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Abstract: Online fashion retailers face enormous challenges due to high return rates that signif-
icantly affect their operational performance. Proactively predicting returns at the point of order
placement allows for preemptive interventions to reduce potentially problematic transactions. We
propose an innovative inductive Heterogeneous Graph Neural Network tailored for proactive return
prediction within the realm of online fashion retail. Our model intricately encapsulates customer
preferences, product attributes, and order characteristics, providing a holistic approach to return pre-
diction. Through evaluation using real-world data sourced from an online fashion retail platform, our
methodology demonstrates superior predictive accuracy on the return behavior of repeat customers,
compared to conventional machine learning techniques. Furthermore, through ablation analysis, we
underscore the importance of simultaneously capturing customer, order, and product characteristics
for an effective proactive return prediction model.

Keywords: online fashion retail; proactive return prediction; heterogeneous graph embedding;
ordering system; neural networks

1. Introduction

In recent years, online fashion retail has experienced substantial growth worldwide,
with the global market reaching a value of approximately 820 billion U.S. dollars in 2023,
as reported by Statista.com (https://www.statista.com/topics/9288/fashion-e-commerce-
worldwide/#topicOverview (accessed on 4 January 2024)). To enhance customer conve-
nience and satisfaction, many online retailers offer free shipping and hassle-free returns.
However, this customer-friendly policy results in a significant increase in return rates.
This poses a considerable challenge for online fashion retailers as it can severely impact
their operational performance. The estimated rate of return for online retailers is typically
two to three times higher than that of traditional brick-and-mortar stores, with online
fashion retailers experiencing return rates as high as 50% [1]. These frequent returns result
in considerable additional costs for online fashion retailers, including expenses related
to transportation, reorganizing, and checking, thereby significantly undermining their
overall performance.

Product returns also represent a significant contributor to the carbon footprint of
e-commerce, due in part to the high energy consumption inherent in the ‘last mile’ of the
delivery chain that brings products directly to customers’ doorsteps [2]. Addressing the
issue of product returns can thus have substantial implications for the sustainability of e-
commerce, not only in terms of ecological impact but also from an economic perspective [1].

One potential strategy for reducing return rates in online fashion retail involves imple-
menting a proactive prediction model within the ordering system to anticipate potential
returns at an early stage, prior to order placement. When a customer assembles a pur-
chasing basket, such a model can generate return predictions for each product included
in the basket. If the predicted probability of return for a product surpasses a predefined
threshold, the system can take preemptive measures by suggesting alternative products
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better suited to the customer’s preferences or by notifying them of stock shortages or
extended delivery times. Operating in real-time, a proactive prediction model is crucial for
meeting the dynamic demands of online retail.

In this research, we introduce a novel proactive return prediction model, COP-HGNN
(Customer–Order–Product Heterogeneous Graph Neural Network), designed to forecast
the likelihood of returns while customers are still assembling their shopping baskets.
Our model captures the intricate relationships between customers, orders, and products,
autonomously embedding both observable and unobservable characteristics into vector
representations based on customers’ purchasing and return histories. Through evalua-
tion using real-world data obtained from a large-scale online fashion retail platform, we
demonstrate the model’s superior performance compared to traditional machine learning
techniques in terms of prediction accuracy. This research offers a unique perspective on
addressing the challenges of product returns in e-commerce by harnessing cutting-edge
deep learning technology.

This paper is organized as follows. In Section 2, we provide a review of the relevant
literature. Section 3 outlines our research methodology, including details of the data utilized
and the proposed Heterogeneous Graph Neural Networks model. In Section 4, we describe
our experimental design, which includes both baseline models and evaluation metrics. The
results of these experiments are provided in Section 5, followed by a discussion of our
findings and conclusions in the Section 5.

2. Related Works

The efficient management of product returns is pivotal to the operational effectiveness
of retailers, constituting a prominent research area that has garnered considerable attention
from scholars [3]. Here, we categorize existing academic research on predicting product
returns into three main areas: (1) identifying factors that affect a retailer’s overall rate of
returns, (2) return prediction predicting the volume or rate of returns for a specific product
aggregated across orders over a period of time, and (3) proactive return prediction.

2.1. Factors That Affect Product Returns

Product returns represent a crucial aspect of consumers’ post-purchase decision-
making processes, influenced by various factors elucidated in the literature. Notably,
product quality plays a pivotal role in determining return likelihood [4]. Online retail exac-
erbates consumer challenges in assessing product quality, leading to increased uncertainty
and return initiation when expectations are unmet [5]. The fashion industry, characterized
by dynamic and unstable consumer demand, faces heightened uncertainty and return
challenges due to unpredictable product valuations [6].

Consumer behaviors also play a key role in their return decisions [7]. Factors such
as customer expectations [8], buying impulsiveness [9], dishonesty [10], cultural back-
ground [11], and desire for uniqueness [5] have been found to influence returns. Addi-
tionally, perceptions of the return process influence return likelihood, with customers less
inclined to return products if they perceive greater loss during the process.

From a marketing perspective, pre-choice product presentations and promotional
strategies like free shipping impact return rates [12,13]. Shehu, Papies [13] explored the
effects of various marketing instruments on returns, highlighting the significance of catalogs
and newsletters in increasing the return share.

Moreover, return policies significantly influence return rates, with leniency potentially
increasing purchase intentions but also leading to higher return rates [14–16]. Simplified
return processes may prompt returns even in the absence of product dissatisfaction [17].
Abdulla, Ketzenberg [7] conducted a comprehensive review of consumer return policies
and their effects on return behaviors, offering insights into the interplay between policy
design and consumer behavior.

In summary, the literature on product returns covers a wide range of factors, including
product quality, consumer behaviors, marketing strategies, and return policies. Under-
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standing these influences is essential for developing accurate return forecasting models
and improving operational performance.

2.2. Predicting Products’ Return Volume or Return Rate

The ability to predict the return volume or rate of products is integral for retailers
in optimizing their assortment strategies. Traditionally, such predictions have relied on
unique product characteristics. For instance, Dzyabura, El Kihal [18] leveraged product
images and established measures to forecast pre-launch return rates, demonstrating the
potential of machine learning models in providing interpretable insights and boosting
profits by up to 8.3%. Similarly, Cui, Rajagopalan [19] developed data-driven models to
predict return volumes across various levels, ranging from the retailer to specific product
types and timeframes. Their study employed machine learning techniques to construct
models capturing main effects and detailed interaction effects, with the LASSO method
emerging as the most effective in accurately forecasting future return volumes.

In addition to product-specific characteristics, researchers have explored additional
parameters to enhance prediction accuracy. Rajasekaran and Priyadarshini [20] devel-
oped a prototype model for predicting product return rates in e-commerce, incorporating
supplementary parameters beyond the manufacturer’s production process and resources.
Meanwhile, Tuylu and Eroğlu [21] investigated the efficacy of ensemble machine learning
(EML) methods in predicting product return rates within the textile industry. Their study
demonstrated that EML techniques, such as Stacking and Vote algorithms, outperformed
traditional time series forecasting methods, particularly in handling unknown parameters
and complex multivariate structures.

While this research offers valuable insights into estimating the total quantity of returns
within a given timeframe, they are retrospective in nature and do not enable proactive
intervention to prevent returns.

2.3. Proactive Return Prediction

Proactively predicting product returns is an increasingly important area of research for
online retailers, as it allows them to take preventative measures and optimize operations
before returns occur.

However, assessing return risk during the ordering process presents significant chal-
lenges. It is a complex endeavor influenced by numerous factors such as customer pref-
erences and personality, product attributes, and order characteristics. So far, only a few
studies have explored methods for online retailers to intervene and prevent problematic
transactions from taking place. Urbanke, Kranz [1] made progress in this area by demon-
strating the effectiveness of Mahalanobis feature extraction on a large set of handcrafted
features, combined with an adaptive boosting algorithm for identifying consumption pat-
terns associated with high product return rates. Zhu, Li [22] utilized a weighted hybrid
graph composed of customer and product nodes, incorporating undirected edges reflecting
customer return histories and similarities, as well as directed edges distinguishing between
purchase-no-return and no-purchase actions. However, their model did not consider the
characteristics of the shopping basket. Similarly, Li, He [23] predicted customer inten-
tion to return in e-tail using a hypergraph representation of the basket and product, but
overlooked customer characteristics in return predictions. Another approach proposed
by Kedia, Madan [24] employed deep neural network models incorporating product em-
beddings based on Bayesian Personalized Ranking (BPR) and user embeddings based on
skip-gram models to capture users’ tastes, body shape, and size. However, their embed-
dings were obtained in an unsupervised manner, raising concerns about their utility for
return forecasting.

In this study, we introduce a proactive return prediction model utilizing Heteroge-
neous Graph Neural Networks. The key advantage of our approach lies in its ability to
simultaneously capture the nuanced characteristics of customers, orders, and products to
predict product returns effectively. Our research offers a fresh perspective on addressing
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the complexities of product returns in online fashion retail through the application of
sophisticated graph deep learning techniques.

3. Data and Research Methodology
3.1. Data

Our model is developed based on data provided by an international online fashion
retailer. The dataset encompasses a sample spanning two years of order-level transactions
and return records from the platform, totaling 2,627,927 valid data records. It was sampled
from a data warehouse which was constructed from data sourced from various channels,
including fundamental customer and product information, order-level transactions, and
return records. Each data record in the dataset captures information relating to the ordering
and returning of a product. Specifically, each record contains details such as the product
ID, customer ID, order ID, order specifics (e.g., quantity, price, coupons used, payment
method), product attributes (e.g., color, size, product group), and the final quantity of
products returned. It is worth noting that a single product ID may refer to a product with
varying colors and sizes.

Our data preprocessing encompasses a series of essential steps including data cleaning,
transformation, feature engineering, normalization, and data splitting. During the data
cleaning phase, we meticulously identified and removed abnormal return records where the
quantity of returned products exceeded the amount ordered. Additionally, we employed
forward and backward filling methods to impute missing values in the product price
column. In the data transformation stage, we implemented measures to capture seasonal
effects by converting the date of the order into two seasonal features: the day of the week
and the month of the year. This allowed us to effectively incorporate seasonal variations
into our analysis of product returns. Furthermore, in the feature engineering stage, we
introduced additional features such as the number of products in the same order, the order
value, and the average order value. These features were specifically designed to capture the
impact of various order characteristics on return behavior, thus enhancing the predictive
capabilities of our model. Lastly, we partitioned the data into training, validation, and test
sets, and standardized the numerical features using a standardized normalization method
based on the training dataset. This ensured consistency and reliability in our analysis while
mitigating the risk of overfitting.

Our primary objective involved estimating the probability of a product’s return given
its ordering information. Details regarding the data type and range of all features used for
predicting returns, as well as the target label, are reported in Table 1.

Table 1. Feature descriptions and their type and range.

Feature Description Type Range

Product return nominal 2 categories
Customer ID nominal 311,369 categories
Product ID nominal 4236 categories

Color code of the product nominal 642 categories
Size code of the product nominal 29 categories

Product group of the product nominal 31 categories
Quantity of the product numeric [1, 24]

Recommended retail price numeric [0.0, 799.0]
Voucher value per order numeric [0.0, 300.0]

Device ID nominal 5 categories
Payment method nominal 10 categories

Month of the order nominal 12 categories
Day of week nominal 7 categories

Products in the order numeric [0.0025, 0.1825]
Total value of the order numeric [0.0, 1.89727]

Average value of the order numeric [0.0, 6.0]
Discount rate numeric [0.0, 0.53]
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3.2. Customer–Order–Product Heterogenous Graph Neural Networks

There are in general three categories of factors associated with product returns: cus-
tomer, product, and order. Customers tend to exhibit significant individual differences
in their purchasing and returning behavior. Some individuals take advantage of lenient
return policies and prefer to select multiple products in an order, refining their selection
after their receipt of the order. Others prioritize social responsibility and environmental
awareness and exercise greater caution in selecting products. However, these differences
among customers are difficult to describe using explicit features, particularly for new users
who have yet to make a purchase on the platform. Due to privacy protection concerns,
customer information such as gender, age, and occupation is often incomplete or inaccurate.
On the other hand, the purchaser of an order may not necessarily be the user of the product,
making it challenging to accurately describe purchasing preferences based on demographic
characteristics alone. Therefore, we can only infer customer preferences from their historical
purchasing and returning records.

Similarly, products also possess unique attributes that contribute to return rates, such
as color, size, category, manufacturer, and brand. Various other factors, including the
quality, material, style, packaging, etc., could also influence the likelihood of a product
being returned, but these are unobservable. Additionally, order characteristics may also
relate to product returns, with variables like the number of different products, total value,
and coupon usage within an order potentially impacting the probability of a product
being returned.

We utilized a heterogenous graph to represent the connections between customer,
order, and product, as denoted in Figure 1. Within the graph, customers, orders, and
products comprise distinct nodes. Customers and orders are linked by edges that signify a
‘one to many’ purchasing relationship, where a customer can have multiple orders, while
each order corresponds to a single customer. Orders and products share a ‘many to many’
connection, where an order can include multiple products, and a product may be featured
across multiple orders. Edge attributes, including color, size, quantity, unit price, and
discount, exist between orders and products. Node and edge attributes are categorized
in Table 2.
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Figure 1. Customer–order–product heterogenous graph.

Table 2. Nodes, edges, and their attributes.

Name Type Attributes

Customer Node Customer ID

Order Node Voucher amount, device ID, payment method, order
size, order value, month of year, day of week

Order-Product Edge Discount, quantity, color code, size code

Product Node Product ID, product group, recommended price
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Our target is to predict whether there will be a return on an edge of Order–Product in
an order. The challenge stems from the dynamic nature of the Customer–Order–Product het-
erogeneous graph, which evolves as new orders are generated over time. Our task involves
predicting returns for new orders, rather than those already present in the graph during
the training phase. Thus, our prediction approach is inductive rather than transductive.

Heterogeneous Graph Neural Networks (HGNNs) have emerged as a powerful tool
for analyzing complex systems with diverse entities and relationships [25–27]. Unlike
traditional Graph Neural Networks (GNNs) that operate on homogeneous graphs with
uniform node and edge types, HGNNs excel in handling graphs with varying node and
edge types. This flexibility enables them to model intricate relationships in real-world
scenarios [28], such as social networks [29], text classification [30,31], recommendation sys-
tems [32,33], and biological networks [34], where entities can exhibit diverse characteristics
and connections.

Our Customer–Order–Product Heterogeneous Graph Neural Networks (COP-HGNNs)
for return prediction leverage three types of nodes and edges to capture nuanced infor-
mation, enabling a deeper understanding of the underlying structures. By incorporating
diverse node and edge types, our model is better equipped to discern intricate patterns. Our
solution comprises two subnetworks: an inductive embedding network and a prediction
network, both trained jointly in a supervised manner.

3.2.1. Inductive Embedding Network

We leverage node and edge features to learn an inductive embedding function that
generalizes to unseen nodes and edges. Instead of training distinct embedding vectors for
each node and edge, we train a set of embedding and aggregator functions that learn to
aggregate feature information from neighboring nodes and edges. During inference, we
apply these learned functions to generate embeddings for entirely unseen nodes, enabling
predictions on new data.

Initially, we transform categorical variables such as customer ID, product ID, product
group, color code, and size code into continuous representations through a feature embed-
ding layer. Specifically, we use a fully connected linear layer that ensures each input index
possesses an associated weight vector:

X f
emb = W f ·X

f
onehot, (1)

f ∈ {Customer ID, Product ID, Color code, Size code, Product Group},

where X f
onehot is the one-hot vector representation of the nominal variable X. During the

training process, the weight matrix W f ∈ RC×E is updated to learn the optimal embedding
representations (C is the size of the dictionary of X f ; E is the size of each embedding vector).

Since the product node contains both numerical attributes (such as the recommended
retail price listed in Table 2) and nominal attributes (such as Product Group), we utilize
a linear layer to transform the dimension of the numerical attributes into E. The prod-
uct node embedding is then a composite representation of the product ID embedding,
the Product Group (a categorical feature of product) embedding, and the embedding of
numerical attributes:

XProduct
emb = XproductID

emb + XproductGroup
emb + Wrrp·Xrrp, Wrrp ∈ R1×E. (2)

The edge embedding representation of the ‘order-product’ linkage is obtained by

XOrder−Product
emb = XColorCode

emb + XSizeCode
emb + WOP_attr·XOrder−Product

attr , WOP_attr ∈ R2×E. (3)

where XOrder−Product
attr is the vector of numeric attributes, including ‘quantity’ and ‘discount’.

Generating the embedded representation of the order node involves capturing various
facets, including details about the customer placing the order, the products contained



Electronics 2024, 13, 1398 7 of 16

within the order, and the distinct attributes of the order itself. We utilize the SAGE graph
convolution with a mean aggregator [35] to aggregate the embedded representations of the
products within the order into the order embedding:

Xorder
emb = Worder_attr·Xorder

attr + WOrder1·IndOrder∈Customer

(
XCustomer

emb

)
+ WOrder2·mean∀Product∈Order

(
XProduct

emb

)
. (4)

where WOrder1, WOrder2 ∈ RE×E, and WOrder ∈ RE×E are network weight matrixes, and
IndOrder∈Customer(·) represents an indexing function that maps the order to the customer
who placed it, utilizing the edge between the customer and the order.

3.2.2. Return Prediction Network

After obtaining the node and edge embedding representations, we use them as inputs
to an MLP (Multilayer Perceptron) neural network to generate return prediction:

P(return = 1) = Logistic
(

Wout2·ReLu
(

Wout1·
[

Xorder
emb , Xorder−product

emb , Xproduct
emb

]))
, (5)

where Wout1 ∈ R3E×E and Wout2 ∈ RE×1 are weight matrices, [·] represents the concatenate
operator, and Logistic(x) = ex

/ 1 + ex converts x into the return probability.

3.2.3. Loss Function

The training of the COP-HGNN utilizes the Binary Cross-Entropy Loss function (BCE
Loss) to evaluate prediction outcomes (as denoted in Equation (6)).

L(yi, pi) = −
1
N ∑N

i=1 yilog(pi) + (1− yi)log(1− pi) , (6)

where y is either a 1 or 0, indicative of whether the product was returned or not, respectively.
N signifies the overall number of training samples. We utilize the Adam optimization algo-
rithm [36] to continuously update the network parameters via gradient back-propagation
of the Loss function. This process assists in minimizing the discrepancy between the
prediction results and the actual labels.

3.2.4. Online Prediction for New Orders

In the prediction stage, given the network weights obtained during training, we
assume that when a customer places a new order, the prediction system can query the
trained network to obtain the customer’s embedding representation XCustomerID

emb via their

Customer ID. We can similarly obtain the embedding vectors Xproduct
emb of each product

in the order. The edge embedding Xorder−product
emb can be calculated using Equation (3),

and the order’s embedding representation Xorder
emb can be calculated using Equation (4).

Finally, the return probability prediction for each ordered product is calculated by applying
Equation (5). In the event of new customers or new products (i.e., the ‘cold start problem’),
the system will assign them a new ID code. During the network training phase, we have
reserved ample embedding dimension space for these new customers or products.

The algorithm for the pseudo-training of both the embedding network and the return
prediction network is outlined in Algorithm 1. Algorithm 2 encapsulates the predictive
process for new orders.
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Algorithm 1: Training COP-HGNN embedding and return prediction network

Input: Nodes, node features, edges, and edge features.
Output: HGNN network with optimization weights.

1 initializing network weights W f , Wrrp, Wedge_attr, Worder_customer, Worder_attr, Worder
2 for m in 1. . .MAX-STEPs do
3 for batch in 1. . .MAX-NUM-BATCHs do
4 for f in [customer, product, color, size, product group] do

# embedding customer, product, color, size, product group
5 X f

emb ←W f ·X
f
onehot ;

6 end
# embedding product

7 XProduct
emb ← XProductID

emb + XProductGroup
emb + Wrrp·Xrrp ;

# embedding edge of order-product
8 XOrder−Product

emb = XColorCode
emb + XSizeCode

emb + Wedge_attr·XOrder−Product
attr ;

# embedding order with graph convolution

9 Xorder
emb = Worder_attr·Xorder

attr + WOrder1·XCustomer
emb + WOrder2·mean∀Product∈Order

(
XProduct

emb

)
# generating return prediction

10 P(return = 1) = Logistic
(

ReLu
([

Xorder
emb , Xorder−product

emb , Xproduct
emb

]
·Wout1

)
·Wout2

)
11 L(yi, pi) = − 1

N ∑N
i=1 yilog(pi) + (1− yi)log(1− pi)

end
12 Backpropagate the network weights
13 end

Algorithm 2: Return prediction for products in a new order

Input: embedding network, prediction network, Customer ID, IDs of products in the order,
order features, order-product features.

Output: the return probability for each product in the order
1 Calculating XCustomer

emb , XProduct
emb , and XOrder−Product

emb using the COP-HGNN network weights;
2 Calculating XOrder

emb using graph convolution;
3 for product in order do
4 Generating return prediction using prediction network and embeddings;
5 end

4. Experiments
4.1. Experimental Setup

To train and test the return prediction networks, we initially partitioned the data into a
test set and training set based on the timeline. The orders made in the first 21 months com-
prised the training set, while orders in the last 3 months formed the testing set for this study.
The training set includes 2,293,521 transactional records, out of which 1,208,000 returns
took place, accounting for 52.67%. The proportion of returns observed in the test set was
consistent with that of the training set. Additionally, we further divided the training set
into two datasets based on the timeline too, the training set and the validation set, at ratios
of 70% and 30%, respectively. The validation set was utilized to optimize hyperparameters
and the corresponding optimal training steps.

The vast number of nodes and edges within the graph make training on the entire
graph model difficult due to computational limitations of GPU memory. As a result, we
utilize the heterogeneous graph sampling algorithm introduced by [37] to segment and
sample the complete graph to obtain a mini-batch. The heterogeneous graph sampling
algorithm allocates a node budget for each node type, which determines the probability of
node sampling. Specifically, the probability of sampling a node is determined considering
the number of connections to already sampled nodes and their respective node degrees.
Utilizing this method, the heterogeneous graph sampling algorithm selects a fixed quantity
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of neighbors for each node type in every iteration, denoted by the argument ‘number of
samples’, which is set as 2048 in our experiments.

To optimize the proposed HGNN network, we select the embedding dimension E
and learning rate ‘lr’ of the Adam optimizer as hyperparameters. The Adam optimization
algorithm is preferred for optimizing graph neural networks due to its adaptive learning
rate, memory efficiency, robustness to sparse gradients, and faster convergence speed. Due
to the independence of these two hyperparameters, we employed a grid search approach
to optimize them separately. The range of search space for embedding dimension E was set
as [8, 12, 16, 24, and 32], while the learning rate’s search range was [0.1, 0.005, 0.001, and
0.0005]. We used the validation set to evaluate the hyperparameters and the corresponding
optimal training steps were ultimately determined by an embedding vector dimension E of
12, learning rate of 0.001, and 25 training steps.

4.2. Baseline Models for Comparison

To assess the predictive accuracy of HGNN, we compared it with seven traditional
machine learning classification algorithms as baseline models. These models include
Logistic Regression, Naive Bayes, K-Nearest Neighbors, Classification and Regression
Tree (CART), Random Forest, Gradient Boosting Decision Tree (GBDT), and LightGBM.
Identically, for the COP-HGNN, we used all the features listed in Table 2 for training these
models. Hyperparameters for all models were selected utilizing Bayesian optimization
methods [38]. A brief introduction on those baseline models and the hyperparameters for
training is listed below.

Logistic Regression (LR) is a fundamental statistical learning model employed to tackle
classification challenges. By multiplying feature vectors with weights and adding bias
terms, a linear function is obtained, which is then fed into the sigmoid function to obtain a
probability output.

Naive Bayes (NB) is a basic classification algorithm grounded on Bayes’ theorem. It
operates under the assumption that all features are independent of each other and have the
same impact on the sample category. NB is simple, fast, easy to implement, and commonly
used in fields such as text classification and spam filtering.

K-Nearest Neighbors (KNN) is a non-parametric classification method based on in-
stance learning. It determines the category of test samples by calculating the distance
between them and every sample in the training set. The advantages of KNN include sim-
plicity, ease of implementation, and suitability for various classification issues. We employ
Manhattan Distance to measure the distance between samples and optimize the number of
nearest neighbors and the dimension of the Manhattan Distance as super parameters.

The Classification and Regression Tree (CART) is a probabilistic analysis model that
classifies data by constructing a Binary tree. We select three super parameters for model
optimization, including the maximum depth of the Binary tree (max depth), the minimum
number of samples contained in the leaf node (min samples leaf), and the minimum number
of samples required for node branching (min samples split).

Random Forests (RFs) employ bagging ensemble methods to enhance the predictive
performance of a single decision tree [39]. We choose four hyperparameters to optimize the
Random Forest classifier, including the number of decision trees (num of estimators), the
maximum depth of each tree (max depth), the minimum number of samples for leaf nodes
(min samples leaf), and the minimum number of samples required for node partitioning
(min samples split).

Gradient Boosting Decision Tree (GBDT) is another ensemble learning algorithm and a
method to enhance the model based on the decision tree. It gradually improves the model
performance by fitting past prediction error residuals in each iteration. It was first proposed
by [40]. There are three hyperparameters for GBDT tuning in this study: the maximum
depth of each tree (max depth), the minimum number of samples required by internal
nodes in partitioning (min samples split), and the learning rate (learning rate).
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LightGBM is an efficient, fast, and distributed gradient elevation decision tree (GBDT)
framework [41]. Compared with traditional GBDT algorithms, LightGBM adopts histogram-
based decision tree learning algorithms and a leaf-wise growth strategy. Due to its efficient
algorithm design and distributed computing capabilities, LightGBM has been extensively
used in tasks such as the classification, regression, and sorting of large-scale datasets and
has achieved significant results in multiple data mining competitions. We opt to tune two
hyperparameters of LightGBM, including the maximum depth (max depth) and learning
rate (learning rate).

4.3. Evaluation Metrics

We utilize five metrics to evaluate the prediction accuracy of the COP-HGNN and its
benchmarks: Accuracy, Precision, Recall, F1-Score, and area under the Receiver Operating
Characteristic curve (AUC).

4.4. Results

In Table 3, we evaluate the accuracy of each prediction model for all orders in the
test set using a return probability of 0.5 as the threshold to determine whether a product
will be returned upon purchase. The LightGBM model had the best performance with an
AUC value of 0.7099 and the highest Accuracy, Precision, and F1-Score values. The COP-
HGNN followed closely in second place with an AUC value of 0.6864 and similar results
to LightGBM for other evaluation indicators. The GBDT performed average compared to
the COP-HGNN.

Table 3. Overall comparison results across the entire test sample.

Model AUC Accuracy Precision Recall F1_Score

LR 0.5717 0.5394 0.6066 0.4264 0.5008
NB 0.5858 0.5602 0.5951 0.5888 0.5919

KNN 0.5479 0.5346 0.5795 0.5130 0.5442
CART 0.6731 0.6338 0.6435 0.7265 0.6825

RF 0.6818 0.6400 0.6456 0.7440 0.6913
GBDT 0.6847 0.6420 0.6471 0.7459 0.6930

LightGBM 0.7099 0.6599 0.6668 0.7437 0.7032
COP-HGNN 0.6864 0.6456 0.6578 0.7209 0.6879

The bold numbers highlight the best performers.

In Table 4, we further evaluate the accuracy of each model for orders made by repeat
customers in the test set. Repeat customers here refer to those who appeared in the training
sets that made at least one purchase, while new customers denote those who made their
first purchase during the periods of the test set. In the test set, there are 73,030 unique
customer IDs. Among them, 42,361 are repeat customers and 30,669 are new customers.
Among repeat customers, 23,459 had purchased more than three times in the training set,
and 14,874 customers had purchased more than five times.

Table 4. Comparison results on returns by repeat customers.

Model AUC Accuracy Precision Recall F1_Score

LR 0.5752 0.5637 0.5741 0.7780 0.6607
NB 0.5851 0.5639 0.5971 0.6186 0.6076

KNN 0.5581 0.5485 0.5830 0.6077 0.5951
CART 0.6654 0.6296 0.6415 0.7291 0.6825

RF 0.6737 0.6353 0.6436 0.7442 0.6903
GBDT 0.6816 0.6401 0.6460 0.7538 0.6958

LightGBM 0.7103 0.6609 0.6717 0.7409 0.7046
COP-HGNN 0.7122 0.6636 0.6810 0.7221 0.7010

The bold numbers highlight the best performers.
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Table 4 reveals that the COP-HGNN model had significant advantages in predicting
returns from repeat customers. The COP-HGNN achieved an AUC of 0.7122, which was
3.2 percentage points higher than the sample containing new customers. Additionally,
its Accuracy and Precision were also highest, with increases of 2.25 and 3.74 percentage
points, respectively. However, traditional machine learning models’ prediction accuracy
remained largely unchanged with only a marginal increase in AUC for the LightGBM
model and a slight decrease for GBDT and RF models. Therefore, the results suggest
that the COP-HGNN is more suitable for predicting returns for repeat customers, while
predicting returns from new customers remains challenging.

Tables 5 and 6 provide a further analysis of each model’s performance in predicting
returns for customers who made three or more purchases in the training set. As the number
of purchases increased, the COP-HGNN’s prediction accuracy improved further. For
instance, when customers made more than three purchases in the training set, the AUC of
the HGNN model was 0.7287, while it reached 0.7311 when customers made more than five
purchases. In contrast, except for the slight increase in the prediction accuracy of Logistic
Regression and LightGBM, the remaining machine learning models continued to decline as
customers’ purchase times increased.

Table 5. Return prediction performance comparisons for customers with three or more purchases in
the training set.

Model AUC Accuracy Precision Recall F1_Score

LR 0.5809 0.5608 0.5616 0.7171 0.6657
NB 0.5831 0.5614 0.5842 0.6257 0.6043

KNN 0.5653 0.5520 0.5769 0.6111 0.5935
CART 0.6560 0.6202 0.6276 0.6081 0.6143

RF 0.6636 0.6252 0.6291 0.7299 0.6758
GBDT 0.6744 0.6327 0.6339 0.7425 0.6839

LightGBM 0.7141 0.6618 0.6697 0.7260 0.6967
COP-HGNN 0.7287 0.6756 0.6765 0.7549 0.7135

The bold numbers highlight the best performers.

Table 6. Return prediction performance comparisons for customers with five or more purchases in
the training set.

Model AUC Accuracy Precision Recall F1_Score

LR 0.5844 0.5584 0.5548 0.7340 0.6663
NB 0.5840 0.5615 0.5785 0.6295 0.6029

KNN 0.5701 0.5546 0.5738 0.6629 0.6132
CART 0.6521 0.6160 0.6212 0.7018 0.6590

RF 0.6589 0.6197 0.6219 0.7163 0.6658
GBDT 0.6707 0.6286 0.6276 0.7322 0.6759

LightGBM 0.7208 0.6653 0.6722 0.7166 0.6937
COP-HGNN 0.7311 0.6773 0.6803 0.7572 0.7154

The bold numbers highlight the best performers.

However, although the COP-HGNN performed excellently in Accuracy, Precision,
and F1-Score indicators except for AUC, as shown in Tables 4–6, all the results are based
on a 0.5 threshold to determine whether a product will be returned. To further test the
return forecast performance of the COP-HGNN, we draw Precision–Recall curves and
Receiver Operating Characteristic (ROC) curves in Figures 2 and 3, respectively. The
Precision–Recall curve in Figure 2a targets all customers in the test set, while those in
Figure 2b–d target only repeat customers who made purchases one, three, and five times in
the training set, respectively, corresponding to Tables 4–6. It can be observed that for repeat
customers, the COP-HGNN model maintained the highest prediction accuracy under the
same Recall score.
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Moreover, as shown in the ROC curves in Figure 3, the COP-HGNN had the lowest
False Positive Rate for repeat customers under the same True Positive Rate. Therefore,
these results suggest that the COP-HGNN model might be a better fit for identifying the
potential returning customers for businesses with a focus on customer retention.

4.5. Ablation Analysis

To assess the significance of customer, order, and product embeddings in predicting
product returns, we conducted additional experiments using two HGNN models as bench-
marks. The first model, termed OP-HGNN, omits the customer embedding described as
the second component in Equation (4). Meanwhile, the second benchmark, CP-HGNN,
excludes both order attributes (the first component in Equation (4)) and information per-
taining to products within the order (the third component in Equation (4)).

The AUC comparisons presented in Table 7 reveal the significance of different embed-
ding components within COP-HGNNs for predicting product returns. It is evident that
both customer and order embeddings play crucial roles in this prediction task. Notably,
OP-HGNN demonstrates limited effectiveness in predicting product returns for repeat
customers. While CP-HGNN shows improvement in this aspect compared to OP-HGNN,
it still falls short when compared to the COP-HGNN.

Table 7. AUC comparisons of HGNNs with different embedding components.

Customers OP-HGNN CP-HGNN COP-HGNN

All 0.6828 0.6544 0.6864
Repeat customers 0.6750 0.7024 0.7122

Repeat customers with 3 or more orders 0.6634 0.7180 0.7287
Repeat customers with 5 or more orders 0.6564 0.7202 0.7311

The bold numbers highlight the best performers.

5. Conclusions

By predicting customers’ return behavior, online fast fashion retailers can provide
early warning signals and take timely intervention measures to reduce the possibility of
return in advance. This would lead to cost reductions and improved operational efficiency.
In this study, we propose a proactive return prediction model based on the Heterogeneous
Graph Neural Network to address high return rates among online fast fashion retailers.
The model establishes customers, orders, and products as nodes, with indirect connections
established between customers and products through orders. By training neural networks,
hidden feature vectors can be constructed for customers, orders, and products, enabling the
prediction of customer return behavior for a specific product in a new order. This approach
allows each node of the graph to embed into a feature vector and utilize edges with features
to transmit information in the graph, capturing a comprehensive graph structure.

The empirical results demonstrate that the proposed COP-HGNN model performs
better than the baseline models in predicting returns for repeat purchase customers. More-
over, prediction accuracy improves as the number of repeat purchases increases. However,
the COP-HGNN’s return prediction ability for new customers remains insufficient. This
suggests that customer characteristics are critical to predicting their return behavior, and the
COP-HGNN can construct implicit features based on customer historical order information.
Conversely, for new customers with limited preference information, the randomly con-
structed implicit features consequently weaken the HGNN model’s return prediction ability.
The ablation analyses underscored the critical importance of concurrently considering the
characteristics of customers, orders, and products in a proactive return prediction model.

Among all baseline models, the LightGBM model performs significantly better in
return forecasting, especially for new customers. Given the complementarity between
LightGBM and HGNN, online fast fashion retailers can utilize the LightGBM model to
predict the return behavior of new customers and leverage the COP-HGNN to predict the
return behavior of repeat purchase customers.
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In addition to highlighting the strengths of our graph neural network model in proac-
tively predicting product returns, it is essential to acknowledge its limitations. One signifi-
cant limitation pertains to the potential biases inherent in the dataset used for training and
evaluation. Despite efforts to ensure data quality and integrity, biases such as sampling
bias or selection bias may still exist, potentially influencing the model’s predictions. Ad-
ditionally, the performance of our model may vary under different market conditions or
contexts not fully captured by the dataset. Factors such as changes in consumer preferences,
economic fluctuations, or unforeseen external events could impact the predictive accuracy
of the model. Moreover, the effectiveness of proactive prediction strategies may be influ-
enced by the dynamic nature of markets and evolving customer behaviors, warranting
further exploration and adaptation of the model over time. Recognizing these limitations is
essential for interpreting the model’s predictions accurately and for guiding future research
efforts aimed at enhancing the robustness and generalizability of predictive models in
real-world scenarios.

Future research endeavors could concentrate on refining the network architecture of
the COP-HGNN, devising tailored information transmission mechanisms among nodes,
and conducting thorough empirical and applied investigations to assess the model’s efficacy
across diverse datasets and market scenarios. Additionally, enhancing the computational
efficiency and scalability of Heterogeneous Graph Neural Networks for large-scale graph
data could be a focal point, achieved through exploring optimization algorithms leveraging
graph structure, distributed computing strategies, and accelerated hardware techniques.
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