
Citation: Buestán-Andrade, P.A.;

Peñacoba-Yagüe, M.; Sierra-García,

J.E.; Santos, M. Wind Power

Forecasting with Machine Learning

Algorithms in Low-Cost Devices.

Electronics 2024, 13, 1541. https://

doi.org/10.3390/electronics13081541

Academic Editors: Hao Xue and

Du Huynh

Received: 29 February 2024

Revised: 10 April 2024

Accepted: 15 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Wind Power Forecasting with Machine Learning Algorithms in
Low-Cost Devices
Pablo Andrés Buestán-Andrade 1,* , Mario Peñacoba-Yagüe 2,* , Jesus Enrique Sierra-García 2 and
Matilde Santos 3

1 Computer Science Faculty, Complutense University of Madrid, 28040 Madrid, Spain
2 Department of Digitalization, University of Burgos, 09006 Burgos, Spain; jesierra@ubu.es
3 Institute of Knowledge Technology, University Complutense of Madrid, 28040 Madrid, Spain;

msantos@ucm.es
* Correspondence: pbuestan@ucm.es (P.A.B.-A.); mpenacoba@ubu.es (M.P.-Y.)

Abstract: The urgent imperative to mitigate carbon dioxide (CO2) emissions from power generation
poses a pressing challenge for contemporary society. In response, there is a critical need to intensify
efforts to improve the efficiency of clean energy sources and expand their use, including wind energy.
Within this field, it is necessary to address the variability inherent to the wind resource with the
application of prediction methodologies that allow production to be managed. At the same time,
to extend its use, this clean energy should be made accessible to everyone, including on a small
scale, boosting devices that are affordable for individuals, such as Raspberry and other low-cost
hardware platforms. This study is designed to evaluate the effectiveness of various machine learning
(ML) algorithms, with special emphasis on deep learning models, in accurately forecasting the
power output of wind turbines. Specifically, this research deals with convolutional neural networks
(CNN), fully connected networks (FC), gated recurrent unit cells (GRU), and transformer-based
models. However, the main objective of this work is to analyze the feasibility of deploying these
architectures on various computing platforms, comparing their performance both on conventional
computing systems and on other lower-cost alternatives, such as Raspberry Pi 3, in order to make
them more accessible for the management of this energy generation. Through training and a rigorous
benchmarking process, considering accuracy, real-time performance, and energy consumption, this
study identifies the optimal technique to accurately model such real-time series data related to wind
energy production, and evaluates the hardware implementation of the studied models. Importantly,
our findings demonstrate that effective wind power forecasting can be achieved on low-cost hardware
platforms, highlighting the potential for widespread adoption and the personal management of wind
power generation, thus representing a fundamental step towards the democratization of clean
energy technologies.

Keywords: machine learning; CNN; FC; GRU; transformers; forecasting; wind energy; wind turbine;
hardware implementation; computational time; Raspberry Pi

1. Introduction

Wind power is increasingly recognized as a pivotal component in the global effort
to transition towards sustainable energy solutions amidst escalating concerns regarding
climate change and the imperative to mitigate greenhouse gas emissions [1]. The utilization
of wind turbines for electricity generation has gained significant attention due to their clean
nature and potential to contribute to decarbonization efforts [2].

However, the inherent variability of the wind resource poses challenges in terms of
efficiency and reliability in power generation, as well as its integration into the electrical
grid [3]. This is why the forecasting of variables such as wind speed and energy production
has become crucially important. The ability to accurately predict these variables not only

Electronics 2024, 13, 1541. https://doi.org/10.3390/electronics13081541 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081541
https://doi.org/10.3390/electronics13081541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9210-1591
https://orcid.org/0009-0005-6868-9371
https://orcid.org/0000-0001-6088-9954
https://orcid.org/0000-0003-1993-8368
https://doi.org/10.3390/electronics13081541
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081541?type=check_update&version=1

Electronics 2024, 13, 1541 2 of 24

enhances the operational efficiency of wind farms but also enables better control systems
and the implementation of predictive maintenance strategies, which can reduce operational
costs and increase the technology’s lifespan.

However, nowadays, new regulations are fostering the use of clean energy at any
level, even the isolated installation of small wind turbines that are intended to cover for
individual energy consumption. This generalization of the use of the renewable devices
demands affordable energy management. If their wind energy generation has to be reli-
able, consumers must have access to tools that allow them to plan and handle the power
produced by the wind converters. Thus, low-cost solutions for the prediction of energy
generation are a must. This will allow consumers to better plan energy buying from the
electric grid, reduce costs, and avoid energy wasting.

In this work, in order to improve the accuracy and efficiency of predictions in the
context of wind energy, various machine learning model architectures have been applied
and implemented. Among others, we have considered convolutional neural networks
(CNNs), long short-term memory (LSTM) neural networks, gated recurrent unit (GRU)
cells, and transformers, which are all particularly suited for processing temporal series of
data. This research evaluates and compares these machine learning models implemented on
low-cost devices. Training and test experiments have been carried out to identify the most
suitable model architecture to effectively address the forecasting of wind power generation.

The implementation of these machine learning techniques on different hardware plat-
forms has been analyzed with the aim of finding affordable and low-cost solutions that
can be proposed to energy consumers. These novel techniques have been designed to run
smoothly on cost-effective systems, defined as hardware platforms that are economically ac-
cessible to a wide range of users, typically priced below EUR 100. This definition of low-cost
devices covers devices like the Raspberry Pi 3 (Raspberry Pi foundation, Cambridge, UK).

The implementation of these techniques in low-cost devices has many advantages, not
only at the level of use but also in engineering education and to address some challenges
that Industry 4.0 brings [4]. Therefore, the importance of and need to use low-cost hardware
platforms in wind energy prediction cannot be underestimated if the use of this type
of renewable energy is to be extended. These platforms offer accessibility to cutting-
edge advances in wind resource prediction technology for researchers, educators, and
professionals in the sector. On the other hand, using low-cost platforms to provide solutions
that improve energy generation allows for democratizing the use of these wind devices,
allowing entities and individuals with limited resources to benefit from this energy source,
as well as its possible extension to other applications.

To summarize, the final goal of this experimental study is to analyze the potential for
cost-effective computing solutions, such as the Raspberry Pi 3, to make advanced machine
learning algorithms more accessible to individuals and for small-scale applications, such as
wind energy generation on low-cost devices, thus expanding their use.

The main contributions of this paper can be stated as follows:

I. This study works with different machine learning techniques for wind forecasting
using real-time series wind data, considering factors such as the data window size and
the input features. It systematically evaluates different deep learning methodologies
(CNN, FC), including some more recent ones such as GRU and transformers;

II. This research also investigates the impact on the training process of the algorithms,
which used a novel filtering method integrated into the input feature set of the
temporal series;

III. The evaluation of machine learning (ML) models, carried out through metrics such
as the root mean square error (RMSE) and mean absolute error (MAE) of different
variables, such as accuracy;

IV. The feasibility of implementing these ML forecasting techniques in diverse computing
platforms is explored, comparing their performance on both conventional computing
systems and more cost-effective alternatives, such as Raspberry Pi 3, and consid-

Electronics 2024, 13, 1541 3 of 24

ering the accuracy, real-time performance, and energy consumption on both types
of platforms.

This work is structured as follows: the following section gives an overview of the state
of the art on wind power forecasting using different platforms. In Section 3, the machine
learning techniques used herein for wind energy prediction are presented, detailing their
configuration. The experiments carried out and the results obtained are described and
discussed in Section 4. Finally, the conclusions and potential future research directions
are mentioned.

2. Related Works

Advanced machine learning algorithms play a key role in wind forecasting due to their
ability to capture complex patterns and non-linear relationships in wind data [5]. These
algorithms, such as recurrent neural networks (RNNs), gated recurrent units (GRUs), and
transformer models, have proved successful in sequential data prediction, making them
well-suited for wind power time series forecasting. RNNs, including GRU architectures, are
particularly adapted to modeling temporal dependencies in wind data, while transformer-
based models, originally developed for natural language processing, have shown promising
results in various time series forecasting applications [6]. The utilization of these advanced
machine learning algorithms not only enhances the accuracy of wind forecasting but also
enables the identification of subtle patterns and trends that traditional statistical methods
may overlook [7]. As an example of these algorithms’ utilization, Zhang et al. 2019 [8]
carried out a study in which the LSTM network was applied to forecast the output power
from a wind farm situated in China. The input data consisted of three months’ wind
speed data obtained from numerical weather prediction (NWP) models, while the wind
power that was generated served as the output variable. Another interesting paper is [9],
in which a comparison between LSTM and GRU techniques’ use for short-term offshore
wind speed forecasting was performed. Another comparative study is presented in [10],
where the efficacy of the LSTM, GRU, and transformer neural network architectures for
predicting wind turbine variables is analyzed. The findings of this paper show the superior
adaptability of the GRU model to time series data, as evidenced by its lower RMSE and
MAE errors compared to the LSTM and transformer architectures. Moreover, this study
emphasized the importance of integrating additional features to enhance the predictive
capabilities of machine learning models.

As this study focuses on low-cost hardware implementation, it is worth mentioning
that low-cost technology has gained importance for sensors, both physical and virtual
(IoT), that monitor devices and measure variables, especially those related to the weather.
However, far fewer works explore low-cost solutions for prediction. This is due to the heavy
computational load of some intelligent techniques, such as neural networks in general and,
particularly, deep learning networks, which require substantial computation and memory
resources. There are different approaches to addressing this issue. One solution is to use
hardware-based neural networks. In [11], recent advances in light-weight deep learning
models and network architecture search (NAS) algorithms are reviewed, starting with
simplified layers and efficient convolution and including new architectural designs and
optimization. Several practical applications of efficient CNNs have been investigated using
various types of hardware architectures and platforms. In [12], the hardware implementa-
tion of different complex machine learning models such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and artificial neural network (ANNs) is inves-
tigated. The challenges, such as speed, area, resource consumption, and throughput, are
discussed. In [13], a new framework for end-to-end deep neural networks’ training, quan-
tization, and deployment is presented. The proposal is compared to existing embedded
inference engines in terms of memory and power efficiency.

In any case, the most common approach is to simplify the neural network so as to be
able to implement it on a small computational device. For instance, in [14], the authors
propose an area-efficient implementation of an artificial neural network, reducing the

Electronics 2024, 13, 1541 4 of 24

number of layers in the ANN by nearly half, and keeping the number of fixed layers as low
as possible. This way, they use less area to minimize the cost of on-chip implementation.
Among the less-demanding NNs, spiking neural networks (SNN) have attracted much
attention regarding hardware implementations, mainly in the neuromorphic hardware
research community, as they are neuromorphic systems based on the information pro-
cessing and storage procedure of biological neurons. In [15], a low-cost and high-speed
implementation of a spiking neural network based on FPGA is proposed. Also, in [16], the
current implementations of SNNs on various hardware platforms are discussed.

In [17], a lightweight convolutional neural network, TripleNet, is designed where
the network model reduces the number of parameters of the network so it can operate
easily on Raspberry Pi to perform image classification experiments. A simplified CNN was
implemented in a drowsiness driving detection system using Raspberry Pi in [18].

Furthermore, Table 1 presents a selection of references that have used low-cost hard-
ware platforms to implement machine learning algorithms, which allows us to highlight
the differences in our article. These references have been found using the Google Scholar
database with the following search terms: “Deep learning on a Raspberry PI”, “CNN on
low-cost hardware”, “CNN on Raspberry Pi”, and “Neural networks on low-cost hard-
ware”. These studies exemplify the potential of low-cost hardware to drive innovation
and address real-world challenges using advanced and intelligent techniques. The objec-
tive of this summary is to provide information on the growing trend of using low-cost
hardware for machine learning applications for various applications. To the best of our
knowledge, this is the first study that evaluates wind energy forecasting based on low-cost
hardware platforms.

Table 1. Comparative analysis of low-cost hardware implementations of machine learning applications.

Reference Application Hardware Architecture Accuracy Real-Time
Performance Energy

This work Wind Power
Forecasting Raspberry Pi 3 CNN, Fully Connected,

Transformer, GRU Yes Yes Yes

Durr, O et al.
2015 [19]

Real Time Face
Recognition Raspberry Pi 3 CNN Yes Yes No

Cintas, E. 2020
[20]

Vision Based
Moving UAV
Tracking by

another UAV

Raspberry Pi 4 CNN Yes No No

S. Akhtari et al.
2019 [21]

Applied load in
a power train

system
monitoring

STM32 DNN Yes No No

F. Alongi et al.
2020 [22]

Weather
Forecasting STM32 DTNN Yes No No

Jordan, A et al.
2020 [23]

Eye blink
detection STM32L451 CNN Yes Yes Yes

F. de Vita et al.
2020 [24]

Diseases in
coffee plants

detection
STM32 Q-CNN Yes Yes Yes

Ju et al. 2023
[17]

Image
classification Raspberry

HarDNet, ThreshNet,
ShuffleNet,

MobileNetV1,
GhostNet, EfficientNet

Yes Yes No

Inspired by these articles, the present research aims to further explore advanced
machine learning techniques and their potential application to improve the accuracy of

Electronics 2024, 13, 1541 5 of 24

wind energy prediction, using a practical approach that has not been covered in the
mentioned articles. This approach is the hardware implementation of these ML techniques
for time series prediction on low-cost platforms, with a novel objective of making them
accessible and affordable for any wind turbine owner.

3. Machine Learning Techniques

Before describing the configuration, training, and validation of the proposed machine
learning models, a brief overview of the techniques used in this study is presented. These
techniques are CNN, fully connected, GRU, and transformer models.

3.1. CNN

CNNs are a class of deep feedforward neural networks characterized by their convolu-
tional structure, and primarily used through supervised learning methodologies. Moreover,
their architecture encompasses convolutional, pooling, and fully connected layers [25].
These layers play key roles in feature extraction within the CNN framework. The convo-
lutional layer processes input features through convolutions, extracting spatial patterns
for subsequent analysis. Following this, the pooling layer aggregates information from
preceding convolutional layers while reducing its spatial dimensions. Finally, the fully
connected layer transforms the two-dimensional features into one-dimensional data for
output representation. Figure 1 shows the CNN architecture used in this research.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 25

F. de Vita et
al. 2020 [24]

Diseases in coffee
plants detection

STM32 Q-CNN Yes Yes Yes

Ju at al.
2023 [17]

Image
classification Raspberry

HarDNet,
ThreshNet,
ShuffleNet,

MobileNetV1,
GhostNet, Ef-
ficientNet

Yes Yes No

Inspired by these articles, the present research aims to further explore advanced ma-
chine learning techniques and their potential application to improve the accuracy of wind
energy prediction, using a practical approach that has not been covered in the mentioned
articles. This approach is the hardware implementation of these ML techniques for time
series prediction on low-cost platforms, with a novel objective of making them accessible
and affordable for any wind turbine owner.

3. Machine Learning Techniques
Before describing the configuration, training, and validation of the proposed machine

learning models, a brief overview of the techniques used in this study is presented. These
techniques are CNN, fully connected, GRU, and transformer models.

3.1. CNN
CNNs are a class of deep feedforward neural networks characterized by their convo-

lutional structure, and primarily used through supervised learning methodologies. More-
over, their architecture encompasses convolutional, pooling, and fully connected layers
[25]. These layers play key roles in feature extraction within the CNN framework. The
convolutional layer processes input features through convolutions, extracting spatial pat-
terns for subsequent analysis. Following this, the pooling layer aggregates information
from preceding convolutional layers while reducing its spatial dimensions. Finally, the
fully connected layer transforms the two-dimensional features into one-dimensional data
for output representation. Figure 1 shows the CNN architecture used in this research.

Figure 1. CNN architecture [26].

The components of the CNN architecture (Figure 1) are described as follows:
1. Convolutional Layers: Convolutional layers are the core of CNNs and extract spatial

features from the input data. For wind energy prediction, these layers capture com-
plex relationships between wind patterns and their impact on turbine performance.
By traversing the spatial grid of the sensor data, convolutional filters capture local-
ized patterns that are essential to their power prediction function. Within this com-

Figure 1. CNN architecture [26].

The components of the CNN architecture (Figure 1) are described as follows:

1. Convolutional Layers: Convolutional layers are the core of CNNs and extract spa-
tial features from the input data. For wind energy prediction, these layers capture
complex relationships between wind patterns and their impact on turbine perfor-
mance. By traversing the spatial grid of the sensor data, convolutional filters capture
localized patterns that are essential to their power prediction function. Within this
component of the CNN architecture, it is important to analyze the “kernel size”. This
parameter determines the dimensions of the filters used in the convolutional layers.
For example, a kernel size of three means that the filters have a spatial dimension of
3 × 3 pixels or elements. This dimension determines the receptive field of each filter
and influences the granularity of the features extracted from the input data. Another
relevant parameter is the number of neurons or units in each layer. This parameter
influences the network’s ability to learn and represent complex relationships underly-
ing the data. Furthermore, the convolutional layers are influenced by the number of
filters or kernels in each convolutional layer of the neural network. Filters are small
spatial windows of the input data that extract relevant features. In this context, with
128 filters, the convolutional layers of the network are capable of capturing a wide
range of spatial patterns and features from the input data.

Electronics 2024, 13, 1541 6 of 24

2. Pooling Layers: Integrating pooling layers into CNN architectures enables the reduc-
tion of spatial dimensions within feature maps, facilitating the extraction of essential
information while mitigating the computational complexity. This has been imple-
mented by the “Pool_size” parameter, which specifies the size of the pooling window
used for downsampling. As an example, a pool size of three indicates that the pooling
operation is applied over non-overlapping windows of size 3 × 3, effectively reducing
the spatial dimensions of the feature maps by a factor of three.

3. Activation Functions: Employing non-linear activation functions, such as rectified
linear units (ReLU), empowers CNNs to model complex relationships between input
variables and the predicted power output. The activation method used with this
technique is denoted by the term “Activation”. This parameter governs how neurons
process and propagate information. Moreover, “Relu” refers to the rectified linear unit
activation function, which introduces non-linearity into the network by outputting the
input directly if it is positive, and zero otherwise. On the contrary, “Leaky_relu” refers
to the leaky rectified linear unit activation function, which is similar to the traditional
ReLU function but allows for a small, non-zero gradient when the input is negative.
The latter, which helps alleviate the vanishing gradient problem and facilitates better
training stability and convergence, was implemented in the fully connected method.

4. Fully Connected Layers: Following the convolutional and pooling layers, fully con-
nected layers integrate extracted spatial features to generate final model outputs.
These layers use the information obtained from the convolutional operations to dis-
cern relationships between the input and output, that is, the wind dynamics and
turbine performance in our case.

5. Output Layers: To improve the generalization ability of CNNs, regularization tech-
niques such as dropout and weight decay are commonly employed. Introducing noise
or constraints during training helps avoid overfitting and promotes the development
of more accurate models for prediction.

3.2. Fully Connected

The fully connected (FC) model is a neural network architecture characterized by
a dense interconnection between neurons along consecutive layers. In this model, each
neuron in a given layer is connected to every neuron in the subsequent layer, facilitating
comprehensive information exchange throughout the network.

At its core, the FC model consists of multiple layers: an input layer, one or more
hidden layers, and an output layer. Each layer has neurons, or nodes, which perform
computations on the incoming data and pass the results to the neurons in the subsequent
layer (Figure 2).

Electronics 2024, 13, x FOR PEER REVIEW 7 of 25

Figure 2. Fully connected neural network architecture [27].

The input layer receives the raw input data, which could be in the form of feature
vectors or flattened representations of multidimensional data. Each neuron in the input
layer corresponds to a specific feature or attribute of the input data.

The hidden layers, situated between the input and output layers, perform the bulk of
the computation in the FC model. Neurons in these layers apply linear transformations to
the input data using weighted connections and activation functions, thereby extracting
increasingly abstract representations of the input.

The output layer generates the final predictions or classifications based on the pro-
cessed information from the hidden layers. The number of neurons in the output layer
corresponds to the number of output classes or the dimensionality of the prediction space.

During its training, the FC model learns to adjust the weights associated with each
connection between neurons using optimization algorithms such as gradient descent. This
process aims to minimize the discrepancy between the model’s predictions and the
ground truth labels in the training data.

To prevent overfitting and improve its generalization performance, regularization
techniques such as dropout, weight decay, and early stopping are commonly applied to
the FC model. These techniques help to control the complexity of the model and ensure
that it can effectively generalize to unseen data.

The flexibility and adaptability of the fully connected model make it well-suited for
a wide range of tasks, including regression, classification, and pattern recognition. While
it may not be as efficient in handling high-dimensional data with spatial dependencies as
other architectures, like convolutional neural networks (CNNs), the FC model remains a
fundamental building block in the field of deep learning.

3.3. GRU
Gated recurrent unit (GRU) cell networks, similarly to the long short-term memory

(LSTM) neural networks, constitute a compelling alternative that addresses the shortcom-
ings of traditional recurrent neural networks (RNNs) while offering computational effi-
ciency and architectural simplicity. Like LSTM, the GRU method is designed to avoid the
issue of vanishing gradients and ineffective long-term information retention in sequential
data processing [8]. However, the GRU method distinguishes itself by introducing two
gates: the update gate and the reset gate [28]. These gates serve as dynamic controllers,
regulating the flow of information throughout the network and enabling selective infor-
mation retention and propagation. The update gate determines the proportion of new in-
formation to be incorporated into the memory cell, striking a delicate balance between
preserving past information and incorporating novel knowledge (Figure 3). Meanwhile,
the reset gate dictates the extent to which historical information influences the current

Figure 2. Fully connected neural network architecture [27].

Electronics 2024, 13, 1541 7 of 24

The input layer receives the raw input data, which could be in the form of feature
vectors or flattened representations of multidimensional data. Each neuron in the input
layer corresponds to a specific feature or attribute of the input data.

The hidden layers, situated between the input and output layers, perform the bulk of
the computation in the FC model. Neurons in these layers apply linear transformations
to the input data using weighted connections and activation functions, thereby extracting
increasingly abstract representations of the input.

The output layer generates the final predictions or classifications based on the pro-
cessed information from the hidden layers. The number of neurons in the output layer
corresponds to the number of output classes or the dimensionality of the prediction space.

During its training, the FC model learns to adjust the weights associated with each
connection between neurons using optimization algorithms such as gradient descent. This
process aims to minimize the discrepancy between the model’s predictions and the ground
truth labels in the training data.

To prevent overfitting and improve its generalization performance, regularization
techniques such as dropout, weight decay, and early stopping are commonly applied to the
FC model. These techniques help to control the complexity of the model and ensure that it
can effectively generalize to unseen data.

The flexibility and adaptability of the fully connected model make it well-suited for a
wide range of tasks, including regression, classification, and pattern recognition. While it
may not be as efficient in handling high-dimensional data with spatial dependencies as
other architectures, like convolutional neural networks (CNNs), the FC model remains a
fundamental building block in the field of deep learning.

3.3. GRU

Gated recurrent unit (GRU) cell networks, similarly to the long short-term memory
(LSTM) neural networks, constitute a compelling alternative that addresses the short-
comings of traditional recurrent neural networks (RNNs) while offering computational
efficiency and architectural simplicity. Like LSTM, the GRU method is designed to avoid the
issue of vanishing gradients and ineffective long-term information retention in sequential
data processing [8]. However, the GRU method distinguishes itself by introducing two
gates: the update gate and the reset gate [28]. These gates serve as dynamic controllers,
regulating the flow of information throughout the network and enabling selective infor-
mation retention and propagation. The update gate determines the proportion of new
information to be incorporated into the memory cell, striking a delicate balance between
preserving past information and incorporating novel knowledge (Figure 3). Meanwhile,
the reset gate dictates the extent to which historical information influences the current
state, allowing the GRU method to adaptively adjust its behavior based on the contextual
relevance of past observations. By strategically integrating these gating mechanisms into
its architecture, the GRU method achieves a fine-grained control over the information flow,
effectively mitigating the challenge of gradient vanishing and facilitating the seamless
propagation of relevant information across time series [29]. This elegant design not only
enhances the model’s ability to capture long-term dependencies but also streamlines the
computational burden associated with training recurrent neural networks, making the
GRU method a good choice for a wide range of sequential data processing tasks, including
natural language processing, time series analysis, and speech recognition.

The main difference between the GRU and LSTM models is that the GRU model
replaces the forget gate and input gate in LSTM neural networks with an update gate.
Furthermore, it changes the cell state and hidden state (ht) to merging. This feature enables
GRU networks to have fewer parameters [30].

The parameters of the GRU model shown in Figure 3 are as follows:

zt = σg(Wzxt + Uzht−1 + br), (1)

ht = (1 − zt)⊙ ht−1 + zt ⊙ σh(Whxt + Uh(rtht−1 + br) (2)

Electronics 2024, 13, 1541 8 of 24

where W and U are the weight parameters, b is the partial weight, and σg is the Sigmoid
function [31].

σ(x) =
(
1 + e−x)−1 (3)

Electronics 2024, 13, x FOR PEER REVIEW 8 of 25

state, allowing the GRU method to adaptively adjust its behavior based on the contextual
relevance of past observations. By strategically integrating these gating mechanisms into
its architecture, the GRU method achieves a fine-grained control over the information
flow, effectively mitigating the challenge of gradient vanishing and facilitating the seam-
less propagation of relevant information across time series [29]. This elegant design not
only enhances the model’s ability to capture long-term dependencies but also streamlines
the computational burden associated with training recurrent neural networks, making the
GRU method a good choice for a wide range of sequential data processing tasks, including
natural language processing, time series analysis, and speech recognition.

The main difference between the GRU and LSTM models is that the GRU model re-
places the forget gate and input gate in LSTM neural networks with an update gate. Fur-
thermore, it changes the cell state and hidden state (ℎ) to merging. This feature enables
GRU networks to have fewer parameters [30].

Figure 3. Gated recurrent unit (GRU): (a) reset gate; (b) update gate [30].

The parameters of the GRU model shown in Figure 3 are as follows: 𝑧 = 𝜎 (𝑊𝑧𝑥 + 𝑈 ℎ + 𝑏𝑟), (1)

ℎ = (1 − 𝑧) ⊙ ℎ + 𝑧 ⊙ σ (𝑊ℎ𝑥 + 𝑈 (𝑟 ℎ + 𝑏𝑟) (2)

where W and U are the weight parameters, b is the partial weight, and 𝜎 is the Sigmoid
function [31]. σ(x) = (1 + 𝑒) (3)

3.4. Transformer Model
The new transformer model paradigm changes the more traditional approach of re-

current neural networks (RNN) by adopting an encoder-decoder framework and chang-
ing the fundamental mechanisms underlying the information propagation and context
modeling [32]. Within this architecture, the encoder module takes on the role of processing
time series data, through interconnected layers, to obtain the sequential patterns. The in-
put layer receives the raw temporal data, and the encoder organizes the interaction be-
tween the components, including a positional encoding layer, a self-attention mechanism,
normalization layers, and fully connected layers. To define all these layers, a series of pa-
rameters has been established.

To quantify the number of attention heads used in the self-attention mechanism,
“Num_heads” has been introduced as a parameter. Each attention head independently
attends to different parts of the input sequence, allowing the model to capture various
relationships and dependencies. Additionally, the number of units or neurons in the for-
ward layers has been specified with “ff_dim”. A high value of this parameter implies a
larger hidden layer size, allowing the model to learn more complex representations and

Figure 3. Gated recurrent unit (GRU): (a) reset gate; (b) update gate [30].

3.4. Transformer Model

The new transformer model paradigm changes the more traditional approach of recur-
rent neural networks (RNN) by adopting an encoder-decoder framework and changing
the fundamental mechanisms underlying the information propagation and context model-
ing [32]. Within this architecture, the encoder module takes on the role of processing time
series data, through interconnected layers, to obtain the sequential patterns. The input
layer receives the raw temporal data, and the encoder organizes the interaction between
the components, including a positional encoding layer, a self-attention mechanism, normal-
ization layers, and fully connected layers. To define all these layers, a series of parameters
has been established.

To quantify the number of attention heads used in the self-attention mechanism,
“Num_heads” has been introduced as a parameter. Each attention head independently
attends to different parts of the input sequence, allowing the model to capture various rela-
tionships and dependencies. Additionally, the number of units or neurons in the forward
layers has been specified with “ff_dim”. A high value of this parameter implies a larger hid-
den layer size, allowing the model to learn more complex representations and interactions
within the data. Finally, the “key_dim” parameter determines the dimensionality of the
query, key, and value vectors used to calculate the attention scores. These vectors are linear
projections of the inputs and are used to calculate the attention weights. A high “key_dim”
value allows the model to capture more detailed relationships and dependencies within
the input sequence.

This complex layer structure culminates in a high-dimensional vector representation
of the essence of the temporal sequence. Subsequently, this encoded vector is transformed
through the decoder module, where it serves as a basis for generating predictions of
future values in an autoregressive manner. Mirroring the encoder architecture, the decoder
module weaves together positional encoding, self-attention masks, normalization layers,
and decoding-encoding attention layers to obtain time series predictions. At the heart of
the transformer model are its attention mechanisms and positional encoding techniques.
Attention mechanisms dynamically weight the importance of different elements of the
input sequence, and positional coding provides sequential data with spatial information.

The architecture of the transformer model is shown in Figure 4.

Electronics 2024, 13, 1541 9 of 24

Electronics 2024, 13, x FOR PEER REVIEW 9 of 25

interactions within the data. Finally, the “key_dim” parameter determines the dimension-
ality of the query, key, and value vectors used to calculate the attention scores. These vec-
tors are linear projections of the inputs and are used to calculate the attention weights. A
high “key_dim” value allows the model to capture more detailed relationships and de-
pendencies within the input sequence.

This complex layer structure culminates in a high-dimensional vector representation
of the essence of the temporal sequence. Subsequently, this encoded vector is transformed
through the decoder module, where it serves as a basis for generating predictions of future
values in an autoregressive manner. Mirroring the encoder architecture, the decoder mod-
ule weaves together positional encoding, self-attention masks, normalization layers, and
decoding-encoding attention layers to obtain time series predictions. At the heart of the
transformer model are its attention mechanisms and positional encoding techniques. At-
tention mechanisms dynamically weight the importance of different elements of the input
sequence, and positional coding provides sequential data with spatial information.

The architecture of the transformer model is shown in Figure 4.

Figure 4. Architecture of the transformer model [10].

4. Models Training
The comparative study of different machine learning architectures for wind power

prediction presented herein considers data selection, preprocessing, and performance
evaluation metrics. The dataset is used for model training and testing, and preprocessing
techniques are crucial for enhancing the data quality and model performance. The predic-
tive model’s precision is evaluated based on metrics such as the root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), to-
gether with the evaluation of the model’s computational complexity in terms of its pre-
diction speed, memory usage, and energy consumption on different platforms.

4.1. Dataset
The dataset comes from a wind turbine’s supervisory control and data acquisition

(SCADA) system, which records several variables at 10 min intervals [33]. Specifically, it
is obtained from a wind turbine situated in Turkey. The dataset includes the following
variables:

1. Date/Time: Recorded at 10 min intervals, this timestamp provides temporal context
for each data point, enabling temporal analysis and trend identification;

Figure 4. Architecture of the transformer model [10].

4. Models Training

The comparative study of different machine learning architectures for wind power
prediction presented herein considers data selection, preprocessing, and performance eval-
uation metrics. The dataset is used for model training and testing, and preprocessing
techniques are crucial for enhancing the data quality and model performance. The predic-
tive model’s precision is evaluated based on metrics such as the root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), together
with the evaluation of the model’s computational complexity in terms of its prediction
speed, memory usage, and energy consumption on different platforms.

4.1. Dataset

The dataset comes from a wind turbine’s supervisory control and data acquisition
(SCADA) system, which records several variables at 10 min intervals [33]. Specifically, it is
obtained from a wind turbine situated in Turkey. The dataset includes the following variables:

1. Date/Time: Recorded at 10 min intervals, this timestamp provides temporal context
for each data point, enabling temporal analysis and trend identification;

2. LV Active Power (kW): This variable denotes the actual power generated by the wind
turbine at a specific moment in kilowatts (kW). It serves as a direct indicator of the
turbine’s performance and output power efficiency;

3. Wind Speed (m/s): Measured at the hub height of the turbine, this measurement
represents the velocity of the wind, which is key for determining the turbine’s power
generation capacity as it is proportional to the turbine’s ability to convert kinetic
energy into electrical power;

4. Theoretical_Power_Curve (KWh): This variable gives the theoretical power expected
from the turbine at different wind speeds, as specified by the turbine manufacturer.
It serves as a reference to evaluate the turbine’s actual performance against its de-
signed capacity;

5. Wind Direction (◦): Recorded at the hub height of the turbine, this parameter indicates
the direction from which the wind is blowing. Wind turbines automatically adjust
their orientation to align with the prevailing wind direction (yaw control), optimizing
energy capture.

Electronics 2024, 13, 1541 10 of 24

To give a better explanation of the dataset, histograms of the wind speed, theoretical
power curve, active power, and wind direction are shown in Figure 5, and the main
parameters are summarized in Table 2.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 25

2. LV Active Power (kW): This variable denotes the actual power generated by the wind
turbine at a specific moment in kilowatts (kW). It serves as a direct indicator of the
turbine’s performance and output power efficiency;

3. Wind Speed (m/s): Measured at the hub height of the turbine, this measurement rep-
resents the velocity of the wind, which is key for determining the turbine’s power
generation capacity as it is proportional to the turbine’s ability to convert kinetic en-
ergy into electrical power;

4. Theoretical_Power_Curve (KWh): This variable gives the theoretical power ex-
pected from the turbine at different wind speeds, as specified by the turbine manu-
facturer. It serves as a reference to evaluate the turbine’s actual performance against
its designed capacity;

5. Wind Direction (°): Recorded at the hub height of the turbine, this parameter indi-
cates the direction from which the wind is blowing. Wind turbines automatically ad-
just their orientation to align with the prevailing wind direction (yaw control), opti-
mizing energy capture.
To give a better explanation of the dataset, histograms of the wind speed, theoretical

power curve, active power, and wind direction are shown in Figure 5, and the main pa-
rameters are summarized in Table 2.

Figure 5. Histograms of the time series of the wind turbine dataset: active power, theoretical power
curve, wind speed, and wind direction.

Table 2. Main parameters of the histograms of the time series of the wind turbine dataset.

Parameter
LV ActivePower

(kW) Wind Speed (m/s)
Theoretical Power

Curve (KWh)
Wind Direc-

tion (°)
Mean 1307.68 7.56 1492.17 123.69

Standard Devi-
ation 1312.46 4.23 1368.02 93.44

Min −2.47 0.00 0.00 0.00
25% Quartile 50.68 4.20 161.33 49.31
50% Quartile 825.84 7.10 1063.78 73.71
75% Quartile 2482.51 10.30 2964.97 201.70

Max 3618.73 25.21 3600.00 360.00

Figure 5. Histograms of the time series of the wind turbine dataset: active power, theoretical power
curve, wind speed, and wind direction.

Table 2. Main parameters of the histograms of the time series of the wind turbine dataset.

Parameter LV ActivePower
(kW)

Wind Speed
(m/s)

Theoretical
Power Curve

(KWh)

Wind Direction
(◦)

Mean 1307.68 7.56 1492.17 123.69

Standard
Deviation 1312.46 4.23 1368.02 93.44

Min −2.47 0.00 0.00 0.00

25% Quartile 50.68 4.20 161.33 49.31

50% Quartile 825.84 7.10 1063.78 73.71

75% Quartile 2482.51 10.30 2964.97 201.70

Max 3618.73 25.21 3600.00 360.00

The dataset helps to better understand the wind energy generation, facilitating in-
depth analysis of factors influencing the turbine performance, such as the wind speed,
direction, and misalignment, and their relationship with the actual power output.

4.2. Pre-Processing

The present research uses machine learning techniques to forecast the active power
output of a 5 MW wind turbine located in Turkey. This is achieved by using data gathered
via the SCADA system in 2018, with readings taken every 10 min. The dataset includes
variables such as the wind speed, theoretical power curve, wind direction, and active
power, with the latter being the primary variable of interest for analysis.

To address the complexity of the model and the interactions among these variables, a
specific function was developed to explore all possible combinations of the variables as
inputs for the machine learning model.

Electronics 2024, 13, 1541 11 of 24

The variables were normalized by calculating their mean and dividing it by their stan-
dard deviation. This step is essential to standardize the scales of the variables, improving
the convergence capability of machine learning algorithms during the training phase.

Finally, the dataset was split into three parts: 70% for training, 20% for validation, and
10% for testing. This division enabled a thorough assessment of the models’ performance
and predictive ability across various scenarios.

4.3. Training Methodology

The training process of the techniques is as follows. Initially, the selection of the best
configuration of each model for the specific objective herein proposed was obtained with
the random search technique [34]. This approach systematically explores a wide range of
potential hyperparameter combinations. It was applied to all of the deep learning models,
the convolutional, GRU, transformer, and FC neural networks.

The hyperparameters of the configuration of each technique include:

1. The number of layers of the network architecture;
2. The number of filters in the convolutional layers;
3. The size of the kernels that affect the input of the networks;
4. The activation function that determines the output of the nodes;
5. The pooling size, to reduce dimensionality;
6. The dropout rate, to prevent overfitting;
7. The input window size, essential in systems relying on temporal patterns.

The random search technique is known for its ability to explore the hyperparameter
space more efficiently compared to exhaustive methods, such as grid search, especially
when the number of hyperparameters is large. By selecting random combinations, it is
possible to find near-optimal configurations with fewer computations, saving time and
computational resources.

Table 3 shows the best hyperparameter found with the random search method for
each machine learning technique.

Table 3. Hyperparameters of each ML method obtained with random search.

Input Features FC CNN GRU Transformers

Theoretical
power curve and

wind speed
CONF 1

Window: 20
Num_layers: 3

Units: 128
Activation: relu
Dropout rate 0.1

Window: 20
Num_layers: 2

Filters 128
Core_size: 3
Activation:
leaky_relu

Pool_size: 3
Dropout rate 0.1

Window: 60
Num_layers: 2

Filters: 128
Dropout_rate:

0.1

Window: 20
Num_layers: 2
Num_heads: 3

Ff_dim: 32
Key_dim: 3

Theoretical
power curve and
wind direction

CONF 2

Window: 20
Num_layers: 3

Units: 128
Activation: relu
Dropout rate 0.1

Window: 20
Num_layers: 2

Filters 128
Core_size: 3
Activation:
leaky_relu

Pool_size: 3
Dropout rate 0.1

Window: 60
Num_layers: 2

Filters: 32
Dropout_rate:

0.1

Window: 20
Num_layers: 2
Num_heads: 8

Ff_dim: 128
Key_dim: 3

The parameters listed in Table 3 provide some insights into the architecture of each
neural network model, and into the structure and behavior of the networks, which influence
their performance and capabilities. A brief mention of the general parameters (the ones
used in every architecture) is given below. The hyperparameters that only affect a specific
architecture have been explained in Section 3.

Electronics 2024, 13, 1541 12 of 24

1. Window: Refers to a parameter related to the input data or sequence. That is, it
indicates the window size used for processing input data or sequences. For example,
a window size of 20 means that the model considers the previous 20 samples as
input features;

2. Num_layers: Indicates the number of layers in the neural network. For instance, if
the num_layers parameter is three, it means that the network has three layers stacked
sequentially, each contributing to the hierarchical representation of the input data;

3. Dropout rate: This is a hyperparameter used in regularization techniques. A dropout
rate of 0.1 would mean that 10% of the neurons in each layer are randomly dropped
out during training to prevent overfitting.

5. Experimental Setup
5.1. Hardware

In this study, we used two hardware platforms with different costs to show the ver-
satility of our approach in accommodating for different economic scales. The first one
is a Dell Vostro 5410 computer, positioned as a middle-cost computing solution, which
is equipped with 8 GB of RAM and an eighth-generation Intel Core i7 processor run-
ning on the Windows operating system. The cost of this device falls within the range
of EUR 300–EUR 1000 (EUR 700 approximately), representing a conventional computing
environment with substantial computational resources.

The second platform is a Raspberry Pi 3 Model B, a low-cost hardware option priced
under EUR 100, operating on a Linux system. This model has a 1.2 GHz 64-bit quad-core
ARM Cortex-A53 processor and comes with 2 GB of RAM. The Raspberry Pi 3 was selected
in order to show the potential of low-cost, more accessible platforms for implementing
advanced machine learning algorithms. Moreover, it has been selected primarily due to its
widespread popularity and the support it receives from a large and active community. This
extended use ensures that a wealth of resources, tutorials, and troubleshooting information
is available, which is a great help for implementing and optimizing machine learning
algorithms. This strong support from a large community also facilitates easier replication
of our research findings and broader applicability in diverse scenarios and applications,
making it an ideal choice for our study [35]. Despite its much lower price and comparatively
modest computational capacity, the Raspberry Pi 3 has proved effective at executing the
predictive models obtained in our study.

Furthermore, working with platforms with different costs emphasizes the practicality
and scalability of the implementation of machine learning solutions, in this case for energy
forecasting, and includes the economic factor to make these tools more widely accessible.

5.2. Software

To implement the neural network models, a set of libraries based on TensorFlow
(version 2.0) and Keras (version 2.13.1) was used. TensorFlow (version 2.0), an open-source
library for numerical computing and machine learning, made it easy to build the multilayer
neural networks. Keras, a high-level neural network API, was used for its simplicity, and
to define and train the CNN, GRU, and transformer models.

MinMaxScaler from Scikit-learn was used for normalization, ensuring that the data
were scaled to a uniform range. The Keras sequential model was instrumental in stacking
neural layers for the CNN and fully connected models. Specific layers such as Conv1D,
MaxPooling1D, Flatten, and BatchNormalization were used to design the CNN model.
Techniques such as the Adam optimizer and dropout were applied to improve the training
efficiency and avoid the overfitting of some of these techniques. The experiments were
performed with Python version 3.8.3, chosen for its stability and extensive support for the
libraries used in this research.

Electronics 2024, 13, 1541 13 of 24

5.3. Evaluation Metrics

To evaluate and compare the ML forecasting models, we have considered the accuracy
of the prediction, the performance of the hardware, that is, the number of predictions per
second, and the energy consumption.

5.3.1. Model Accuracy

To assess the accuracy of the trained models, the following metrics were used (4)–(7):

1. Mean absolute error (MAE):

MAE =
1
n ∑n

i=1

∣∣∣yreal − ypredicted

∣∣∣ (4)

2. Root mean squared error (RMSE):

RMSE =

√
1
n ∑n

i=1 (yreal − ypredicted)
2 (5)

3. Coefficient of determination (R2)

R2 = 1 −
∑n

i=1 (yreal − ypredicted)
2

∑n
i=1 (yreal − yreal)

2 (6)

4. Weighted mean absolute percentage error (WMAPE):

WMAPE =
1

∑n
i=1 yreal

∑n
i=1 |yreal − ypredicted| (7)

The MAPE (mean absolute percentage error) and SMAPE (symmetric mean absolute
percentage error) were initially considered in the evaluation. However, due to the proximity
of actual values to zero in the dataset, it was anticipated that these metrics would produce
inflated and unrealistic results. Consequently, the alternative metric WMAPE was chosen
to ensure a more accurate assessment of the forecast performance.

5.3.2. Computational Cost

As the execution time of a task in a processor depends on the state of the processor and
can vary over time, 5033 predictions were launched in batches and executed recurrently
over the span of an hour. For each batch, the number of predictions per second was
calculated by Equation (8), where Ti is the execution time of batch i.

pred_ sec(i) =
5033

Ti
(8)

From these values, the average number of predictions per second over one hour is
obtained by (9),

pred_sec Tot =
1

Nb
∑Nb

i=1 pred_ sec(i) (9)

where Nb indicates the total number of batches that can be run in one hour. This number
varies with each architecture and can be formalized by (10).

Nb = min(x ∈ N
∣∣∣∑x

i=1 Ti > 3600
)

(10)

In addition to the metric pred_sec Tot (9), the variability of the indicator pred_ sec has
also been studied with its histogram.

Electronics 2024, 13, 1541 14 of 24

5.3.3. Energy Consumption

During the 5033 predictions, run in batches and executed recurrently over the span
of an hour, the energy consumption was evaluated. In the case of the Dell Vostro 5140,
the Intel Power Gadget 3.6 was used to measure the processor’s energy spent. This tool,
developed by Intel, offers real-time monitoring of the processor power usage in Intel-based
computers. The Intel Power Gadget 3.6 gives detailed metrics of the processor’s energy
expenditure (measured in watts), temperature, and utilization percentages, among others.
It is useful for assessing the energy efficiency of computational processes under varied
workloads. The software operates based on model-specific registers (MSRs) within Intel
processors to obtain energy usage data. [36].

For the Raspberry Pi, the input current consumption at the USB-C port was measured
using a KPS-PA430 MINI clamp ammeter at five-minute intervals throughout the hour of
running. These measurements were then adjusted by subtracting the baseline energy con-
sumption of each device under normal operating conditions without the model execution,
aiming to isolate the specific energy cost attributed to each neural network architecture.

To guarantee the reliability of the measurements, all tests were carried out under
uniform conditions. System updates and WiFi functionalities were deactivated, focusing
only on the wind power prediction algorithm and the recording of processor activity.

6. Results

The different ML techniques applied for wind power forecasting are compared in
this section. Previously, the optimization of the tuning of the configuration parameters
was carried out in order to establish the groundwork for accurate prediction. Predictive
accuracy, error distribution, and metric-based comparisons of the machine learning models
are obtained. Further, a comparison is also conducted between the two hardware platforms,
the Raspberry Pi 3 and the computer.

After the training phase, each model’ performance was validated on the test set, with
the aforementioned metrics applied to the active power prediction. Additionally, the
predictions per second, total number of parameters, and energy consumption for each
ML model were recorded. These findings offer valuable insights into the computational
efficiency and implementation feasibility of each architectural approach.

6.1. Active Power Prediction Performance Evaluation

In this study, a thorough evaluation was carried out to assess the effectiveness of
active power forecasting using two different groups of input parameters: the theoretical
power curve and wind direction, and the theoretical power curve and wind speed. The
techniques used are convolutional neural network (CNN) model, a gated recurrent unit
(GRU) model, and a model based on transformers. To test the models, the wind speed and
wind direction signals were used, and are shown in Figure 6. These signals are the last 10%
of the dataset presented in Section 4.1. The first 80% was used for training, the following
10% for validation, and the last 10% for testing.

In Figure 7, the actual and predicted powers obtained for the machine learning
methodologies are presented. The real data are shown in red, the predictions made with
configuration 1 in green, and the predictions made with configuration 2 in blue. The input
features in configuration 1 are the theoretical power curve (TPC) and the wind direction
(WD). In configuration 2, the wind velocity (WS) is used instead of the wind direction.

The detailed analysis of the four graphs of Figure 7 convincingly reveals that, irre-
spective of the specific context, configuration 1 (TPC-WS) emerges as the best prediction
method over configuration 2 (TPC-WD).

The superiority of configuration 1 lies in its ability to capture the essential dynamics
of wind by incorporating wind speed as a key predictive variable. This feature provides a
model with a deeper and more accurate understanding of wind patterns, thereby enabling
a more precise prediction of the power that will be generated by wind turbines under
different atmospheric conditions.

Electronics 2024, 13, 1541 15 of 24
Electronics 2024, 13, x FOR PEER REVIEW 15 of 25

(a) (b)

Figure 6. Wind speed (a) and wind direction (b) signals used to test the models.

In Figure 7, the actual and predicted powers obtained for the machine learning meth-
odologies are presented. The real data are shown in red, the predictions made with con-
figuration 1 in green, and the predictions made with configuration 2 in blue. The input
features in configuration 1 are the theoretical power curve (TPC) and the wind direction
(WD). In configuration 2, the wind velocity (WS) is used instead of the wind direction.

(a)

0 80 160 240 320 400 480 560 640 720 780

Time (hours)

0

50

100

150

200

250

300

350

400

W
in

d
D

ire
ct

io
n

(°
)

Wind Direction

Wind Direction

Va
lu

e

Figure 6. Wind speed (a) and wind direction (b) signals used to test the models.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 25

(a) (b)

Figure 6. Wind speed (a) and wind direction (b) signals used to test the models.

In Figure 7, the actual and predicted powers obtained for the machine learning meth-
odologies are presented. The real data are shown in red, the predictions made with con-
figuration 1 in green, and the predictions made with configuration 2 in blue. The input
features in configuration 1 are the theoretical power curve (TPC) and the wind direction
(WD). In configuration 2, the wind velocity (WS) is used instead of the wind direction.

(a)

0 80 160 240 320 400 480 560 640 720 780

Time (hours)

0

50

100

150

200

250

300

350

400

W
in

d
D

ire
ct

io
n

(°
)

Wind Direction

Wind Direction

Va
lu

e

Figure 7. Cont.

Electronics 2024, 13, 1541 16 of 24

Electronics 2024, 13, x FOR PEER REVIEW 16 of 25

(b)

(c)

Figure 7. Cont.

Electronics 2024, 13, 1541 17 of 24

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25

(d)

Figure 7. (a) Real data vs. predicted data comparison with fully connected model. (b) Real data vs.
predicted data comparison with CNN model. (c) Real data vs. predicted data comparison with GRU
model. (d) Real data vs predicted data comparison with transformers model.

The detailed analysis of the four graphs of Figure 7 convincingly reveals that, irre-
spective of the specific context, configuration 1 (TPC-WS) emerges as the best prediction
method over configuration 2 (TPC-WD).

The superiority of configuration 1 lies in its ability to capture the essential dynamics
of wind by incorporating wind speed as a key predictive variable. This feature provides a
model with a deeper and more accurate understanding of wind patterns, thereby enabling
a more precise prediction of the power that will be generated by wind turbines under
different atmospheric conditions.

In contrast, configuration 2, which relies solely on the wind direction angle, exhibits
lower predictive efficacy compared to its counterpart. While the wind direction angle can
provide valuable information about the wind flow orientation, its exclusive use as a pre-
dictive variable is proven insufficient to capture the inherent complexity of fluctuations in
wind speed, which directly influence the power generated by wind turbines.

The results of the optimal configuration of each deep learning architecture are pre-
sented in Figure 8 in order to facilitate a more comprehensive comparison between the
methods. In this figure, it is possible to observe that the CNN and transformers models
are the models that best fit the target signal, and the GRU model is the worst.

0 80 160 240 320 400 480 560 640 720 780
Time (hours)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Real Data vs Predicted Data Transformer

Real Data Transformer TPC-WS Transformer TPC-WD

Figure 7. (a) Real data vs. predicted data comparison with fully connected model. (b) Real data vs.
predicted data comparison with CNN model. (c) Real data vs. predicted data comparison with GRU
model. (d) Real data vs predicted data comparison with transformers model.

In contrast, configuration 2, which relies solely on the wind direction angle, exhibits
lower predictive efficacy compared to its counterpart. While the wind direction angle
can provide valuable information about the wind flow orientation, its exclusive use as a
predictive variable is proven insufficient to capture the inherent complexity of fluctuations
in wind speed, which directly influence the power generated by wind turbines.

The results of the optimal configuration of each deep learning architecture are pre-
sented in Figure 8 in order to facilitate a more comprehensive comparison between the
methods. In this figure, it is possible to observe that the CNN and transformers models are
the models that best fit the target signal, and the GRU model is the worst.

To confirm the better performance of the first configuration, the MAE, RMSE, R2, and
WMAPE have been calculated (Table 4).

Table 4. Comparison of prediction errors.

Theoretical Power Curve and Wind Speed
(Configuration 1)

Theoretical Power Curve and Wind Direction
(Configuration 2)

Architecture RMSE MAE R2 WMAPE RMSE MAE R2 WMAPE

Fully
Connected 0.0581 0.033 0.9797 0.0854 0.0736 0.052 0.9674 0.1344

CNN 0.0596 0.033 0.9786 0.0852 0.0807 0.0544 0.9608 0.1432
GRU 0.0581 0.0326 0.9794 0.0853 0.0703 0.0497 0.97 0.13

Transformer 0.0691 0.0405 0.9713 0.1047 0.1313 0.0885 0.8962 0.2289

Electronics 2024, 13, 1541 18 of 24

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25

Figure 8. Real data vs. predicted data comparison of best models.

To confirm the better performance of the first configuration, the MAE, RMSE, 𝑅 ,
and WMAPE have been calculated (Table 4).

Table 4. Comparison of prediction errors.

 Theoretical Power Curve and
Wind Speed (Configuration 1)

Theoretical Power Curve and Wind
Direction (Configuration 2)

Architecture RMSE MAE 𝑹𝟐 WMAPE RMSE MAE 𝑹𝟐 WMAPE
Fully Connected 0.0581 0.033 0.9797 0.0854 0.0736 0.052 0.9674 0.1344

CNN 0.0596 0.033 0.9786 0.0852 0.0807 0.0544 0.9608 0.1432
GRU 0.0581 0.0326 0.9794 0.0853 0.0703 0.0497 0.97 0.13

Transformer 0.0691 0.0405 0.9713 0.1047 0.1313 0.0885 0.8962 0.2289

The set of histograms in Figure 9 shows the error distribution with the four prediction
methodologies. The histograms reveal a consistent trend indicating that the CNN and the
transformer models outperform the other techniques. Surprisingly, although the GRU
model has a lower RMSE, the histogram indicates that errors with larger values are more
frequent than with the CNN and transformer models.

(a) (b)

Figure 8. Real data vs. predicted data comparison of best models.

The set of histograms in Figure 9 shows the error distribution with the four prediction
methodologies. The histograms reveal a consistent trend indicating that the CNN and
the transformer models outperform the other techniques. Surprisingly, although the GRU
model has a lower RMSE, the histogram indicates that errors with larger values are more
frequent than with the CNN and transformer models.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25

Figure 8. Real data vs. predicted data comparison of best models.

To confirm the better performance of the first configuration, the MAE, RMSE, 𝑅2,

and WMAPE have been calculated (Table 4).

Table 4. Comparison of prediction errors.

Theoretical Power Curve and

Wind Speed (Configuration 1)

Theoretical Power Curve and Wind

Direction (Configuration 2)

Architecture RMSE MAE 𝑹𝟐 WMAPE RMSE MAE 𝑹𝟐 WMAPE

Fully Connected 0.0581 0.033 0.9797 0.0854 0.0736 0.052 0.9674 0.1344

CNN 0.0596 0.033 0.9786 0.0852 0.0807 0.0544 0.9608 0.1432

GRU 0.0581 0.0326 0.9794 0.0853 0.0703 0.0497 0.97 0.13

Transformer 0.0691 0.0405 0.9713 0.1047 0.1313 0.0885 0.8962 0.2289

The set of histograms in Figure 9 shows the error distribution with the four prediction

methodologies. The histograms reveal a consistent trend indicating that the CNN and the

transformer models outperform the other techniques. Surprisingly, although the GRU

model has a lower RMSE, the histogram indicates that errors with larger values are more

frequent than with the CNN and transformer models.

(a) (b)

Electronics 2024, 13, x FOR PEER REVIEW 19 of 25

(c) (d)

Figure 9. Error histogram of the different techniques: (a) FC model. (b) CNN model. (c) GRU

model. (d) Transformer model.

The histograms show the frequency distribution of the errors associated with each

prediction method. The GRU model exhibits wider error distributions compared to the

other methodologies, indicating a lower degree of accuracy and precision of its predic-

tions. In contrast, the CNN and transformer models demonstrate narrower and more

acute error distributions, indicative of their superior capability in identifying and adapt-

ing to the underlying data patterns and dynamics. This is further evidenced by the con-

centrated peaks near the zero-error mark, emphasizing the models’ tendency to yield pre-

dictions that are closely aligned with the actual values, with a low frequency of substantial

errors.

Moreover, the tails of the error histograms of the CNN and transformer models are

smaller compared to the GRU model, pointing to a reduced likelihood of extreme devia-

tions and outliers in their predictions. Such characteristics are important for applications

where predictability is paramount and the costs of inaccuracies are high.

A series of reflections can be deduced from these results. On the one hand, the tech-

nical efficiency of each predictive model is evident, but the results also provide ideas about

their practical usefulness. Comparative error analysis suggests that, while GRU models

may be beneficial for datasets without complex dependencies, CNN and transformer

models are better suited for more complex data sets with more intricate patterns. Explor-

ing these error patterns provides a path for future research which aims to further refine

these models, possibly leading to the development of hybrid approaches that leverage the

different strengths of each technique to achieve better performance.

6.2. Computational Efficiency and Energy Consumption

In this section, the computational efficiency and implementation feasibility of the pre-

dictive models are analyzed. By measuring the predictions per second and the total num-

ber of parameters required for each model, a comprehensive assessment is provided for

the two tested computing platforms: a conventional computer and a Raspberry Pi 3.

This analysis shows the computational speed and scalability of each model, high-

lighting their adaptability to resource-constrained environments. Evaluating their perfor-

mance on both platforms aims to elucidate the practical implications of deploying these

models in real-world scenarios, especially where computational resources are limited.

These results allow researchers and practitioners to select the most suitable intelligent

forecasting model based on its computational efficiency and implementation feasibility.

In Table 5, a comparative analysis of the predictions per second and total number of

parameters for both the computer and the Raspberry Pi with the different ML models is

presented. The results correspond to configuration 1, with the inputs ‘theoretical power

curve (KWh)’ and ‘wind speed (m/s)’. These values correspond to the average iterative

Figure 9. Error histogram of the different techniques: (a) FC model. (b) CNN model. (c) GRU model.
(d) Transformer model.

Electronics 2024, 13, 1541 19 of 24

The histograms show the frequency distribution of the errors associated with each
prediction method. The GRU model exhibits wider error distributions compared to the
other methodologies, indicating a lower degree of accuracy and precision of its predictions.
In contrast, the CNN and transformer models demonstrate narrower and more acute error
distributions, indicative of their superior capability in identifying and adapting to the
underlying data patterns and dynamics. This is further evidenced by the concentrated
peaks near the zero-error mark, emphasizing the models’ tendency to yield predictions that
are closely aligned with the actual values, with a low frequency of substantial errors.

Moreover, the tails of the error histograms of the CNN and transformer models are
smaller compared to the GRU model, pointing to a reduced likelihood of extreme deviations
and outliers in their predictions. Such characteristics are important for applications where
predictability is paramount and the costs of inaccuracies are high.

A series of reflections can be deduced from these results. On the one hand, the technical
efficiency of each predictive model is evident, but the results also provide ideas about their
practical usefulness. Comparative error analysis suggests that, while GRU models may
be beneficial for datasets without complex dependencies, CNN and transformer models
are better suited for more complex data sets with more intricate patterns. Exploring these
error patterns provides a path for future research which aims to further refine these models,
possibly leading to the development of hybrid approaches that leverage the different
strengths of each technique to achieve better performance.

6.2. Computational Efficiency and Energy Consumption

In this section, the computational efficiency and implementation feasibility of the
predictive models are analyzed. By measuring the predictions per second and the total
number of parameters required for each model, a comprehensive assessment is provided
for the two tested computing platforms: a conventional computer and a Raspberry Pi 3.

This analysis shows the computational speed and scalability of each model, highlight-
ing their adaptability to resource-constrained environments. Evaluating their performance
on both platforms aims to elucidate the practical implications of deploying these models in
real-world scenarios, especially where computational resources are limited. These results
allow researchers and practitioners to select the most suitable intelligent forecasting model
based on its computational efficiency and implementation feasibility.

In Table 5, a comparative analysis of the predictions per second and total number of
parameters for both the computer and the Raspberry Pi with the different ML models is
presented. The results correspond to configuration 1, with the inputs ‘theoretical power
curve (KWh)’ and ‘wind speed (m/s)’. These values correspond to the average iterative
execution rate of each method over a one-hour period, as explained in Section 5.3.2. This
particular configuration was selected due to our results indicating its superior efficacy in
power forecasting (Table 4).

Table 5. Hardware performance comparison for the ML forecasting techniques with inputs TPC
and WS.

Architecture pred_sec_Tot
(Computer)

pred_sec_Tot
(Raspberry Pi 3) Total Parameters

Fully Connected 11,895 2093 36,097
CNN 12,698 2971 116,353
GRU 2640 820 150,273

Transformer 8057 1997 558

As the number of predictions per second varies during the one-hour experiment,
Figures 10 and 11 present the prediction speeds of the different methodologies. This
detailed analysis highlights not only the raw computational power but also the real-world
applicability of these methods for real-time data processing. Despite occasional drops in
prediction speed, the slowest speed observed was 450 predictions per second with the

Electronics 2024, 13, 1541 20 of 24

least favorable scenario (GRU architecture on Raspberry Pi), which means one prediction
every two milliseconds, a value that is negligible for a typical 100 ms control cycle, which
is typically used in the control of small wind turbines.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 25

execution rate of each method over a one-hour period, as explained in Section 5.3.2. This
particular configuration was selected due to our results indicating its superior efficacy in
power forecasting (Table 4).

Table 5. Hardware performance comparison for the ML forecasting techniques with inputs TPC and
WS.

Architecture
𝐩𝐫𝐞𝐝_𝐬𝐞𝐜_𝐓𝐨𝐭
(Computer)

𝐩𝐫𝐞𝐝_𝐬𝐞𝐜_𝐓𝐨𝐭
(Raspberry Pi 3) Total Parameters

Fully Connected 11,895 2093 36,097
CNN 12,698 2971 116,353
GRU 2640 820 150,273

Transformer 8057 1997 558

As the number of predictions per second varies during the one-hour experiment, Fig-
ures 10 and 11 present the prediction speeds of the different methodologies. This detailed
analysis highlights not only the raw computational power but also the real-world applica-
bility of these methods for real-time data processing. Despite occasional drops in predic-
tion speed, the slowest speed observed was 450 predictions per second with the least fa-
vorable scenario (GRU architecture on Raspberry Pi), which means one prediction every
two milliseconds, a value that is negligible for a typical 100 ms control cycle, which is
typically used in the control of small wind turbines.

Figure 10. Histogram of predictions per second of the different techniques for a one-hour experi-
ment with the Dell Vostro 5410 computer.

Figure 10. Histogram of predictions per second of the different techniques for a one-hour experiment
with the Dell Vostro 5410 computer.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 25

Figure 11. Histogram of predictions per second of the different techniques for a one-hour experi-
ment with the Raspberry Pi 3.

In addition, the energy expenditure of each method has been measured during its
operation, for configuration 1, which considers the theoretical power curve and the wind
speed as inputs. As already mentioned, Intel’s Power Gadget 3.6 was used on the Dell
computer to measure the aggregated and real-time energy consumption. On the Rasp-
berry Pi, measurement of the input current on the USB-C port was performed with a MINI
KPS-PA430 clamp ammeter, with readings taken at five-minute intervals during the hour
of the experiment.

Table 6 shows the current and energy consumption obtained in the tests with both
hardware systems. As the measured number of predictions per second is different for each
architecture, to make a fair comparison between them, the energy has been divided by the
number of predictions. These results are shown in Table 7. In terms of energy, the best
model is the CNN model, and the worst model, far from the first, is theGRU model.

Table 6. Comparison of accumulated energy for medium- and low-cost hardware devices.

Architecture 𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐫 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 (𝐀𝐡)
𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐫 𝐄𝐧𝐞𝐫𝐠𝐲 (𝐖𝐡)

𝐑𝐏𝐈 𝟑 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 (𝐀𝐡)
𝐑𝐏𝐈 𝟑 𝐄𝐧𝐞𝐫𝐠𝐲 (𝐖𝐡)

Fully Connected 6.606 11.362 0.207 1.035
CNN 6.740 11.593 0.198 0.988
GRU 10,114 17.396 0.357 1.785

Transformer 6.320 10.870 0.227 1.135

Table 7. Comparison of accumulated relative energy for medium- and low-cost hardware.

Architecture

𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐫 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 (𝛍𝐀𝐡𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧)

𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐫 𝐄𝐧𝐞𝐫𝐠𝐲 (𝛍𝐖𝐡𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧)

𝐑𝐏𝐈 𝟑 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 (𝛍𝐀𝐡𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧)

𝐂𝐨𝐦𝐩𝐮𝐭𝐞𝐫 𝐄𝐧𝐞𝐫𝐠𝐲 (𝛍𝐖𝐡𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧)

Fully Connected 555.36 955.19 98.901 494.505
CNN 530.79 912.98 66.644 332.548
GRU 3831.10 6589.41 435.366 2177.83

Transformer 784.41 1349.13 113.671 568.353

Figure 11. Histogram of predictions per second of the different techniques for a one-hour experiment
with the Raspberry Pi 3.

In addition, the energy expenditure of each method has been measured during its
operation, for configuration 1, which considers the theoretical power curve and the wind
speed as inputs. As already mentioned, Intel’s Power Gadget 3.6 was used on the Dell
computer to measure the aggregated and real-time energy consumption. On the Raspberry
Pi, measurement of the input current on the USB-C port was performed with a MINI
KPS-PA430 clamp ammeter, with readings taken at five-minute intervals during the hour
of the experiment.

Electronics 2024, 13, 1541 21 of 24

Table 6 shows the current and energy consumption obtained in the tests with both
hardware systems. As the measured number of predictions per second is different for each
architecture, to make a fair comparison between them, the energy has been divided by the
number of predictions. These results are shown in Table 7. In terms of energy, the best
model is the CNN model, and the worst model, far from the first, is theGRU model.

Table 6. Comparison of accumulated energy for medium- and low-cost hardware devices.

Architecture Computer
Current (Ah)

Computer
Energy (Wh)

RPI 3
Current (Ah)

RPI 3
Energy (Wh)

Fully Connected 6.606 11.362 0.207 1.035
CNN 6.740 11.593 0.198 0.988
GRU 10,114 17.396 0.357 1.785

Transformer 6.320 10.870 0.227 1.135

Table 7. Comparison of accumulated relative energy for medium- and low-cost hardware.

Architecture
Computer

Current
(µAh

prediction)

Computer
Energy

(µWh
prediction)

RPI 3
Current
(µAh

prediction)

Computer
Energy

(µWh
prediction)

Fully Connected 555.36 955.19 98.901 494.505
CNN 530.79 912.98 66.644 332.548
GRU 3831.10 6589.41 435.366 2177.83

Transformer 784.41 1349.13 113.671 568.353

These figures reveal notable disparities in prediction performance between the two
systems that were evaluated. The Dell Vostro 5410, with more computing power, achieved
higher predictions per second compared to the Raspberry Pi 3. However, despite its lower
performance, the results of the low-cost device are suitable for use in real applications. The
slowest case, 450 predictions per second, makes 1 prediction every two milliseconds, which
is more than enough for a 100 ms control cycle, as mentioned. This suggests that, although
the computational efficiency may vary between hardware platforms, the predictive models
evaluated herein remain viable for practical implementation, particularly in scenarios
where resource limitations require the use of cheaper hardware solutions.

6.3. Comparison of Multiple Results

To summarize the main findings of this study, Figure 12 presents a comparative graph
of the most relevant metrics for the four ML forecasting techniques and the two platforms,
the standard computer and RPI. These results have been normalized to the range [0, 1],
where lower values indicate better performance. This figure shows that, although they all
have advantages and disadvantages regarding speed and resource use, in terms of energy
consumption and prediction speed, the GRU technique lags behind in efficiency. The MAE
and WMAPE errors are not very different between the different models, so all of these
values in the graph are very similar. In view of these results, if we had to select a model,
we would choose the CNN model for its lower consumption, speed, and good precision.

This analysis highlights the complex interaction between the efficiency of computa-
tional models and their practical accuracy, offering a general description that allows for
selecting the most appropriate model for a given application, in this case renewable energy
forecasting systems, in scenarios with different computational constraints.

Electronics 2024, 13, 1541 22 of 24

Electronics 2024, 13, x FOR PEER REVIEW 22 of 25

These figures reveal notable disparities in prediction performance between the two
systems that were evaluated. The Dell Vostro 5410, with more computing power, achieved
higher predictions per second compared to the Raspberry Pi 3. However, despite its lower
performance, the results of the low-cost device are suitable for use in real applications.
The slowest case, 450 predictions per second, makes 1 prediction every two milliseconds,
which is more than enough for a 100 ms control cycle, as mentioned. This suggests that,
although the computational efficiency may vary between hardware platforms, the predic-
tive models evaluated herein remain viable for practical implementation, particularly in
scenarios where resource limitations require the use of cheaper hardware solutions.

6.3. Comparison of Multiple Results
To summarize the main findings of this study, Figure 12 presents a comparative

graph of the most relevant metrics for the four ML forecasting techniques and the two
platforms, the standard computer and RPI. These results have been normalized to the
range [0, 1], where lower values indicate better performance. This figure shows that, alt-
hough they all have advantages and disadvantages regarding speed and resource use, in
terms of energy consumption and prediction speed, the GRU technique lags behind in
efficiency. The MAE and WMAPE errors are not very different between the different mod-
els, so all of these values in the graph are very similar. In view of these results, if we had
to select a model, we would choose the CNN model for its lower consumption, speed, and
good precision.

This analysis highlights the complex interaction between the efficiency of computa-
tional models and their practical accuracy, offering a general description that allows for
selecting the most appropriate model for a given application, in this case renewable en-
ergy forecasting systems, in scenarios with different computational constraints.

Figure 12. Comparative analysis of predictive models’ performance in terms of computational and
accuracy metrics.

7. Conclusions and Future Works
In this work, an empirical analysis of various intelligent techniques for predicting the

power generated by a wind turbine and the possibilities of their implementation on low-
cost hardware platforms has been carried out.

Some of the conclusions derived are, for example, the superiority of the wind speed
over the direction as the most relevant attribute in prediction. This has been proven with
error metrics that measure forecast accuracy.

Figure 12. Comparative analysis of predictive models’ performance in terms of computational and
accuracy metrics.

7. Conclusions and Future Works

In this work, an empirical analysis of various intelligent techniques for predicting
the power generated by a wind turbine and the possibilities of their implementation on
low-cost hardware platforms has been carried out.

Some of the conclusions derived are, for example, the superiority of the wind speed
over the direction as the most relevant attribute in prediction. This has been proven with
error metrics that measure forecast accuracy.

Of the ML techniques evaluated for this application, the CNN model provides the
highest number of predictions per second and the lowest energy consumption, both on
the computer and the Raspberry hardware platforms. At the opposite extreme is the GRU
model, which provides the lowest real-time performance and highest power consumption.
This can be explained by the number of parameters in this model being significantly greater
than in the other models. In the case of the Raspberry, the CNN model is 3.62 times faster
than the GRU model and requires 84% less energy.

Another interesting result is that the GRU model provides the lowest MAE and RMSE
prediction errors; however, it is not the most accurate model. This fact is confirmed by
the error histograms; the frequency of larger errors is higher for GRU. Therefore, this fact
indicates that these error metrics are not always the best and that other factors must be
considered to compare the prediction capacity of the models.

An important aspect of this study is the effectiveness demonstrated by the Raspberry
Pi 3, indicating that it is a viable platform to implement these predictive models. Despite
its computational limitations, the Raspberry Pi 3 provides good accuracy. This allows us to
propose this type of low-cost platform to make the management of these energy resources
accessible to a broader public.

By highlighting these results, we emphasize, on the one hand, the viability of some
ML techniques for prediction in the context of wind energy and, on the other, the viability
of their practical implementation on low-cost platforms with a performance that allows
their use in real-time applications in a more accessible way for different users and at
different scales.

As future work, we can highlight the integration of these predictions in the control of
wind turbines to improve their operation, and their evaluation in a wind turbine prototype.

Author Contributions: P.A.B.-A.: conceptualization, methodology, software, validation, writing—original
draft preparation, writing—review and editing. M.P.-Y.: software, validation, writing—original

Electronics 2024, 13, 1541 23 of 24

draft preparation, writing—review and editing. J.E.S.-G.: conceptualization, methodology, formal
analysis, supervision, software, writing—original draft preparation, writing—review and editing.
M.S.: conceptualization, validation, writing—review and editing, supervision. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially supported by Spanish MICIU/AEI Project PID2021-123543OB-C21.

Data Availability Statement: Data are available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, B.; Xiong, R.; Li, H.; Sun, Q.; Yang, J. Pathways for sustainable energy transition. J. Clean. Prod. 2019, 228, 1564–1571.

[CrossRef]
2. Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020,

18, 2069–2094. [CrossRef]
3. Muñoz-Palomeque, E.; Sierra-García, J.E.; Santos, M. Wind turbine maximum power point tracking control based on unsupervised

neural networks. J. Comput. Des. Eng. 2023, 10, 108–121. [CrossRef]
4. Pajpach, M.; Haffner, O.; Kučera, E.; Drahoš, P. Low-cost education kit for teaching basic skills for industry 4.0 using deep-learning

in quality control tasks. Electronics 2022, 11, 230. [CrossRef]
5. Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Afrasiabi, S. Advanced deep learning approach for probabilistic wind speed

forecasting. IEEE Trans. Ind. Inform. 2020, 17, 720–727. [CrossRef]
6. Ponkumar, G.; Jayaprakash, S.; Kanagarathinam, K. Advanced machine learning techniques for accurate very-short-term wind

power forecasting in wind energy systems using historical data analysis. Energies 2023, 16, 5459. [CrossRef]
7. Sri Preethaa, K.R.; Muthuramalingam, A.; Natarajan, Y.; Wadhwa, G.; Ali, A.A.Y. A Comprehensive Review on Machine Learning

Techniques for Forecasting Wind Flow Pattern. Sustainability 2023, 15, 12914. [CrossRef]
8. Zhang, J.; Yan, J.; Infield, D.; Liu, Y.; Lien, F.S. Short-term forecasting and uncertainty analysis of wind turbine power based on

long short-term memory network and Gaussian mixture model. Appl. Energy 2019, 241, 229–244. [CrossRef]
9. Liu, X.; Lin, Z.; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM.

Energy 2021, 227, 120492. [CrossRef]
10. Buestán-Andrade, P.A.; Santos, M.; Sierra-García, J.E.; Pazmiño-Piedra, J.P. Comparison of LSTM, GRU and transformer

neural network architecture for prediction of wind turbine variables. In Proceedings of the International Conference on Soft
Computing Models in Industrial and Environmental Applications, Salamanca, Spain, 5–7 September 2023; Springer Nature:
Cham, Switzerland, 2023; pp. 334–343.

11. Ghimire, D.; Kil, D.; Kim, S.H. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022,
11, 945. [CrossRef]

12. Mohaidat, T.; Khalil, K. A Survey on Neural Network Hardware Accelerators. IEEE Trans. Artif. Intell. 2022, 1, 1–21. [CrossRef]
13. Novac, P.E.; Boukli Hacene, G.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and deployment of deep neural networks

on microcontrollers. Sensors 2021, 21, 2984. [CrossRef]
14. Khalil, K.; Kumar, A.; Bayoumi, M. Reconfigurable hardware design approach for economic neural network. IEEE Trans. Circuits

Syst. II Express Briefs 2022, 69, 5094–5098. [CrossRef]
15. Zhang, G.; Li, B.; Wu, J.; Wang, R.; Lan, Y.; Sun, L.; Lei, S.; Li, H.; Chen, Y. A low-cost and high-speed hardware implementation

of spiking neural network. Neurocomputing 2020, 382, 106–115. [CrossRef]
16. Nguyen, D.A.; Tran, X.T.; Iacopi, F. A review of algorithms and hardware implementations for spiking neural networks. J. Low

Power Electron. Appl. 2021, 11, 23. [CrossRef]
17. Ju, R.Y.; Lin, T.Y.; Jian, J.H.; Chiang, J.S. Efficient convolutional neural networks on raspberry pi for image classification. J.

Real-Time Image Process. 2023, 20, 21. [CrossRef]
18. Ramli, R.; Azri, M.A.; Aliff, M.; Mohammad, Z. Raspberry pi based driver drowsiness detection system using convolutional

neural network (cnn). In Proceedings of the 2022 IEEE 18th International Colloquium on Signal Processing & Applications
(CSPA), Selangor, Malaysia, 12 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 30–34.

19. Dürr, O.; Pauchard, Y.; Browarnik, D.; Axthelm, R.; Loeser, M. Deep Learning on a Raspberry Pi for Real Time Face Recognition.
Eurographics (Posters) 2015, 11–12. [CrossRef]

20. Çintaş, E.; Özyer, B.; Şimşek, E. Vision-based moving UAV tracking by another UAV on low-cost hardware and a new ground
control station. IEEE Access 2020, 8, 194601–194611. [CrossRef]

21. Akhtari, S.; Pickhardt, F.; Pau, D.; Di Pietro, A.; Tomarchio, G. Intelligent embedded load detection at the edge on industry 4.0
powertrains applications. In Proceedings of the 2019 IEEE 5th International forum on Research and Technology for Society and
Industry (RTSI), Florence, Italy, 9–12 September 2019; IEEE: Piscataway, NJ, USA, 2022; pp. 427–430.

22. Alongi, F.; Ghielmetti, N.; Pau, D.; Terraneo, F.; Fornaciari, W. Tiny neural networks for environmental predictions: An integrated
approach with miosix. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna,
Italy, 14–17 September 2020; IEEE: Piscataway, NJ, USA, 2022; pp. 350–355.

https://doi.org/10.1016/j.jclepro.2019.04.372
https://doi.org/10.1007/s10311-020-01059-w
https://doi.org/10.1093/jcde/qwac132
https://doi.org/10.3390/electronics11020230
https://doi.org/10.1109/TII.2020.3004436
https://doi.org/10.3390/en16145459
https://doi.org/10.3390/su151712914
https://doi.org/10.1016/j.apenergy.2019.03.044
https://doi.org/10.1016/j.energy.2021.120492
https://doi.org/10.3390/electronics11060945
https://doi.org/10.1109/TAI.2024.3377147
https://doi.org/10.3390/s21092984
https://doi.org/10.1109/TCSII.2022.3191342
https://doi.org/10.1016/j.neucom.2019.11.045
https://doi.org/10.3390/jlpea11020023
https://doi.org/10.1007/s11554-023-01271-1
https://doi.org/10.2312/egp.20151036
https://doi.org/10.1109/ACCESS.2020.3033481

Electronics 2024, 13, 1541 24 of 24

23. Jordan, A.A.; Pegatoquet, A.; Castagnetti, A.; Raybaut, J.; Le Coz, P. Deep learning for eye blink detection implemented at the
edge. IEEE Embed. Syst. Lett. 2020, 13, 130–133. [CrossRef]

24. De Vita, F.; Nocera, G.; Bruneo, D.; Tomaselli, V.; Giacalone, D.; Das, S.K. Quantitative analysis of deep leaf: A plant disease
detector on the smart edge. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP),
Bologna, Italy, 14–17 September 2020; IEEE: Piscataway, NJ, USA, 2022; pp. 49–56.

25. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

26. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision:
History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470. [CrossRef]

27. Li, Z.; Zhang, Y.; Abu-Siada, A.; Chen, X.; Li, Z.; Xu, Y.; Zhang, L.; Tong, Y. Fault diagnosis of transformer windings based on
decision tree and fully connected neural network. Energies 2021, 14, 1531. [CrossRef]

28. Li, C.; Tang, G.; Xue, X.; Saeed, A.; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans.
Sustain. Energy 2019, 11, 1370–1380. [CrossRef]

29. Ji, L.; Fu, C.; Ju, Z.; Shi, Y.; Wu, S.; Tao, L. Short-Term canyon wind speed prediction based on CNN—GRU transfer learning.
Atmosphere 2022, 13, 813. [CrossRef]

30. Lin, C.B.; Dong, Z.; Kuan, W.K.; Huang, Y.F. A framework for fall detection based on OpenPose skeleton and LSTM/GRU models.
Appl. Sci. 2020, 11, 329. [CrossRef]

31. Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and
Drop-GRU Neural Networks. Sensors 2022, 22, 4062. [CrossRef] [PubMed]

32. Yang, Z.; Mitra, A.; Liu, W.; Berlowitz, D.; Yu, H. TransformEHR: Transformer-based encoder-decoder generative model to
enhance prediction of disease outcomes using electronic health records. Nat. Commun. 2023, 14, 7857. [CrossRef]

33. Erisen, B. Wind Turbine Scada Dataset. Kaggle. 2018. Available online: https://www.kaggle.com/datasets/berkerisen/wind-
turbine-scada-dataset/code (accessed on 3 April 2023).

34. Li, L.; Talwalkar, A. Random search and reproducibility for neural architecture search. In Proceedings of the 35th Uncertainty in
Artificial Intelligence Conference, Tel Aviv, Israel, 22–25 July 2019; pp. 367–377.

35. Martikkala, A.; David, J.; Lobov, A.; Lanz, M.; Ituarte, I.F. Trends for low-cost and open-source IoT solutions development for
industry 4.0. Procedia Manuf. 2021, 55, 298–305. [CrossRef]

36. Intel. 2023. Available online: https://www.intel.com/content/www/us/en/developer/articles/training/using-the-intel-
power-gadget-30-api-on-windows.html (accessed on 6 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LES.2020.3029313
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.3390/electronics10202470
https://doi.org/10.3390/en14061531
https://doi.org/10.1109/TSTE.2019.2926147
https://doi.org/10.3390/atmos13050813
https://doi.org/10.3390/app11010329
https://doi.org/10.3390/s22114062
https://www.ncbi.nlm.nih.gov/pubmed/35684681
https://doi.org/10.1038/s41467-023-43715-z
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset/code
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset/code
https://doi.org/10.1016/j.promfg.2021.10.042
https://www.intel.com/content/www/us/en/developer/articles/training/using-the-intel-power-gadget-30-api-on-windows.html
https://www.intel.com/content/www/us/en/developer/articles/training/using-the-intel-power-gadget-30-api-on-windows.html

	Introduction
	Related Works
	Machine Learning Techniques
	CNN
	Fully Connected
	GRU
	Transformer Model

	Models Training
	Dataset
	Pre-Processing
	Training Methodology

	Experimental Setup
	Hardware
	Software
	Evaluation Metrics
	Model Accuracy
	Computational Cost
	Energy Consumption

	Results
	Active Power Prediction Performance Evaluation
	Computational Efficiency and Energy Consumption
	Comparison of Multiple Results

	Conclusions and Future Works
	References

