyzing graph embeddings generated by DeepWalk, Transformer’s multi-head attention
mechanism plays an important role in deeply understanding the complex relationships be-
tween nodes and the unique characteristics of each node. Unlike the traditional Transformer,
which processes sequential data, this model is designed to account for the unordered nature
of graph data and does not use positional encoding. This design focuses on the interactions
between embedding vectors without any notion of order, which allows us to better analyze
the complex connections between nodes and the unique characteristics of each node. These
characteristics of Transformer play an important role in assessing the impact of each node
on other nodes, especially in identifying potential fraud within the Ethereum transaction
network, enabling a deeper understanding and analysis of complex graph-structured data.

Choosing the right attention score measurement method is important when using
Transformer models to improve the learning speed and performance of the model. At this
point, it is essential to consider the data coming in as input to the Transformer. DGTSD
adopts a multi-head attention technique for scam node classification. This is achieved
by performing multiple parallel runs of scaled dot-product attention, each with a differ-
ent weight matrix, to better understand these complex connections and patterns. This
allows the model to learn different aspects of relationships and information simultaneously,
and as a result, each node can aggregate information from other nodes to strengthen its
own embeddings. In complex data structures, such as the Ethereum transaction graph,
many different types of connections and patterns can exist. By allowing these different
connections and patterns to be analyzed in different representational spaces, multi-head
attention techniques can capture fine-grained relationships and patterns that single-head
attention techniques may miss. This allows the model to better understand the connectivity
and patterns at each node, which in turn allows it to make more accurate classifications
and predictions.
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The multi-head attention mechanism within Transformer models the interaction be-
tween these embedding vectors to learn important characteristics and patterns within the
embedded graph data. This is expressed as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (2)

each headi is calculated using scaled dot-product attention:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(3)

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel

where dmodel is the embedding dimension of the model, h is the number of attention heads,
and dk, dv are the dimensions of the key and value vectors, respectively. Through this
process, Transformer learns how the embedding of each node is related to the embeddings
of other nodes. This allows the model to understand complex patterns within the Ethereum
transaction graph and identify unusual patterns, such as phishing scams.

The attention function mentioned above is scaled dot product attention, which is
defined as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

Which computes the relationship between the input query (Q), key (K), and value (V)
vectors. A softmax function determines the weights of the input vectors, which are used to
combine the value (V) vectors.

Each layer of the Transformer then also contains Position-wise Feed-Forward Net-
works. These are fully connected layers that operate independently at each position:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

where W1, W2, b1, b2 are the network parameters. This network performs operations
independently at each position of the embedding vector to provide additional nonlin-
ear transformations.

The output of each sublayer is subjected to layer normalization and residual connec-
tions. This is expressed as follows:

LayerNorm(x + Sublayer(x)) (6)

where Sublayer(x) is the output of each sublayer, and x is the input to the sublayer. This stabi-
lizes the model’s learning and allows it to learn effectively from deeper network structures.

Finally, the output of the Transformer model is passed through the Linear Layer
and into the softmax function for determining whether a particular node is involved in a
phishing scam:

Output = softmax(xW + b) (7)

where W and b are the parameters of the final classification layer. Through this process, the
model presented in this paper can achieve high performance in phishing fraud detection
based on a deep understanding of the graph-structured Ethereum transaction data.

In Transformer, attention score computation significantly improves the accuracy of
information processing by allowing the model to identify and emphasize relevant informa-
tion within the input. We introduce the following attention score calculation optimized for
node embedding output from DeepWalk:

• Dynamic Dimension Scaling: To account for the complexity and diversity of graph
data, we dynamically adjust the dimensionality (dk, dv) of each attention head. This
allows the model to process more diverse information and focus on specific patterns
or relationships with greater granularity.
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• Structural Context Awareness: By weighting each node to account for its structural
position and role in the graph, richer contextual information is incorporated into the
Attention Score calculation. This is especially important for effectively identifying
nodes that play a significant role in the Ethereum transaction graph (e.g., hub nodes,
bridge nodes) and reflecting their influence in the model.

• Pattern-Based Weight Adjustment: By adjusting weights for node pairs exhibiting
certain patterns or relationships during training, we enable the model to identify
unusual behaviors more accurately, such as phishing scams.

In setting up the loss function for model training, we assigned different weights to
each class based on the degree of imbalance to address class imbalance. This strategy
was then applied to the Focal Loss to focus training on more difficult and misclassified
cases [24]. By implementing this weighting scheme, the loss contribution from minority
groups is significantly enhanced. This intentional amplification allows the model to allocate
more attention and sensitivity to underrepresented samples, promoting a more balanced
learning process. The formula for this is as follows:

FL(pt) = −αt(1 − pt)
γ log(pt) (8)

where pt is the probability of a particular class predicted by the model and αt is the weight
for class t. This can be set differently for each class. Assign small values to classes that
occur frequently and large values to classes that occur infrequently. The gamma is typically
set to a positive value, so that the larger the value, the larger the penalty for samples that
the model incorrectly predicts. The larger the gamma, the more the model focuses on
difficult examples.

To evaluate and optimize the model, we use precision, recall, and F1 score. The
relevant formulas are as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 × Precision × Recall
Precision + Recall

(11)

where TP (True Positives) are nodes that the model correctly predicted as scams when
they should have been scams, and TN (True Negatives) are nodes that the model correctly
predicted as not scams when they should have been legitimate. False Positives (FP) are
when the model incorrectly determined a legitimate node to be a scam, and False Negatives
(FN) are when the model incorrectly determined a legitimate node to be a scam.

The DGTSD methodology proposed in this work utilizes DeepWalk and Transformer
networks to identify scam nodes in the Ethereum transaction graph. The effectiveness of
this approach is based on the following key factors:

• Effective learning of high-dimensional graph structure: The process of embedding
relationships between nodes in the graph structure using DeepWalk captures impor-
tant structural patterns within complex networks. This is essential for modeling the
complexity of transactions by capturing hidden connections between nodes and the
overall dynamics of the graph.

• Application of Transformer networks: The Transformer model performs deep learning
on these embeddings to characterize each node and identify scam nodes. The multi-
head attention mechanism of the Transformer puts more weight on the relationships
between important nodes to improve classification accuracy.

• Experimental validation: Through experiments on different walk lengths and node
counts, we show that our methodology can effectively learn the complex characteristics
of Ethereum transaction data and use them to accurately identify scam nodes.
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Algorithm 1: Deep Graph Traversal Transformer for Scam Detection (DGTSD) Training

Description: Training a DGTSD on the Ethereum Phishing Transaction Network for scam detection, leveraging
deep graph traversal and Transformer-based feature extraction.
Input:
- ESTN: Ethereum Scam Transaction Network
- num_epochs: Number of training epochs
- num_classes: Number of classes (e.g., phishing/non-phishing)
- embedding_size: Dimension of node embeddings
- learning_rate: Learning rate for optimizer
- class_weights: Weights for each class to handle imbalance
- focal_gamma: Gamma parameter for Focal Loss
Output:
- dgtsd_model: Trained DGTSD model for scam detection
Initialization
1: function train_DGTSD(ESTN, num_epochs, num_classes, embedding_size, learning_rate, class_weights,
focal_gamma)
2: Load ESTN and preprocess to extract node features and edges.
3: Initialize a Graph-Based Transformer with specified embedding_size and num_classes.
4: Set up the optimizer with learning_rate and FocalLoss with class_weights and focal_gamma.
Graph Traversal
5: for epoch = 1 to num_epochs do Deep Graph Traversal
6: Perform deep graph traversal using BFS to sample connected subgraphs.
7: Apply Skip-Gram on these subgraphs to generate deep contextual node embeddings.
Transformer Processing
8: Convert embeddings and labels into tensors suitable for the Transformer model.
9: Feed node embeddings through the Graph-Based Transformer. Loss Computation and Model Update
10: Calculate loss using Focal Loss, emphasizing imbalanced class representation.
11: Perform backpropagation to update the parameters of the Graph-Based Transformer.
12: Record and display training metrics such as accuracy, precision, recall, and F1 score.
Model Evaluation
13: Test the model on a separate dataset, computing and reporting evaluation metrics.
14: end for
15: return dgtsd_model

4. Experiments
4.1. Datasets and Implementation

In this study, we utilized a graphical Ethereum transaction history dataset. We followed
the methodology presented in our previous work [25]. We crawl the Ethereum label cloud of
phishing accounts reported by Etherscan, categorized as “fake phishing,” and then leverage
the API provided by Etherscan (https://etherscan.io/apis, accessed on 27 February 2024) to
obtain a large transaction network with edges directed and weighted by two layers of BFS.
We obtain a large graph with 2,973,489 nodes and 13,551,303 edges. A node represents an
Ethereum trading account, and an edge represents a transaction history between accounts.
Each edge contains transaction date and transaction volume information. If a node’s label
value is 0, it is a benign node, and if it is 1, it is a scam node. Out of 2,973,489 nodes,

https://etherscan.io/apis
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the number of scam nodes is 1165. This indicates that the number of benign nodes is
approximately 2500 times greater than that of scam nodes, highlighting a significant class
imbalance.

To facilitate the experiment, we extracted a subgraph from the original Ethereum trans-
action data. We remove scam nodes with no edges and include the remaining 1071 nodes in
the subgraph first. From each scam node, we use the BFS algorithm to explore to a certain
depth and add nodes to the subgraph. If the subgraph does not contain the predetermined
number of nodes after this process, we add them to the subgraph in the order of the highest
degree of the nodes in the original data. After this process, the subgraph for the experiment
is finally complete. Information about the subgraphs is in Table 3. Table 3 shows data points
for different subgraph sizes (30,000 to 50,000 nodes), including number of edges, average
degree, number of connected components, class imbalance, and density. The number of
connected components refers to the total number of connected components, the set of nodes
that are connected to each other within the graph. A strongly connected component is
the largest set of nodes in the directed graph such that every pair of nodes can reach each
other. Table 3 shows that the density of the subgraphs is relatively low. DeepWalk’s use
of random walks for graph traversal is well suited to sparse graphs because it captures
structural information well and can effectively learn relationships between nodes with
few connections.

Take the subgraph we created earlier and use DeepWalk to create an embedding for
each node. The dimensionality of the embedding is fixed to 64 dimensions. Take this
embedding data and label data and divide them into a train set and a test set. At this
time, we first divide the scam nodes in a ratio of 7:3, and then fill the test set with as many
legitimate nodes as there are scam nodes in the test set. The remaining legitimate nodes
are placed in the train set. The reason for this is to prevent the F1 score from increasing
as the number of nodes in training increases, simply by dividing by 7:3 for the entire
dataset. This allows for a relatively objective evaluation of the model that is not affected
by the number of nodes. We then utilize the Transformer classifier to perform scam node
classification. To evaluate the performance of the model, we consider three classification
algorithm evaluation metrics: precision, recall, and F1 score.

Information about the structure, number of parameters, and hyperparameters for the
models we designed can be found in Tables 4 and 5. Table 4 shows that high performance
can be extracted with relatively few parameters. Table 5 shows the values of each hyperpa-
rameter applied when training DGTSD. First, to perform DeepWalk, we perform a random
walk and Skip-Gram on the Ethereum transaction graph. The num_walks and walk_length
of the random walk were chosen to ensure broad coverage of the graph structure, while
maintaining a balance between local and more distant neighborhood context. With a larger
number of walks per node and a significant walk length, the model can capture a variety of
transaction patterns, including potential phishing behaviors inherent in the transaction data.
The vector_size of the Skip-Gram parameter was chosen to ensure that the dimensionality
of the feature vector effectively represents the subtle relationships in the transaction graph,
while not overly complicating the model. Window was chosen to optimally capture the
immediate transaction context around each node.

As parameters for training the DGTSD model, class_weight and gamma play an
important role. Given the imbalanced nature of phishing detection tasks, where phishing
instances are much rarer than legitimate transactions, the class_weight helps to mitigate
the imbalance by emphasizing the importance of accurate classification of phishing cases.
The degree of imbalance in the data should be well considered while setting the values of
the parameters. Focusing too much on a small number of classes will slow down learning,
and setting too small a value will prevent the model from focusing on the small number of
classes, which will easily lead to a poor recall value among the model’s evaluation metrics. In
the actual model training process, we tested several values to find the optimal value. Gamma
is a parameter of Focal Loss, and like class_weight, we set an appropriately high value to
focus on the minority classes. It has the same effect as cross-entropy loss when gamma = 0.
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Table 3. Analysis of statistical characteristics by graph size of the Ethereum transaction network.

Graph Size Number of Edges Average Degree The Number of
Connected Components

Class Imbalance
Rate (%) Density (%)

30,000 774,193 51.62 22,600 3.7% 0.086%
40,000 994,476 49.73 30,247 2.75% 0.062%
50,000 1,389,597 55.59 36,784 2.19% 0.055%

Table 4. Number of parameters for the DGTSD models.

Layer (Type: Depth-idx) Param # Param #

GraphTransformer [1, 10, 2] --
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num_epochs Number of epochs to train the model. 100 
class_weights Weights for the classes in the Focal Loss. [1, 2500] 

gamma Gamma parameter in the Focal Loss. 3.0 

4.2. Comparison DGTSD to Other Models 

Linear: 1-2 [1, 10, 2] 130

Total params: 562,434

Table 5. Hyperparameters used in DGTSD training.

Type Hyperparameter Description Value

Random walks
num_walks Number of walks to be performed for each node. 80
walk_length Length of each random walk. 100

Skip-Gram model vector_size Dimensionality of the feature vectors. 64
window Maximum distance between the current and predicted word. 5

Transformer model

embedding_size Size of each input token’s embedding vector. 64
num_classes Number of classes for classification. 2
num_layers Number of Transformer Encoder layers. 2
num_heads Number of heads in the multi-head attention models. 4

dropout_rate Dropout rate in the Transformer Encoder. 0.1

Traininghyperparameters

batch_size Batch size used in the DataLoader for training and testing. 64
learning_rate Learning rate for the Adam optimizer. 0.0005
num_epochs Number of epochs to train the model. 100
class_weights Weights for the classes in the Focal Loss. [1, 2500]

gamma Gamma parameter in the Focal Loss. 3.0

4.2. Comparison DGTSD to Other Models

Comparative analysis of DGTSD models further clarifies the effectiveness of the
methodology. Comparisons with LINE, node2vec, LSTM, GCN, GAT, and other algorithms
show that DGTSD outperforms these traditional and state-of-the-art graph analysis tech-
niques. DGTSD effectively identifies scam nodes by achieving excellent F1 scores despite
high-dimensional data and class imbalance issues. This suggests that the DGTSD method-
ology is particularly effective at recognizing complex patterns in Ethereum transaction
graphs and accurately classifying scam nodes within them.

Table 6 compares our DGTSD model to the following methods:
LINE [26], an algorithm designed for embedding large-scale information networks,

adopts an approach that considers relationships in both one and two dimensions.
node2vec [27] is an effective method for embedding complex connections between nodes

in a network, capturing structural and neighborhood information based on random walks.
LSTM [28] is a form of RNN suitable for sequential data processing and is widely

used in time series data and natural language processing, with strengths in modeling
long dependencies.
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Table 6. Comparison of DGTSD with other models.

Model
Graph Size = 30,000 Graph Size = 40,000 Graph Size = 50,000

Precision Recall F1 Precision Recall F1 Precision Recall F1

LINE [24] 0.5023 1.0000 0.6687 0.5923 0.9969 0.6680 0.5008 1.0000 0.6674
node2vec [25] 0.5000 1.0000 0.6667 0.5000 1.0000 0.6667 0.5047 0.9938 0.6694

LSTM [26] 0.6837 0.9969 0.8111 0.6772 0.9938 0.8055 0.6653 0.9938 0.7970
GCN [21] 0.5016 1.0000 0.6680 0.5016 1.0000 0.6680 0.5023 0.9969 0.6680
GAT [27] 0.5000 1.0000 0.6667 0.5000 1.0000 0.6667 0.5008 1.0000 0.6674
GNN [28] 0.6893 0.8042 0.7423 0.8140 0.7609 0.7865 0.8121 0.8089 0.7902
GCAE [29] 0.7664 0.9831 0.8614 0.7303 0.9867 0.8393 0.7158 0.9684 0.8305

Ours 0.9067 0.9628 0.9339 0.8840 0.9907 0.9343 0.9325 0.9383 0.9354

GCN [23] is a neural network architecture suitable for processing graph-structured
data, which is useful for understanding the relationships between nodes and integrating
information from neighboring nodes.

GAT [29] is a model that applies an attention mechanism to graph-structured data to
better understand important relationships between nodes.

GNN [30] is a model that applies a network embedding algorithm to analyze the
transaction network constructed based on data collected using web crawlers, and then
applies GCN to perform classification based on the extracted features.

GCAE [31] applies the idea of autoencoder to graph data. An autoencoder is a
neural network structure that compresses input data into a low-dimensional representation
(encodes) and then restores them back to their original dimensionality (decodes). GCAEs
apply this concept to graph data, allowing them to efficiently encode and decode nodes or
entire structures in a graph. GCAEs can be utilized to solve the problem of detecting scam
nodes by looking at it as an outlier detection problem.

As depicted in Table 6, it is evident that the DGTSD model surpasses other models in
terms of F1 score. Graph embedding algorithms like LINE and Node2Vec had very low
performance regardless of the number of nodes. GNN-like models such as GCN and GAT
also did not perform well. LSTM outperformed the other models, indicating that LSTM
can interpret and remember sequential information inside the graph.

A model with an F1 score close to 0.6667 means that it is close to 50% accurate. There
are several reasons for this metric. First, the degree of class imbalance is very high, so
we apply Focal Loss to initially train the model by focusing on scam nodes. As training
progresses, the model gradually learns about the legitimate nodes. At this point, high-
performing models learn the information about the legitimate nodes relatively well while
retaining the information about the scam nodes, whereas the inferior models lose the
generalized information about both legitimate and scam nodes, resulting in an accuracy of
less than 50% on the test set.

The prioritization of the F1 score as a key performance indicator stems from our
meticulous approach to test set construction, as outlined in Section 4.1. We ensured an equal
representation of legitimate and scam nodes across all testing scenarios, thereby establishing
a balanced and fair benchmark for model evaluation. This preparation underscores our
commitment to accuracy and reliability in model comparison, further highlighting the
DGTSD model’s exceptional performance in distinguishing between legitimate and scam
nodes within the network.

4.3. Performance over Length and Number of Nodes

In our investigation, the adaptability of the DGTSD model to varying lengths of walks
was assessed. To ensure consistent experimental conditions, the same subset of subgraphs
was used across all tests. This controlled approach allowed for a direct comparison of
the impact of different walk lengths on the model’s performance. Detailed in Table 7, we
explored a spectrum of walk lengths ranging from 40 to 100. The data obtained from these
experiments revealed that a walk length of 100 provided the most favorable results for
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this dataset, suggesting an enhanced capability of the model to capture and learn from the
underlying patterns at this scale.

Table 7. Performance as a function of walk length and number of nodes.

Walk Length
Graph Size = 30,000 Graph Size = 40,000 Graph Size = 50,000

Precision Recall F1 Precision Recall F1 Precision Recall F1

40 0.8560 0.9752 0.9117 0.8917 0.9690 0.9288 0.8837 0.9383 0.9102
60 0.8739 0.9443 0.9077 0.8753 0.9783 0.9240 0.8776 0.9290 0.9025
80 0.8342 0.9659 0.8953 0.8980 0.9536 0.9249 0.8667 0.9228 0.8939

100 0.9067 0.9628 0.9339 0.8840 0.9907 0.9343 0.9325 0.9383 0.9354

However, it is important to note that an increase in walk length did not uniformly
lead to better learning outcomes. For instance, within a graph comprising 40,000 nodes, a
considerably shorter walk length of 40 emerged as the second most effective configuration.
This nuanced finding emphasizes the importance of a tailored approach, advocating for
thorough experimentation with a variety of walk lengths to ascertain the most effective one
for each unique dataset. This strategy is essential for optimizing the model’s performance,
considering the specific characteristics and complexities of the data in question.

4.4. Ablation Study

In our ablation study, we conducted two sets of experiments to evaluate the effective-
ness of our method. First, we replaced DeepWalk with other algorithms to assess whether it
stands as the optimal graph embedding algorithm. Conversely, we substituted Transformer
with alternative classifiers to ascertain whether Transformer indeed represents the best
classifier for our purposes. Table 8 illustrates that, in place of DeepWalk, we utilized LINE,
SDNE, and Walklets for comparison. SDNE [32] employs an autoencoder to produce non-
linear embeddings, adeptly capturing the intricate high-dimensional relationships between
nodes. Walklets [33] is an algorithm that varies the length of random walks to include
multiscale structural information and more accurately reflect a range of node relationships.
This allows them to better reflect a wide range of relationships between nodes. For the
classifier comparison, we experimented with RandomForest [34], SVM [35], and CNN [36]
as alternatives to Transformer. The evaluation of F1 scores reveals that the DGTSD model
exhibits the most robust performance.

Table 8. Ablation study without DeepWalk or without Transformer.

Model
Graph Size = 30,000 Graph Size = 40,000 Graph Size = 50,000

Precision Recall F1 Precision Recall F1 Precision Recall F1

Graph traversing
LINE +

Transformer 0.5008 1.0000 0.6674 0.5047 0.9876 0.6681 0.5008 1.0000 0.6674

SDNE +
Transformer 0.7875 0.9752 0.8714 0.8378 0.8793 0.8580 0.7689 0.9753 0.8599

Walklets + Transformer 0.5000 1.0000 0.6667 0.5000 1.0000 0.6667 0.5000 1.0000 0.6667
Path Modeling

DeepWalk + RandomForest 0.9610 0.4582 0.6205 0.9793 0.4396 0.6068 0.9739 0.3456 0.5103
DeepWalk + SVM 0.8494 0.8483 0.8482 0.8567 0.8529 0.8526 0.8063 0.8056 0.8054
DeepWalk + CNN 0.7431 0.9226 0.8232 0.7186 0.9867 0.8207 0.6465 0.9877 0.7814

DeepWalk +
Transformer 0.9067 0.9628 0.9339 0.8840 0.9907 0.9343 0.9325 0.9383 0.9354

4.5. Case Analysis

In the case analysis, our aim was to decode the DGTSD model’s functionality and
assess its node classification accuracy. Analyzing 20 iterations of the DGTSD model as
presented in Table 9, and leveraging data sourced from etherscan.io, we scrutinized the
model’s binary classification efficacy across a spectrum of node types. Figure 4 is a visual-
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ization of each case. It was observed that a significant portion of the classifications were
predominantly aligned with the “low transaction wallets” category. This concentration
suggests that the DGTSD model is guided by complex, model-specific rules, whose sub-
tleties may not be instantly clear. This observation highlights the model’s deep analytical
prowess and indicates an area ripe for further investigation to unravel the mechanisms
behind these classifications.

Table 9. A table that summarizes which types of nodes are present in each case. Node address
contains only one representative node.

Case Type Visualization Node Address

Case 1 (Benign predicted
to be Benign)

Fraudulent wallets
Wallets bought and sold by multiple users
Wallets with few transactions

(a) 0x2c974b2d0ba1716e64
4c1fc59982a89ddd2ff724

Case 2 (Benign predicted
to be a Scam)

A wallet that was scammed and sold all at once
Wallets sold to multiple users
Wallets with few transactions

(b) 0xfe1098e7ade721eb7b0
6fa5f766097e52a7c16e6

Case 3 (Scam predicted
to be a Scam)

Wallets with a history of transactions with scam nodes
Wallets bought and sold with multiple users
Wallets with a lot of 0 ETH transactions
Wallets with few transactions

(c) 0x903bb9cd3a276d8f18f
a6efed49b9bc52ccf06e5

Case 4 (Scam predicted
to be Benign)

Wallets with similar patterns to other benign node nodes
Wallets that have transacted with many different wallets
Wallets with few transactions

(d) 0x2b1c266e2a39a7a30ae
d472fad47d6b6ab953f7e
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Among the cases that predict well as legitimate nodes when they are legitimate nodes,
the most prominent is the “fraudulent wallet (a)” case. In this case, it is likely that the
transactions were made purely for investment purposes. Conversely, there are many cases
wherein DGTSD primarily predicts a scam node when it is a legitimate node, but most of
them are “wallets with low transaction history (b)”. Among the cases that are predicted
to be scam nodes when they are scam nodes, one case that stands out is “wallets with an
overwhelming amount of 0 ETH transactions (c)”. We recently started to recognize the
existence of fraudulent schemes utilizing 0 ETH transactions. In terms of the actual scam
nodes predicted as benign, there are not many special cases, and most of them are “wallets
with low transaction history (d)”.

5. Conclusions

In this paper, we present the Deep Graph Traversal based on Transformer for Scam
Detection (DGTSD), a novel method for detecting cryptocurrency crime. DGTSD utilizes
DeepWalk and Transformer for graph exploration to effectively classify scam nodes in
the Ethereum transaction graph and has proven to be superior to other methods in our
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experiments. We also implemented advanced attention scoring methods such as dynamic
dimension scaling, structural context recognition, and pattern-based weighting to better
learn and identify important features and patterns in complex data structures like the
Ethereum transaction graph. Although we succeed in identifying both legitimate and scam
nodes with limited transaction records, the precise basis of our accuracy remains unclear.

The uniqueness of the DGTSD methodology represents a significant advance in trans-
action pattern analysis and fraud detection, especially within the Ethereum network. While
existing methods rely on simple statistical approaches or limited graph characteristics,
DGTSD goes beyond this with deep graph traversal and a Transformer-based classifier that
directly interprets the complexity of the data. The methodology aims to uncover hidden
patterns in transactions and predict fraudulent transactions based on them. It includes the
following key technical innovations:

• High-dimensional graph structure learning: DGTSD considers the complex connec-
tivity structure of the Ethereum network to capture the relationships between nodes.
The combination of node embeddings using DeepWalk and Transformer networks
captures the structural patterns and hidden connections that are very important within
complex networks.

• Pattern recognition in complex data structures: DGTSD deepens the characterization
of graph data through a multi-head attention mechanism. This plays an important role
in assessing the impact of each node on other nodes and identifying potential fraud.

• Experimental validation and practical applicability: The methodology has been vali-
dated through extensive experiments, showing that it is applicable to real Ethereum
network data. This is an important step in bridging the gap between theoretical models
and real-world applications.

Future research will focus on the following factors:

• Extending to real-world applications: This study focused primarily on theoretical
aspects; future research needs to validate the effectiveness of these methodologies for
application to real-world problems.

• Gas fee analysis: Our research will focus on analyzing gas fees incurred in Ethereum
transactions as a potential indicator of anomalous transactions [37]. Gas fees are the
cost of executing transactions on the Ethereum network and may indicate unusual
patterns in fraudulent transactions. This is expected to further improve the accuracy
and reliability of our fraud detection model.

• Expanding the fraud node database: We plan to expand the fraud node database
currently in use to cover different types of fraud cases. This will allow the model to
recognize and classify a wider range of fraudulent behavior.

• Addressing class imbalance: To address the issue of class imbalance between fraud-
ulent and legitimate nodes, we plan to perform a detailed statistical analysis of the
characteristics of fraudulent nodes. This will help the model to identify and classify
fraudulent nodes more accurately.

DGTSD provides a new perspective on cryptocurrency crime, specifically fraud detec-
tion in the Ethereum transaction graph. The method outperforms existing fraud detection
methods and makes an important contribution to effectively handle graph-structured data.
However, there are still many issues and room for improvement, which will be the focus of
future research. Research directions such as analyzing gas fees, expanding the scam node
database, and addressing class imbalance will be important steps to further develop the
DGTSD methodology and contribute to the field of cryptocurrency fraud detection. These
research directions are essential to develop more sophisticated and efficient fraud detection
systems, which will contribute to ensuring the safety of cryptocurrency transactions and
gaining the trust of users.
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