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Abstract: Data augmentation with mixup has been proven effective in various machine learning
tasks. However, previous methods primarily concentrate on generating previously unseen virtual
examples using randomly selected mixed samples, which may overlook the importance of similar
spatial distributions. In this work, we extend mixup and propose MbMix, a novel yet simple
training approach designed for implementing mixup with memory batch augmentation. MbMix
specifically selects the samples to be mixed via memory batch to guarantee that the generated samples
have the same spatial distribution as the dataset samples. Conducting extensive experiments, we
empirically validate that our method outperforms several mixup methods across a broad spectrum
of text classification benchmarks, including sentiment classification, question type classification,
and textual entailment. Of note, our proposed method achieves a 5.61% improvement compared to
existing approaches on the TREC-fine benchmark. Our approach is versatile, with applications in
sentiment analysis, question answering, and fake news detection, offering entrepreneurial teams and
students avenues to innovate. It enables simulation and modeling for student ventures, fostering an
entrepreneurial campus culture and mindset.

Keywords: machine learning; data augmentation; text classification; innovative education

1. Introduction

The rapid advancements in natural language processing (NLP) technologies have opened
up new opportunities for innovation in educational strategies and the implementation of
practical aspects of innovative education at universities [1,2], such as text classification [3–5],
summary generation [6,7], and question answering [8]. This success can mainly be attributed
to the deep architectures of language models that typically have over ten million learnable
parameters. Such a massive number of parameters enables BERT model [9] to solve complex
problems. Nevertheless, language models require extensive training data to avoid overfitting
and improve model generalization. However, obtaining large samples of annotated data is
costly and time-consuming. This challenge offers educators and students a chance to craft
new solutions within their innovative education programs, streamlining data generation and
annotation to cut costs and save time. These innovations could transform the development of
natural language processing and broaden opportunities in diverse educational fields [10,11].

To obtain more training data, a series of data augmentation [12,13] algorithms have
emerged. Data augmentation aims to create synthetic samples that serve as supplementary
training data to regularize the language model. Most NLP data augmentation methods, in-
cluding synonym replacement [14] and back-translation [15], aim to transform the training
sample by substituting words with their synonyms, as demonstrated by [16].

Recently, a highly practical data augmentation approach called mixup [17] was pro-
posed and has demonstrated outstanding performance in boosting the accuracy of image
classification tasks. Unlike in image tasks [18], applying the mixup algorithm in NLP tasks
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is more complicated due to the discrete nature of text data. To this end, there have been
several attempts to deploy mixup on embeddings [19], intermediate representations [4]
or input-level data [20]. However, these methods randomly select samples for augmenta-
tion, which may result in an unstable distribution of training samples. An unstable data
distribution could lead to the model underperforming in practical applications, adversely
affecting the outcomes of innovation education. Although randomization is effective,
mixup models based on the memory batch technique may have improved generalization
performance. This is because the memory batch can leverage the historical samples stored
in a cache to enhance the diversity of the training data, resulting in a more stable training
data distribution [21].

To overcome the constraints and simultaneously aid in university student innova-
tion education, in this work, we present a novel mixup method considering the memory
batch [21,22], called MbMix. At a high level, we first construct the memory batch sampler
to store and sample historical samples. Then, we synergize the mixup model and mem-
ory batch such that mixup is performed between historical and current samples, thereby
generating new training samples. This approach yields a more stable distribution of the
training data while reducing the noise introduced by generating new samples through
standard mixup. MbMix has the potential to create an infinite amount of new augmented
samples, which is because MbMix can be used as a generic component to upgrade existing
mixup-derived methods.

To support university students’ innovation and entrepreneurship, we conducted
simulation experiments with diverse datasets. We utilized the RTE [23] and MRPC [24]
datasets to identify trending news topics and provide entrepreneurial recommendations.
With the new media industry’s rapid growth, we used the SST-2 [25] and IMDB [26] datasets
to gauge viewer interests, offering insights for media-related ventures. To create a safer
entrepreneurial environment and shield students from harmful content, we employed the
TREC [27] spam detection dataset. Lastly, we analyzed the emotional and psychological
states of student entrepreneurs using the QNLI [28] dataset for sentiment analysis. MbMix
has been empirically proven to be effective through extensive experiments on several text
classification benchmarks. The experimental results indicate that MbMix exhibits several
desirable properties. We summarize the major contributions of this paper as follows:

• From a fresh standpoint, we divide the mixup model’s training into bi-level subtasks:
memory batch sampling and mixed sample generation. We integrate these subtasks
into a framework called MbMix to enhance the model via data augmentation.

• We innovatively utilize the memory batch block to generate mixed samples. The mem-
ory batch method can increase the stable distribution of training data by incorporating
historical samples while enhancing the effectiveness of the mixup model.

• MbMix significantly surpasses its counterparts in various classification scenarios based
on eight text classification datasets and achieves a 5.61% improvement compared to
existing approaches on the TREC-fine benchmark. The superior performance of
MbMix has the potential to bolster the effectiveness of innovation education for
university students.

The rest of the paper is organized as follows. Section 2 presents the related work. In
Section 3, we introduce the MbMix method. The experimental details are presented in
Section 4. Analysis of the experimental results is presented in Section 5. Finally, a brief
conclusion is drawn in Section 6.

2. Related Work
2.1. Data Augmentation

Data augmentation is a widely utilized technique in the domain of deep
learning [29–32]. By introducing a diversified set of training samples, it aids in enabling
models to learn more generalized feature representations. Consequently, this enhances the
model’s ability to generalize when confronted with previously unseen data. Furthermore,
when training data are limited, models are prone to overfitting. Data augmentation, by
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expanding the scale and diversity of the training set, can effectively mitigate the issue of
overfitting [33]. Dropout [34] is a widely applied regularization technique in the field of
deep learning, capable of enhancing performance through a form of data augmentation. It
aims to prevent overfitting by randomly “dropping” a portion of the neurons during the
training process. Specifically, in each training iteration, every neuron in the network has a
certain probability of not being activated, thereby not participating in forward and back-
ward propagation. This method ensures that the model does not rely on any specific small
subset of input data, compelling the network to learn more robust feature representations.
Adversarial training [35] enhances model stability and generalization by introducing slight
perturbations into the training data, thereby training the model to recognize and resist
these disturbances. The core concept of adversarial training lies in optimizing the model’s
performance not only on the original data during the training process but also on slightly
modified versions of the data. This approach aims to improve the model’s robustness
against minor changes or attacks, thereby ensuring more reliable and secure performance
in real-world applications [36–38]. Label smoothing [39], by adjusting the distributions of
training data labels, mitigates the issue of a model having excessive confidence in its labels.
Its advantage is that it encourages models to learn smoother decision boundaries, thereby
reducing the risk of overfitting and enhancing the models’ generalization ability towards
unseen data. In practical applications, label smoothing is typically implemented by mixing
the true labels with uniformly distributed labels in a certain proportion. This approach not
only retains a degree of true label information but also increases label diversity, making
the model training process more robust. L2 regularization [40] enhances a model’s gener-
alization capability by incorporating a regularization term into the model’s loss function,
thereby constraining the training loss and preventing model overfitting. This technique
works by penalizing the square magnitude of the model parameters, which effectively
reduces the complexity of the model. In doing so, L2 regularization ensures that the model
does not overly adapt to the training data, hence improving its performance on unseen data.
A gradient penalty [41] constrains the magnitude of gradients by adding a regularization
term to the loss function, preventing the occurrence of exploding or vanishing gradients
during the training process. This promotes the stable training of models and a better
generalization performance. Back-translation [15], a data augmentation technique, involves
translating the original text from one language to another and subsequently translating
it back to the original language. This process generates texts that may vary slightly in
grammatical structure and linguistic expression while preserving semantic consistency.
Through this approach, the diversity and richness of the training data can be enhanced
without altering the fundamental meaning. This technique enables the model to better
comprehend and learn the intricacies of and variability in language, ultimately improving
its ability to generalize to unseen data. Back-translation proves particularly effective when
the available training data are limited or when the model is required to capture subtle
textual nuances. It bolsters the model’s robustness and adaptability in handling a wide
array of linguistic patterns and idiosyncrasies. Synonymous substitution [14] increases
data diversity by replacing words in the text with their synonyms, effectively expanding
the training dataset and thus helping the model learn more generalized linguistic features.
Mixup [17], originally presented as a data augmentation method based on mixing in com-
puter vision, has potential applications in enhancing the robustness [42–45] and security of
deep learning models against attacks [46–51]. In natural language processing [52–56], Guo
et al. [19] presented two strategies for applying the mixup model to sentence classification:
word and sentence embeddings. TMix [4] mixes two samples in hidden spaces. SSMix [20]
synthesizes a sentence by span-based mixing. However, these methods generate examples
by random combination, disregarding the importance of spatial distribution. As shown in
Table 1, our mixup method aims to prevent these issues by clustering similar samples.



Electronics 2024, 13, 1506 4 of 14

Table 1. Comparison of different data augmentation methods.

Method Sampling Mixed Model

Mixup Random Sample
TMix Random Feature
SSMix Random Sample

Our Memory Batch Sample

2.2. Innovative Education

Li et al. assessed the dynamic evolution mechanism of the digital entrepreneurship
ecosystem using sentiment analysis models, providing insights that could be integrated into
the curricula of innovation and entrepreneurship education [57]. Jazib et al. developed an
ensemble classifier that enables real-time analysis of sentiments on various topics through
data visualization techniques, which could be incorporated into educational tools to enhance
entrepreneurs’ analytical skills [58]. Malik et al. emphasized the growing significance of
entrepreneurship education, as it resonates with the worldwide focus on value creation and
employability. They introduced a machine learning approach to forecast students’ adaptabil-
ity in online entrepreneurship programs, employing algorithms like Random Forest, C5.0,
CART, and artificial neural networks. The research showed high accuracy rates, confirming
the potential of machine learning in predicting students’ performance and adaptability, a
critical component for customizing support in innovative education settings [59,60]. This
methodology provides educators with a robust tool to pinpoint students who may require ad-
ditional resources, allowing for tailored educational interventions [61]. Chen et al. discussed
the impact of “Internet Plus” technology on innovation and entrepreneurship education,
underscoring its transformative effect on teaching methodologies, faculty development, and
curriculum design. They advocated for an educational system that merges internet concepts
with machine learning to satisfy the evolving needs of higher education in fostering innovative
and entrepreneurial skills. In their research, they not only crafted a platform architecture with
diverse functions but also validated its precision and effectiveness through empirical studies.
They also proposed strategic directions for the advancement of the Internet Plus education
framework to bolster students’ capabilities in innovation and entrepreneurship [62]. He et al.
investigated the present conditions and hurdles faced by innovation and entrepreneurship
education in China, pinpointing deficiencies in student initiatives and the assessment sys-
tems. They introduced a cutting-edge evaluation framework using backpropagation neural
networks, marking a significant step forward in the enhancement of educational quality. Their
thorough comparative analyses of assessment techniques showcased the superiority of their
model, which can be instrumental in refining evaluation processes within innovative educa-
tion environments [63]. The MbMix text classification method can support university students
engaged in innovation and entrepreneurship by enabling their businesses to comprehend and
analyze vast amounts of text data with precision. This capability can yield critical insights,
assisting innovators and entrepreneurs in swiftly categorizing and interpreting market trends,
competitor insights, and customer feedback, which are vital for informed decision making,
product development, and strategic market positioning.

3. MbMix Method

Text classification tasks hold vast potential in the field of innovation education. For
instance, student entrepreneurs can leverage text classification to develop spam filter
systems, which help users eliminate a significant amount of junk mail, thus enhancing work
efficiency and user experience. Additionally, entrepreneurs can create sentiment analysis
tools using text classification technologies, aiding businesses in comprehending consumers’
emotions towards products, services, or brands to fine-tune marketing strategies and
improve products. Therefore, this section will begin by introducing the language model,
the memory batch sampler, and then develop a new series of mixup methods with an
extremely efficient architecture and high performance.
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3.1. Language Model

First, in order to build a text classification model, we use the BERT [9] pre-trained
language model as the basic architecture. BERT is a pre-trained deep learning model that
has achieved state-of-the-art results in various natural language processing tasks [64–66],
including text classification. The core component of a BERT-based classification model is
the BERT encoder. BERT is a transformer-based model that consists of multiple layers of
self-attention and feed-forward neural networks. The self-attention mechanism allows the
BERT model to capture the contextual relationships between words in a sentence, enabling it to
understand the meaning and context of the input text. To construct a BERT-based classification
model, the pre-trained BERT encoder is typically used as the backbone of the model. The input
text is tokenized and fed into the BERT encoder, which generates contextualized embeddings
for each token in the input sequence. These embeddings capture the semantic and syntactic
information of the words in the context of the entire sequence. On top of the BERT encoder,
a classification head is added. The classification head usually consists of one or more dense
layers, followed by a softmax activation function. The embeddings generated by the BERT
encoder are passed through the classification head, which learns to map the embeddings to
the corresponding class labels.

During the fine-tuning process, the pre-trained BERT encoder and the classification
head are trained together on a labeled dataset specific to the classification task. The model is
optimized using a loss function, such as cross-entropy loss, which measures the discrepancy
between the predicted class probabilities and the true class labels. The model is trained
using techniques like backpropagation and gradient descent to update the weights of the
BERT encoder and the classification head:

L = − 1
N

N

∑
i=1

C

∑
j=1

yij log(ŷij) (1)

where N is the number of samples in the dataset; C is the number of classes; yij is the
true label of the sample; and ŷij is the predicted probability of the sample. Classification
applications based on pre-trained language models have shown excellent performance.
Compared to traditional machine learning models, they are more capable of producing
new beneficial effects for innovation education among university students.

3.2. Memory Batch

The memory batch model is a sampling algorithm that leverages historical samples
in a cache pool to enhance current training data. Moreover, the memory batch model can
also be utilized to address the issue of imbalanced data. Suppose there are fewer samples
in specific categories in the training set. In that case, these samples can be added to the
cache pool, and their sampling rate can be increased to enhance the model’s learning
performance in those categories [21,67]. As shown in Figure 1, we mainly use the memory
batch algorithm to stabilize the distribution of new samples generated by the mixup model.

Figure 1. Diagram of the classification model structure. Classification models enhanced by data
augmentation algorithms can be applied to innovation education.

The memory batch model achieves this aim by randomly selecting a subset of samples
and storing them in memory. Subsequently, small batches of data can be randomly gener-
ated from this memory cache during training. Since the samples in the memory cache are
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selected randomly, the overall distribution of the dataset is preserved. This helps alleviate
the impact of instability in the distribution of new samples generated by the mixup model.

Assuming dataset D contains N samples, the construction process of the memory
batch model is as follows.

Let t denote the tth iteration in training. n samples xt
0, xt

1, . . . , xt
n−1 are randomly

selected and stored in the memory cache.
For each mini-batch dataset bt

k, where k is the batch size and i0, i2, . . . , ik−1 are distinct
integers representing the selection of k random samples from the memory cache randomly
selected from [0, n − 1], we can express bt

k as follows:

bt
k = xt

i0 , xt
i2 , . . . , xt

ik−1
, (2)

where xt
ij

is the jth sample in the tth iteration of the mini-batch dataset and n represents the
memory cache size. Repeat the above steps until all data samples have been trained.

In practical applications, the size of the memory cache n and the size of the mini-batch
dataset k can be adjusted as needed to meet different training requirements. We formalize
the output of the memory batch as follows:

Mbatch = {(xi; yi)b ∈ D}, (3)

where Mbatch consists of historical samples as well as current samples, which are combined
as the latest batch used by the mixup model to generate new samples.

3.3. Mixup with Memory Batch

In this work, we optimize the mixup model [17] using memory batch for random selection
and memory sampling. The fundamental concept behind the mixup algorithm is simple: if
we have two labeled samples (xi; yi) and (xj; yj), where symbol x is a text and symbol y is the
label’s one-hot representation, the algorithm performs linear interpolation to generate virtual
training samples:

x̃ij = mix(xi, xj) = λxi + (1 − λ)xj

ỹij = mix(yi, yj) = λyi + (1 − λ)yj
(4)

where λ ∈ [0; 1]. Mass-generated virtual samples can be used to train the classification
model. Briefly, the mixup algorithm is a data augmentation method that generates new
samples based on the training sample. Nevertheless, in previous methods, the mixed
samples are randomly selected, which is effective but may result in instability in the
distribution of training samples and impact model learning.

To this end, we innovatively synergize the mixup model and memory batch ap-
proach to make the distribution of the generated samples more stable. As demonstrated
in Algorithm 1, we first construct the memory batch sampler, and the new sample batch
is sampled. Then, the memory batch samples can be mixed by various mixup algorithms
to generate the new virtual training data, and the new sample can be fed to the neural
network:

x̃ij
new = λxi

Mbatch
+ (1 − λ)xj

Mbatch

ỹij
new = λyi

Mbatch
+ (1 − λ)yj

Mbatch

(5)

where xMbatch and yMbatch denote the samples in the memory batch. The memory batch
can be constructed by data preprocessing, which has desirable plug-and-play properties.
The MbMix data augmentation algorithm can further enhance the accuracy of model
classification. Importantly, the plug-and-play properties of MbMix enable it to be effectively
deployed in innovative applications for university students, increasing the potential success
rate of their entrepreneurial endeavors.
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Algorithm 1 Mixup model with memory batch
Input: train samples x, y; train datasets D;
Parameter: n; k;
Output: new train samples xnew, ynew.

1: while MbMix do
2: Mbatch = Sampler(D, n, k)
3: x̃ij

new = λxi
Mbatch

+ (1 − λ)xj
Mbatch

4: ỹij
new = λyi

Mbatch
+ (1 − λ)yj

Mbatch
5: end while
6: return x̃new; ỹnew.

3.4. Validity Analysis

One of the primary advantages of MbMix is its ability to significantly increase the
size of the dataset. The mixup algorithm generates new training samples by performing
linear interpolation between pairs of existing samples and their corresponding labels. This
process creates synthetic examples that expand the training set, providing the model with a
more diverse range of data points to learn from. On the other hand, memory batch utilizes
a cache pool to store and reuse historical samples during training. By incorporating these
previously seen samples alongside the current batch, memory batch enhances the diversity
and temporal stability of the training data. The combination of the mixup model and
memory batch in MbMix amplifies the dataset expansion effect, resulting in a substantially
larger and more varied training set.

However, it is important to note that the new samples generated by the mixup model
are not exact replicas of the original data. While the mixup model creates plausible interpo-
lations between existing samples, these synthetic examples may introduce some level of
noise or slight deviations from the true data distribution. If left unchecked, this noise can
potentially affect the model’s learning performance and lead to suboptimal generalization.
This is where memory batch plays a crucial role in mitigating the impact of mixup-induced
noise. By incorporating historical samples from the cache pool, memory batch helps to
stabilize the training process and reduce the influence of noisy synthetic examples. The
inclusion of real, previously seen samples acts as a regularizing force, guiding the model
towards more reliable and consistent representations.

Furthermore, the combination of the mixup and memory batch models in MbMix
offers additional benefits beyond dataset expansion and noise reduction. The increased
diversity of training samples resulting from MbMix helps to improve the model’s ability
to generalize to unseen data. By exposing the model to a wider range of variations and
interpolations, MbMix’s robustness is enhanced and the risk of overfitting is reduced.
The model learns to capture the underlying patterns and relationships in the data more
effectively, leading to improved performance on both the training set and unseen test data.

In conclusion, the combination of the mixup and memory batch models in MbMix is
a powerful approach for enhancing machine learning models. By expanding the dataset
size, improving sample diversity, reducing noise, and promoting generalization, MbMix
offers significant benefits over using either technique alone. This synergistic combination
has the potential to boost model performance, particularly in scenarios where limited
training data are available or when dealing with complex and diverse datasets. Compared
to traditional data augmentation algorithms, MbMix can be better applied to university
student innovation education, helping students to understand and analyze text content
more effectively and to unearth new ideas and insights.

4. Experimental Setup

Dataset: Aiming to assist university students in their innovation and entrepreneurship,
we utilize the news classification datasets RTE [23] and MRPC [24] to explore social hotspots
in real-time news, providing recommendations for student entrepreneurial projects. In
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today’s rapidly evolving new media landscape, entrepreneurship among students focused
on new media also holds significant potential. Therefore, we use the movie review datasets
SST-2 [25] and IMDB [26] to explore viewers’ interest trends from movie reviews, offering
guidance for student entrepreneurship in new media. During the entrepreneurial journey,
students may encounter harmful messages through emails or text messages, which could
lead to business failure or more severe consequences. To address this, we experiment with
the spam detection dataset TREC [27] to filter out malicious emails, aiming to provide a
clean entrepreneurial environment for students. In addition, to investigate the emotional
and psychological states of students during their entrepreneurial endeavors, we conduct
sentiment analysis as a simulated experiment using the QNLI [28]. Finally, we use OLID [68]
and COLA [69] to see how Mbmix can help to improve model robustness.

Baseline model: We compare MbMix with four baselines: (i) a vanilla classification
model without mixup, (ii) TMix [19], (iii) EmbedMix [4], and (iv) SSMix [20]. The vanilla
model is a language-model-based classification model that does not employ any data
augmentation methods. EmbedMix applies the mixup model on the embedding layer.
TMix synthesizes a sentence via span-based mixing at a specific encoder layer. SSMix
employs the saliency score to retain the most distinctive tokens from a mixed text.

Training Details: We test our methods and deployment experiments on the prevailing
pre-trained language model: BERT. We perform all experiments using PyTorch on an
NVIDIA 3090 GPU with 24 G of memory with three different seeds, and report the average
score. We train our models using the AdamW optimizer. We set the learning rate with
a warmup to 5−5 for the normal model and to 1−5 for the mixup model. The maximum
sentence length is set to 128. In EmbedMix and TMix, λ is set to 0.2, while in SSMix, λ
is set to 0.1. The hyperparameters are the same as those proposed by [20]. The details of
the datasets are mentioned in Table 2. The number of epochs for normal model training is
3, while the number of epochs for training the TMix, EmbedMix, and SSMix models is 5,
which follows [20].

Table 2. Dataset name, total number of labels, details of train/dev/test splits of datasets, and the
memory size we used as the benchmark.

Dataset Label Train/Dev/Test Memory Size

SST-2 2 6.9 K/0.8 K/1.8 K 400
QNLI 3 105 K/5.4 K/5.4 K 2500
COLA 2 8 K/1 K/1 K 300

RTE 2 2.5 K/0.2 K/3 K 400
MRPC 2 3.7 K/0.4 K/1.7 K 300

TREC-coarse 6 5.5 K/0.5 K 300
TREC-fine 47 5.5 K/0.5 K 300

OLID 2 11 K/1.3 K/0.8 K 1000
IMDB 2 25 K/25 K 300

5. Experimental Results and Analysis

Main results: the results in Table 3 show that the mixup model with memory batch
provides suitable performance for text classification, showing improved accuracy on all
eight test datasets. In the COLA dataset, for example, the average improvement was more
significant than 2.8%. We observe that the model with memory batch outperforms the
vanilla model, which indicates that the model’s performance can be effectively improved
by memory batch sampling. It is worth noting that the highest accuracy of the TREC-
fine dataset is 93.6%, which is a competitive result among the TREC benchmarks. This
implies that deploying the MbMix algorithm in applications such as spam detection can
yield favorable results, which is beneficial for advancing innovation education among
university students.



Electronics 2024, 13, 1506 9 of 14

Table 3. Experimental results of comparison with baselines. The pre-trained model is BERT-base-
uncased. The evaluation metric employed is accuracy. Mem.bat. is an abbreviation for memory batch. ↑
indicates an improvement in performance.

Model
GLUE TREC

OLID IMDB
SST-2 QNLI COLA RTE MRPC Coarse Fine

No mixup 91.31 90.33 56.68 64.49 84.06 97.26 83.86 79.26 88.53
Mem.bat. 91.54 90.60 60.24 66.54 84.71 97.33 91.60 80.23 88.73

TMix 91.35 90.41 56.80 66.05 84.30 97.33 88.39 79.69 88.67
MbMix 92.08 90.68 60.35 68.82 86.26 97.60 93.13 80.60 88.78

EmbedMix 91.24 90.50 55.80 66.54 83.90 97.53 88.60 79.69 88.60
MbMix 92.35 90.74 59.07 68.11 85.20 97.59 93.33 80.48 88.79

SSMix 91.20 90.51 53.16 65.58 83.65 97.53 88.33 79.59 88.86
MbMix 92.08 90.91 54.07 66.96 84.96 97.53 93.60 80.53 88.94

Average 0.72↑ 0.29↑ 2.81↑ 1.93↑ 1.30↑ 0.095↑ 5.61↑ 0.89↑ 0.13↑

Further observation shows that the benefits of the memory batch and mixup models
can be synergized. They produce the best reported results on the GLUE benchmark
and TREC datasets. Our approach is very simple, as it requires manipulating only the
data preprocessing method: there are no changes to the standard neural network or
classification algorithms, no language-specific training or tuning, and no external auxiliary
data. Compared to existing algorithms, the MbMix algorithm offers greater flexibility,
endowing it with extensive potential for application in the realm of university student
innovation education. By utilizing the MbMix algorithm, students can delve into text data
from various domains, such as scientific literature and market research reports, to identify
issues, propose innovative ideas, and verify and refine these through practical experiments.

Ablation study: We compare simplified versions of our model to understand the
contributions of its individual components, including the mixup model and memory batch.
The results from Table 3 demonstrate that the performance improves as we add mixup
and memory batch models. MbMix achieves the best results when all components are
synergized. These empirical results support our findings in Section 3.3, where we theorize
that the combination of the mixup model with the memory batch model can be used as a
better data augmentation method with a more stable distribution of training samples.

ROC analyses: Figure 2 displays the ROC curves and probability histograms for the
MbMix and normal models. It is observed that the ROC curve for the MbMix model bends
more towards the top-left corner than the normal model, indicating better classification
performance of the MbMix model. Additionally, the MbMix model achieves an AUC
value of 0.74, which is significantly better than the normal model. Lastly, as expected, the
probability histogram of the MbMix model has a shorter tail, indicating more accurate
prediction results.

Table 4 displays the standard deviation results. It is not difficult to observe that the
MbMix model demonstrates a more stable standard deviation compared to the baseline
models, indicating that MbMix exhibits greater robustness. Furthermore, Figure 3 presents
additional ROC curves, which illustrate that MbMix achieves more competitive perfor-
mance across different datasets and mixup-derived algorithms. In addition, Figure 4 shows
the impact of different memory sizes on model performance.
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Table 4. The standard deviation results correspond with the average of our experiments. We report
validation accuracies for GLUE and OLID datasets and test accuracies for TREC and IMDM datasets.

Model
GLUE TREC

OLID IMDB
SST-2 QNLI COLA RTE MRPC Coarse Fine

No mixup 91.31± 0.23 90.33± 0.49 56.68± 0.97 64.49± 0.68 84.06± 0.72 97.26± 0.18 83.86± 1.03 79.26± 0.06 88.53± 0.15
Mem.bat. 91.54± 0.35 90.60± 0.46 60.24± 1.53 66.54± 2.00 84.71± 0.50 97.33± 0.09 91.60± 0.71 80.23± 0.49 88.73± 0.13

TMix 91.35± 0.45 90.41± 0.53 56.80± 1.29 66.05± 1.28 84.30± 1.11 97.33± 0.09 88.39± 0.58 79.69± 0.15 88.67± 0.20
MbMix 92.08± 0.16 90.68± 0.48 60.35± 1.85 68.82± 3.68 86.26± 0.52 97.60± 0.16 93.13± 0.65 80.60± 0.39 88.78± 0.18

EmbedMix 91.24± 0.46 90.50± 0.51 55.80± 1.34 66.54± 1.45 83.90± 1.10 97.53± 0.09 88.60± 0.56 79.69± 0.91 88.60± 0.07
MbMix 92.35± 0.19 90.74± 0.42 59.07± 0.71 68.11± 2.80 85.20± 0.75 97.59±0 93.33± 0.41 80.48± 0.12 88.79± 0.16

SSMix 91.20± 0.19 90.51± 0.38 53.16± 2.24 65.58± 0.84 83.65± 1.20 97.53± 0.18 88.33± 0.33 79.59± 0.17 88.86± 0.05
MbMix 92.08± 0.24 90.91± 0.63 54.07± 1.23 66.96± 2.87 84.96± 1.02 97.53± 0.09 93.60± 0.58 80.53± 0.39 88.94± 0.09

(a)

(b)

Figure 2. Comparison of ROC curves and histograms of predicted probabilities on the RTE dataset.
(a) Normal model. (b) MbMix model.
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(a) (b)

(c) (d)

Figure 3. Comparison of ROC curves between the normal and mixup models with memory batch.
(a) normal and ssmix with memory batch; (b) normal and ssmix with memory batch; (c) normal and
tmix with memory batch; (d) normal and ssmix with memory batch.

(a) (b)

Figure 4. Comparing ROC curves across different memory batch sizes for the MbMix model. (a) The
memory batch size used is 400. (b) The memory batch size used is 600.

6. Conclusions

We have introduced MbMix, a universality data augmentation strategy for text that
enhances the mixup model’s abilities, resulting in improved text classification performance.
MbMix synergizes the mixup and memory batch models to guarantee that the generated
samples have a more stable distribution. We conducted various text classification experi-
ments, and the experimental results show that our proposed model achieves outstanding
performance to the baseline models. For instance, there is an average improvement of
2.81% on the CoLA dataset. Our successful results suggest that our idea of combining
the mixup model with memory batch can be potentially applied to other NLP tasks, such
as real-world scenarios which need more labeled data. The MbMix approach presents
a promising opportunity for innovative entrepreneurial teams and entrepreneurial uni-
versity students to innovate in the field of natural language processing. By effectively
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augmenting training data and improving the performance of NLP applications, MbMix can
help entrepreneurial university students in their entrepreneurship simulation training and
entrepreneurship practice to reduce costs, accelerate development, and create innovative
solutions that address real-world challenges and create value for users in various domains.

In future work, we will investigate the following two points: (i) More mixup-derived
methods with memory batch should be studied to improve the performance of the text
classification model. (ii) More application scenarios of the mixup model with memory batch,
such as image and speech, should be verified to further prove its generalization performance.
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