
Citation: Wang, Z.; Liu, S.; Ji, D.; Yi,

W. Improving Real-Time Performance

of Micro-ROS with Priority-Driven

Chain-Aware Scheduling. Electronics

2024, 13, 1658. https://doi.org/

10.3390/electronics13091658

Academic Editor: Luis Gomes

Received: 25 March 2024

Revised: 22 April 2024

Accepted: 24 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improving Real-Time Performance of Micro-ROS with
Priority-Driven Chain-Aware Scheduling
Zilong Wang , Songran Liu * , Dong Ji and Wang Yi

School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;
2101815@stu.neu.edu.cn (Z.W.); jidong@mail.neu.edu.cn (D.J.); wangyi@neu.edu.cn (W.Y.)
* Correspondence: liusongran@cse.neu.edu.cn

Abstract: Micro-ROS is widely used to bridge the performance gap between resource-constrained
microcontrollers and powerful computing devices in ROS-based robotic applications. After modeling
the callback scheduling module and the communication module in micro-ROS, we found that there
are some design flaws that significantly impact the real-time performance of micro-ROS. To improve
the timing predictability and run-time efficiency of micro-ROS, we design and implement a priority-
driven chain-aware scheduling system (PoDS) based on the existing micro-ROS architecture. The
experimental results demonstrate that our proposed PoDS exhibits significantly improved real-time
performance compared to the default micro-ROS.

Keywords: micro-ROS; priority-driven; chain-aware; real-time performance

1. Introduction

The Robot Operating System (ROS) [1] is a popular middleware framework for
robotics, extensively explored in academia [2]. Due to its insufficient real-time capabilities
and industry demands, the second generation of ROS, ROS 2 [3], has been in develop-
ment since 2017. Although ROS 2 is the dominant framework for powerful computing
devices, it lacks native support for microcontrollers due to its significant memory footprint.
Microcontrollers typically feature a single CPU core and a few tens of kilobytes of RAM
memory and use resource-optimized real-time operating systems (RTOS) [4]. Resource-
constrained microcontrollers are commonly used in robotics for sensors and actuators,
as well as for time-critical control functions, power efficiency, and safety considerations.
The micro-ROS project was launched in 2018 [5] with the objectives of seamlessly inte-
grating microcontrollers with ROS 2 and bringing all major ROS concepts into deeply
embedded systems.

Micro-ROS is used to bridge the performance gap between resource-constrained
microcontrollers and powerful computing devices in ROS-based robotic applications. In
typical robotic application scenarios, microcontrollers are used for environmental sensing
and actuator operation, owing to their low-latency real-time performance feature, while
more powerful processors are employed for computationally intensive workloads. For
example, a resource-constrained microcontroller equipped in the mobile robot running the
micro-ROS stack transmits large volumes of sensor data to a remote computer running
the ROS 2 stack [6]. Sensor data are processed by the high-performance computer, which
performs complex operations such as modeling analysis and path planning. Following this
analysis, the remote computer issues instructions to control the movement of the mobile
robot and enable obstacle avoidance.

We have observed that the official website of micro-ROS only offers detailed tutorials
on how to utilize the micro-ROS, but there is quite limited research on the comprehensive
exploration of its internal mechanism or comparative evaluations with other embedded
real-time systems. In this paper, we first conducted a detailed study of the micro-ROS

Electronics 2024, 13, 1658. https://doi.org/10.3390/electronics13091658 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091658
https://doi.org/10.3390/electronics13091658
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0001-0016-7973
https://orcid.org/0000-0002-9234-5799
https://doi.org/10.3390/electronics13091658
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091658?type=check_update&version=2

Electronics 2024, 13, 1658 2 of 18

source code and modeled the callback scheduling module and communication module
in micro-ROS, then identified some design flaws that significantly impact its real-time
performance.

(1) Low determinism: In micro-ROS, priority inversion issues may occur in both
callback scheduling and data reception. This is primarily attributed to the inappropriate
strategies adopted by the RCLC Executor and the data-processing module in micro-ROS,
significantly influencing the deterministic end-to-end latency of specific chains.

(2) Inefficiency: In micro-ROS, synchronous management of callback execution and
data transmission can result in CPU resource wastage when transmitting large volumes of
data, leading to a considerable decrease in the run-time efficiency of micro-ROS.

To improve the run-time predictability and run-time efficiency of micro-ROS, we de-
sign and implement a priority-driven chain-aware scheduling system (PoDS) based on the
existing micro-ROS architecture. Following experimental evaluation, PoDS demonstrates
significantly improved real-time performance compared to micro-ROS.

Overall, this paper makes the following contributions.

• Models of callback scheduling module and communication module in micro-ROS:
Through detailed examination and analysis of the micro-ROS source code, we have
discovered that the callback scheduling module implements a batch-based scheduling
strategy. Moreover, data transmission within the communication module employs
a sequential transmission strategy, and data reception adopts a FIFO-based data-
processing strategy.

• Problems present in current micro-ROS designs: After thorough analysis and validation,
we have identified three critical issues that severely impact the run-time predictability
and efficiency of micro-ROS, stemming from unreasonable micro-ROS designs.

• Design principles of our proposed PoDS: Based on the micro-ROS architecture, we
have designed and implemented a priority-driven chain-aware scheduling system
named PoDS, which can effectively solve identified critical problems.

• Performance evaluation of PoDS and micro-ROS: We conducted a comprehensive
series of experiments to evaluate and compare the real-time performance of our
proposed PoDS with that of micro-ROS. The results demonstrate that our PoDS
exhibits superior and more stable performance compared to micro-ROS.

2. Background

In this section, we first introduce the organizational architecture of micro-ROS, and
then we model the callback scheduling module and communication module of micro-ROS
by exploring its project source code.

2.1. Micro-ROS Architecture

As depicted in Figure 1, micro-ROS is a collection of software libraries that reuses
as many packages as possible from the standard ROS 2 stack [7]. The micro-ROS client
library is built from the standard ROS 2 Client Support Library (RCL) and a new ROS 2
Client Library package (RCLC). The user can utilize ROS APIs implemented in C language
provided by the micro-ROS client library to initialize several callbacks for specific func-
tions. The micro-ROS stack can be employed with various open-source RTOS, such as
FreeRTOS [8], Zephyr [9], and NuttX [10], but also comes with support for bare-metal use
cases. In the middleware layer, the micro-ROS stack uses an open-source implementation
of the DDS-XRCE standard developed by eProsima, named Micro XRCE-DDS [11]. The
Micro XRCE-DDS consists of two parts: a highly efficient C language library called the
Micro XRCE-DDS Client, and an independent executable file written in C++, referred to as
the ROS 2 Agent, which can be deployed on both Linux and Windows. The ROS 2 Agent
serves as a representative for its clients within the DDS Global-Data-Space [12]. Currently,
communication between the Micro XRCE-DDS Client and the ROS 2 Agent is natively
supported with TCP, UDP and serial transport protocols [13]. In this paper, we selected the

Electronics 2024, 13, 1658 3 of 18

default serial transport protocol, which utilizes one UART and DMA channels to assist in
serial data transmission. Next, we briefly introduce three fundamental ROS concepts:

• Callback is the minimal schedulable execution entity in ROS 2 and micro-ROS. Micro-
ROS provides four different types of callback, including timers, subscriptions, services,
and clients. The timer callbacks are triggered periodically, while the regular callbacks
are triggered by external events, such as receiving a related message.

• Chain essentially is a collection of callbacks implemented by application developers
to meet specific requirements.

• Executor is a crucial factor influencing the real-time performance of micro-ROS, used
to coordinate the execution order of callbacks with different priorities.

CallbackCallback

ROS Middleware Interface (RMW)

Micro XRCE-DDS Client

FreeRTOS, Zephyr, NuttX

wait_set

ROS API

in C language

Application

Client-

Library

Middleware

RTOS

ROS 2

Stack

Callback

Normal

OS

Micro XRCE-DDS Adapter

RCLC Executor

Callback

Serial,

Ethernet,

Bluetooth

messages

ROS 2

Agent

Figure 1. Micro-ROS architecture.

2.2. Callback Scheduling Model in Micro-ROS

The workflow of the default RCLC Executor in micro-ROS [14] is illustrated in Figure 2.
During the initialization phase, an executor thread is typically created that is responsible
for continuously executing the workflow of the RCLC Executor. The workflow of the
RCLC Executor can be divided into two phases. In the collection phase, the executor
thread first clears all callback points within wait_set. The unique wait_set is a critical
component of the RCLC Executor, responsible for recording and managing ready callbacks.
The executor thread traverses and checks all timer callbacks registered in micro-ROS,
collecting all expired timer callbacks to the wait_set. Subsequently, the executor thread
processes the first unprocessed data packet received from the ROS 2 Agent and then
collects the corresponding regular callback to wait_set. During the execution phase, the
executor thread checks whether the group of ready callbacks in wait_set satisfies the trigger
condition. If not satisfied, the executor thread proceeds to the next round of work. If
satisfied, the executor thread executes all ready callbacks in wait_set in order of the user-
defined execution sequence.

Compared to the RCLCPP standard Executor in ROS 2, the RCLC Executor provides
two new features: the trigger condition and the user-defined execution sequence [15]. The
trigger condition determines when to start executing the group of ready callbacks. Within
the RCLC Executor, there are four available trigger condition options, including ANY, ALL,
ONE, and the user-defined function. The default trigger condition option is ANY, meaning
that any ready callback can be executed if it exists. A reasonable configuration of trigger
conditions can accomplish complex execution logic. For simplicity, we only analyze the
ANY trigger condition option and omit a detailed discussion of the other three trigger
condition options in this paper. The user-defined execution sequence implicitly assigns
a priority to each callback. Within the same batch of ready callbacks, the ready callbacks
registered earlier in micro-ROS will be executed first.

Electronics 2024, 13, 1658 4 of 18

Start

Clear wait_set

Collect expired timer callbacks to wait_set

Collect a ready regular callback to wait_set

Execute all callbacks in wait_set

Check all timer callbacks

Process the first unprocessed data packet

Satisfy trigger condition?

No

Yes

Collection

Phase

Execution

Phase

Figure 2. The workflow of RCLC Executor.

2.3. Communication Model between Micro-ROS and ROS 2 Agent

The data communication between micro-ROS and ROS 2 Agent can be divided into
the following two modules: data transmission and data reception.

2.3.1. Data Transmission

Following each callback execution, micro-ROS may transmit data packets to the remote
ROS 2 Agent. First, the executor thread serializes and frames the transmitted data packet
according to the Stream Framing Protocol [11], copying it to the Framin_Bu f f er in the
middleware layer. Micro XRCE-DDS supports two communication modes: best-effort
and reliable. In the best-effort communication mode, the executor thread configures and
enables the DMA transmission channel to transmit the data packet from Framing_Bu f f er
to the ROS 2 Agent. It should be noted that the executor thread and the DMA transmission
channel work synchronously, requiring the executor thread to enter a self-blocking state to
await the completion of DMA transmission channel operations. The difference between
reliable and best-effort communication mode is that following the above steps, micro-ROS
transmits a heartbeat message to the ROS 2 Agent. The ROS 2 Agent would respond with a
corresponding acknowledgment message to micro-ROS, ensuring the normal connection
between them. If the acknowledgment message indicates a failure in transmitting the
previous data packet, the executor thread would retransmit this previous data packet.
Both the heartbeat and acknowledgment messages have fixed and short lengths. While
waiting for the acknowledgment message, the executor thread in micro-ROS also enters a
self-blocking state.

2.3.2. Data Reception

In the current implementation, the reception and processing of data packets in micro-
ROS are asynchronous. The DMA reception channel can automatically store received
data packets in DMA_Bu f f er without CPU involvement. During the collection phase, if
the executor thread detects an unprocessed data packet in DMA_Bu f f er, it performs the
CRC verification to the payload of this data packet before copying it from DMA_Bu f f er
to Static_Bu f f er_Memory. If there are multiple unprocessed data packets stored in the
DMA_Bu f f er, the executor thread adopts the FIFO (First-In-First-Out) strategy to process
only one data packet. Therefore, the executor thread can collect, at most, one ready regular
callback during each round of work.

Electronics 2024, 13, 1658 5 of 18

3. Motivation

In this section, we discuss the performance issues present in the current micro-ROS
design, with a specific focus on the limitations related to real-time capabilities.

3.1. Unpredictability in Callback Scheduling

As detailed in Section 2.2, micro-ROS utilizes a batch-based strategy to organize
callback scheduling. In this approach, multiple ready callbacks are collected in wait_set
and then executed according to the user-defined priorities. This may potentially lead to
priority inversion issues, resulting in less predictability of overall latency for a specific
callback chain. We use the following example in Figure 3 to detail this problem.

cb3

t0 t1 t2

cb1

cb4

cb2

Timer

callback

Regular

callback

Callbacks

collection

Callback

execution

New message

received

Time wait_set

t0

t1

t9

t11

t12

cb1, cb4, cb7

cb1, cb4, cb7

cb3

cb3

t13 cb6

One round

of work

t14 cb6

cb5

cb3

cb6

cb7 cb8 cb9

cb4 cb7cb1 cb6 cb9

ROS 2micro-ROS

t3 t5 t6 t8 t9 t11 t12 t13 t14 t15 t16t4 t7 t10

micro-ROS

Data

transmission t15 cb9

Figure 3. Priority inversion caused by batch-based callback scheduling strategy.

There are three chains that bridge micro-ROS and ROS 2. The communication mode
between micro-ROS and ROS 2 is used as the best effort. Each chain consists of one timer
callback and two regular callbacks. The first and last callbacks are registered in micro-ROS,
while the middle one is executed in ROS 2. The periods of three timer callbacks might
be set equally, for example, the periods of cb1, cb4 and cb7 are all set to 100 ms or other
values. The priority of callbacks within each chain increases with indices, indicating that
the priority of cb3 is higher than cb1. Conversely, the priority of chains decreases with
indices, implying that the priority of cb3 is higher than cb9. At t0, all three timer callbacks
expire simultaneously and are collected in wait_set at t1, then the executor thread executes
those ready callbacks according to priorities. A message subscribed by cb3 is received at t4,
making cb3 available for execution. However, the batch-based callback scheduling strategy
requires the executor thread to finish executing cb7 at t9 before collecting cb3 in wait_set.
Consequently, cb3 cannot start to execute until t11, leading to a priority inversion problem.

3.2. Inefficiency and Unpredictability in Data Communication
3.2.1. Inefficiency in Data Transmission

In the current micro-ROS design, the executor thread sequentially manages callback
execution and data transmission. As illustrated in Section 2.3.1, the data are copied to
Framing_Bu f f er after undergoing serialization and framing, after which the DMA trans-
mission channel is configured and enabled to transmit the data to the remote ROS 2 Agent.
Concurrently, the CPU enters a self-blocking state, implemented through busy waiting, to
await the completion of data transmission. Obviously, this design can significantly reduce
the runtime efficiency of micro-ROS and delay the execution of other ready callbacks,
especially when publishers are transmitting large amounts of data. For example, as shown
in Figure 3, following the execution of cb1, cb4 and cb7, while micro-ROS is transmitting
a large amount of data to the ROS 2 Agent, the executor thread enters a meaningless
self-blocking state.

3.2.2. Unpredictability in Data Reception

Due to the lack of awareness of callback priority in the data-processing module, micro-
ROS adopts the FIFO-based data-processing strategy to process data packets received from
the ROS 2 Agent and stored in DMA_Bu f f er. During each round of the collection phase,
the executor thread processes only the first unprocessed data packet in DMA_Bu f f er,
leading to a priority inversion issue.

As illustrated in Figure 4, the periods of three timer callbacks in the example detailed
in Figure 3 may be different, for example, the periods of cb9, cb6, and cb3 are set to 100, 200,

Electronics 2024, 13, 1658 6 of 18

and 300 ms, respectively. In such a case, there might be three data packets corresponding
to different regular callbacks in DMA_Bu f f er at t0. For simplicity, the execution and data
transmission of timer callbacks registered on micro-ROS are not considered temporarily.
The executor thread processes only one data packet for each round of the collection phase
according to the FIFO-based data-processing strategy. Therefore, cb9 with the lowest
priority is executed first, while cb3 with the highest priority is executed last.

Unprocessed

data packet

cb9 cb6

t0 t1 t2 t3 t4

cb9

cb6

Regular

callback

Callbacks

collection

Callback

execution

Time wait_set

t0

t1

t2

t3

t4

cb9

cb9

cb6

cb6

data1

data2

DMA_Buffer

head

cb3

data3

cb3

t5 cb3

t5 t6

One round

of work

Figure 4. Priority inversion caused by FIFO-based data-processing strategy.

4. Overview

In this section, we first discuss the design challenges that must be overcome to enhance
the capability of priority-driven chain-aware scheduling for micro-ROS, followed by an
overview of our proposed PoDS framework.

4.1. Design Goals and Challenges

To improve run-time predictability. The above motivations demonstrate that priority
inversion issues caused by both the batch-based callback scheduling strategy and FIFO-
based data-processing strategy can impact the predictability of end-to-end latency for
a specific chain. To solve priority inversion issues caused by the batch-based callback
scheduling strategy, an intuitive approach is to update wait_set after each ready callback
completes its execution. However, the time cost associated with updating the wait_set
cannot be neglected, particularly when there are numerous callbacks registered in micro-
ROS. Thus, we design an executor with two new structures to assist the executor thread
in scheduling callbacks more efficiently. Additionally, this new design also incorporates a
revised workflow to enable the executor thread to collect and execute ready callbacks in a
more fine-grained manner. We name this executor with new structures and new workflow
the Timing-Deterministic and Efficient (TIDE) Executor.

To solve priority inversion issues caused by the FIFO-based data-processing strategy,
the simplest approach is to allow the executor thread to process all data packets currently
stored in DMA_Bu f f er during the collection phase of each work round. However, this
approach fails to make the data-processing module aware of callback priority, introducing
the time cost of processing unrelated data packets into the end-to-end latency of a specific
chain, which still demonstrates unpredictability in data reception. To eliminate the interfer-
ence of processing unrelated data packets and enhance the system’s run-time predictability,
we design the priority-based data-processing mechanism.

To ensure run-time efficiency. To improve run-time efficiency, it is feasible to concur-
rently manage callback execution and data transmission. However, this simple parallel
design cannot be compatible with the reliable communication mode, potentially leading to
issues in scenarios where the publishers publish a substantial volume of data. In response
to the above challenges, we design the Communication Daemon, which is specifically
responsible for data management during communication between our PoDS and ROS 2
Agent. The Communication Daemon consists of two parts, enabling the system to efficiently
transmit data to the ROS 2 Agent while also promptly processing received data packets,
which can significantly enhance the system’s runtime efficiency.

4.2. PoDS Overview

As illustrated in Figure 5, we design and implement a priority-driven chain-aware
scheduling system (PoDS) to improve the real-time performance of micro-ROS based on
the existing micro-ROS architecture. First, we explicitly bind each callback with a priority.

Electronics 2024, 13, 1658 7 of 18

Regardless of callback scheduling, data transmission, or reception, the corresponding oper-
ations are carried out based on callback priorities. In our PoDS, the executor thread remains
the central working entity, continuously running the workflow of the TIDE Executor to
collect and execute callbacks in a more fine-grained manner. There are two chain-aware
priority queues, named, respectively, TimerList and ReadyList, within the TIDE Executor
to assist the executor thread in scheduling callbacks as detailed in Section 5.1. During
the processing of received data packets by the executor thread, the priority-based data-
processing mechanism is used to prioritize the processing of data packets corresponding to
high-priority callbacks, ensuring the predictability of end-to-end latency for specific chains
as elaborated in Section 5.2. To ensure efficient and reliable communication, we introduce
the Communication Daemon, which consists of two crucial modules. The parallel trans-
mission handler enables parallel management of callback execution and data transmission,
making data packets transmitted to the ROS 2 Agent based on their callback priorities as
explained in Section 5.3.1. The interrupt-based data reception handler can manage regular
messages and acknowledgment messages separately to support both best-effort and reliable
communication modes as outlined in Section 5.3.2.

Micro XRCE-DDS Adapter

Callback

FreeRTOS, Zephyr, NuttX

TimerList

Application

Client-

Library

Middleware

RTOS

ROS 2

Agent

ROS 2

Stack

Callback

Normal

OS

TIDE

Executor

Serial,

Ethernet,

Bluetooth

Callback

ReadyList

priority priority

ROS API

In C language

ROS Middleware Interface

Micro XRCE-DDS Client

Parallel transmission handler

Interrupt-based data reception handler

Communication Daemon

 Priority-based data processing mechanism

Figure 5. PoDS architecture.

5. Design

In this section, we detail the design of three key components in our PoDS. The first
is the TIDE executor responsible for callback scheduling, followed by the priority-based
data-processing mechanism, and finally the Communication Daemon responsible for data
management during the communication between the PoDS and ROS 2 Agent.

5.1. TIDE Executor

To solve priority inversion problems caused by the batch-based callback scheduling
strategy, an intuitive approach is to update the wait_set after each ready callback completes
its execution. The time cost of updating wait_set consists mainly of two parts: one involves
clearing all callback pointers within wait_set, and the other involves checking all timer
callbacks to collect expired timer callbacks to wait_set. When there are numerous callbacks
registered in micro-ROS, the time cost associated with updating the wait_set cannot be
neglected, which can increase the end-to-end latency of chains. Additionally, since micro-
ROS does not support binding each callback with a priority, it is inconvenient to find the
ready callback with the highest priority in wait_set. The executor thread needs to check all
ready callbacks in wait_set to find the ready callback with the highest priority, which also
increases the end-to-end latency of chains. Therefore, to ensure the effective management
of ready callbacks and eliminate the time cost of updating wait_set, we design two new
chain-aware priority queues, named, respectively, TimerList and ReadyList, to replace
wait_set.

The TimerList is used to monitor the status of all timer callbacks and is organized in
increasing order according to the next_call_time within each timer callback. The variable
next_call_time stores the next expiration time of the respective timer callback. During the
collection phase of each round of work, the executor thread only needs to check whether

Electronics 2024, 13, 1658 8 of 18

the head callback of TimerList has expired to determine if there are any expired timer
callbacks in the system. Ready callbacks are inserted directly into ReadyList according to
their priority configuration, so the ready callback with the highest priority always is the
head callback of ReadyList.

Figure 6 illustrates the workflow of the TIDE Executor in each round of work. During
the collection phase, the executor thread first determines the presence of expired timer
callbacks in the system by checking whether the head callback of TimerList has expired.
If expired timer callbacks exist, they are collected to the ReadyList. Next, the executor
thread determines whether there are unprocessed data packets in the system by checking
DMA_Bu f f er. If they are present, the executor thread utilizes the priority-based data-
processing mechanism to process all unprocessed data packets currently in DMA_Bu f f er,
and subsequently, a regular callback with the highest priority is collected to the ReadyList.
During the execution phase, the executor thread first determines whether the group of
ready callbacks in ReadyList satisfies the trigger condition. If not satisfied, the executor
thread skips the execution phase and proceeds to the next round of work. It should be noted
that this paper adopts the default trigger condition ANY option for simplicity. This means
that as long as there are ready callbacks in ReadyList, the default trigger condition ANY
option is considered satisfied. Therefore, this paper effectively combines the determination
of trigger condition satisfaction with the existence of ready callbacks in ReadyList. If ready
callbacks exist, the executor thread takes the head callback of ReadyList out and executes it.
After the callback execution, the system may require transmitting data packets to the ROS
2 Agent. To enhance run-time efficiency, PoDS employs the parallel transmission handler
within the Communication Daemon to transmit data packets to the ROS 2 Agent.

Have expired timers?

Have unprocessed data packets?

Collect a regular callback to ReadyList

Have ready callbacks?

Execute the head callback of ReadyList

Collect expired timer callbacks to ReadyList

Start

 Collection

Phase

Execution

Phase

Priority-based data processing mechanism

Check TimerList

Check DMA_Buffer

Yes

Yes

Yes

No

No

No

Check ReadyList

Figure 6. The workflow of TIDE Executor.

5.2. Priority-Based Data-Processing Mechanism

After introducing our proposed TIDE Executor, the simplest approach to solve priority
inversion issues caused by the FIFO-based data-processing strategy is allowing the executor
thread to process all data packets currently stored in DMA_Bu f f er during the collection
phase of each round of work. As depicted in Figure 7, for convenience, we maintain the
example in Figure 4 and temporarily exclude consideration of the execution and data
transmission of timer callbacks registered in the system. In this approach, although cb3

Electronics 2024, 13, 1658 9 of 18

with the highest priority is executed first, the start execution time of cb3 is delayed by
the time cost of processing unrelated data packets data1 and data2. This additional time
cost is then added to the end-to-end latency of the chain containing cb3. The reason for
this challenge is that while crucial data packet information, such as the length of data
packet and the corresponding regular callback ID, is embedded in the data packet header,
Micro XRCE-DDS only provides functions to process the entire data packet. The time
cost of processing a complete data packet involves two primary parts: performing the
CRC verification on the payload of this data packet, and copying it from DMA_Bu f f er to
Static_Bu f f er_Memory. Therefore, the processing time cost is related to the length of the
data packet. When dealing with large data packets, the processing time cost becomes a
significant consideration that cannot be overlooked.

cb9cb6

t0 t1 t2 t3 t4

cb9

cb6

Time ReadyList

t0

t1

t2

t3

t4

cb9

cb9, cb6

cb9, cb6, cb3

cb9, cb6

data1

data2

cb3

data3

cb3

t5 cb9

t6

t5 t6

DMA_Buffer

head

Unprocessed

data packet

Regular

callback

Callbacks

collection

Callback

execution

One round

of work

Figure 7. Process all data packets currently stored in DMA_Bu f f er.

In our priority-based data-processing mechanism, we developed a new function
based on Micro XRCE-DDS. This function solely parses the data packet header to obtain
crucial data packet information, without involving CRC verification and payload copying
operations. Since the size of the data packet header is fixed at approximately 20 bytes, the
time cost of executing this new function is small and controllable. Before the executor thread
performs formal data processing, it calls this new function to perform data preprocessing on
all data packets currently stored in DMA_Bu f f er to obtain their crucial information. Next,
during the collection phase of each round of work, the executor thread collects a regular
callback based on the priority corresponding to each data packet. As illustrated in Figure 8,
after data preprocessing, the data-processing module becomes aware of the priorities
corresponding to the three data packets currently stored in DMA_bu f f er. Subsequently,
during the collection phase of each round of work, the executor thread collects and executes
a regular callback based on their priorities. It should be noted that if preprocessed data
packets are not immediately processed, their critical information is recorded and preserved
for use in the next collection phase. This implies that each unprocessed data packet
undergoes preprocessing only once. Moreover, because the interrupt-based data reception
handler manages regular messages and acknowledgment messages separately, the priority-
based data processing only needs to process regular messages.

cb9cb6

t1 t2 t3 t4

cb9

cb6

Regular

callback

Callbacks

collection

Callback

execution

Time ReadyList

t0

t1

t2

t3

t4

cb3

cb6

data1

data2

DMA_Buffer

head

cb3

data3

cb3

t5

t6 cb9

t5 t6

One round

of work

t0 t7

Data pre-

processing t7

Unprocessed

data packet

Figure 8. Priority-based data-processing mechanism.

5.3. Communication Daemon

The Communication Daemon is specifically responsible for data management during
communication between PoDS and ROS 2 Agent, consisting of two crucial modules.

5.3.1. Parallel Transmission Handler

To improve run-time efficiency, it is feasible to concurrently manage callback execution
and data transmission. However, this simple parallel design cannot be compatible with

Electronics 2024, 13, 1658 10 of 18

the reliable communication mode, which is considered the default option in micro-ROS.
Furthermore, in scenarios where the publisher publishes a substantial volume of data,
a potential problem may arise: the DMA transmission channel is occupied with data
transmission from the previous round of work, while, simultaneously, the executor thread
requests to use the DMA transmission channel for data transmission of the current round
of work. This scenario presents a risk of data loss unless the CPU enters the busy waiting
state to await the completion of data transmission from the previous round of work. When
such data transmission conflicts occur frequently, the system’s run-time efficiency cannot
be guaranteed too. We solve the above challenges by having the executor thread execute
the parallel transmission handler.

Before introducing the parallel transmission handler, it is necessary to introduce the
Data_Sending_Pool. The Data_Sending_Pool consists of three key components: Data_Pool,
Execution_Bu f f er, and Pending_Bu f f er. The Data_Pool contains several pre-allocated
buffer nodes. Each buffer node includes the data packet intended for transmission to the
ROS 2 Agent, along with the communication mode, the callback priority, and the timestamp
indicating when this node began its use. The buffer node that currently transmits the data is
referred to as the Current_Node. Both the Execution_Bu f f er and Pending_Bu f f er are pri-
ority queues made up of buffer nodes. The Execution_Bu f f er is sorted by callback priority
in descending order, while the Pending_Bu f f er is sorted by timestamp in ascending order.

As shown in Figure 9, the parallel transmission handler consists of two parts. During
the execution phase, after the callback execution, when the system requires to transmit
data packets to the ROS 2 Agent, the executor thread executes the first part of the parallel
transmission handler after copying the serialized and framed data to the Framing_Bu f f er.
The parallel transmission handler begins by requesting an available buffer node from
the Data_Pool, fills the data into this buffer node and adds it to the Execution_Bu f f er
based on the callback priority. If the DMA transmission channel is idle at this point, the
parallel transmission handler takes out the head node of the Execution_Bu f f er as the
Current_Node, and configures and enables the DMA transmission channel to transmit the
data packet within it to the ROS 2 Agent. If the DMA transmission channel is occupied at
this time, the parallel transmission handler exits directly. If there are no available buffer
nodes in the Data_Pool, the parallel transmission handler checks whether the head node
of the Pending_Bu f f er is expired. If it is, this node is reclaimed into the Data_Pool, and
the CPU enters the busy waiting state to wait for the emergence of an available buffer
node. Upon completion of the DMA transmission channel’s operation, the interrupt is
automatically triggered to execute the second part of parallel transmission handler. Within
the interrupt, the parallel transmission handler first checks the communication mode of
the Current_Node. If the communication mode is the best effort, the Current_Node is
reclaimed into the Data_Pool. If the communication mode is reliable, the Current_Node
is added to the Pending_Bu f f er based on its timestamp, and then a heartbeat message is
sent to ensure normal connection between the PoDS and ROS 2 Agent. Subsequently, if
the Execution_Bu f f er remains nonempty, the head node of the Execution_Bu f f er is taken
out, and the data packet within it is transmitted to the ROS 2 Agent by configuring and
enabling the DMA transmission channel.

Electronics 2024, 13, 1658 11 of 18

Have an available buffer node?

Fill this available buffer node

DMA transmission channel is idle?

Yes

Configure the DMA transmission channel

Start

End

No

No

Check the head node of Pending_Buffer Yes

Takes out the head node of Execution_Buffer

Start

Communication mode is reliable?

Reclaim Current_Node into Data_Pool

Add Current_Node to Pending_Buffer

Execution_Buffer is empty?

Configure the DMA transmission channel

End

Takes out the head node of Execution_Buffer

No

Yes

No

Send a heartbeat message

Yes

First part of parallel transmission handler Second part of parallel transmission handler

Figure 9. The workflow of the parallel transmission handler.

5.3.2. Interrupt-Based Data Reception Handler

After introducing the parallel transmission handler, it is worth considering how to
handle acknowledgment messages sent back to the ROS 2 Agent when the communication
mode is reliable. As mentioned in Section 2.3.2, the micro-ROS lacks the capability to
manage received data packets based on the message type. After micro-ROS transmits
a heartbeat message to the ROS 2 Agent, the CPU falls into the self-blocking state to
wait for the acknowledgment message reply. This sequential management evidently
fails to ensure the system’s run-time efficiency. Therefore, we design and implement
the interrupt-based data reception handler to separately manage regular messages and
acknowledgment messages.

When receiving a complete data packet, the DMA reception channel automatically
triggers an idle interrupt. Within this idle interrupt, the interrupt-based data reception
handler first examines the type of received data packet. If it is a regular message, the
interrupt-based data reception handler exits directly, postponing the processing of this
regular message to the collection phase of the TIDE Executor. Acknowledgment messages,
due to their fixed length and minimal processing time cost, can be efficiently processed
within the idle interrupt. If the received acknowledgment message confirms the successful
transmission of the previous data packet to the ROS 2 Agent, the corresponding node
within the Pending_Bu f f er is reclaimed into the Data_Pool. However, if the received
acknowledgment message indicates a failure in transmitting the previous data packet
to the ROS 2 Agent, the corresponding node within the Pending_Bu f f er is added to the
Execution_Bu f f er according to its callback priority.

6. Evaluation

This section evaluates the real-time performance of our proposed PoDS by contrasting
it with the micro-ROS. We start by outlining the experimental configuration, followed
by conducting experiments with simulated parameters to investigate the performance
attributes of both our proposed PoDS and the micro-ROS.

6.1. Environment Setup

Experimental platform. We implemented our proposed PoDS based on ROS 2 Hum-
ble of micro-ROS, running on the commonly used NUCLEO-F767ZI [16] microcontroller.
This microcontroller features an ARM 32-bit Cortex-M7 processor with a maximum CPU
frequency of 216 MHz, 2 MB Flash, 512 KB SRAM, and other specifications. We fixed the
CPU clock at 216 MHz. The underlying RTOS we adopted is FreeRTOS with the latest
version of V202212.00. Our PoDS remains compatible with micro-ROS, ensuring support
for all types of RTOS that micro-ROS supports. The FreeRTOS system tick is set to 10 ns to

Electronics 2024, 13, 1658 12 of 18

offer a precise wall clock. The ROS 2 with the Humble version is deployed on a desktop PC
running Ubuntu 20.04.6 LTS with 14 cores and 16 GB of DRAM. Communication between
micro-ROS and ROS 2 is established through the UART port operating at 115,200 bps.
During the experiments, neither the microprocessor nor the desktop PC runs other tasks.

Measurement Metric. We primarily evaluate the real-time performance of our pro-
posed PoDS or micro-ROS in terms of end-to-end latency, which represents the time cost
taken for a specific chain to complete. We measured the time taken from the start of
the first callback execution to the completion of the last callback in the chain using the
xTaskGetTickCount() function provided by FreeRTOS. The time cost associated with
obtaining the current time using this function is so small on our platform that it can
be overlooked.

6.2. Experimental Results
6.2.1. Basic Characteristics

To evaluate the real-time performance of our proposed PoDS, especially in terms
of its ability to ensure timing determinism for high-priority chains, we identify three
crucial elements that could influence the overall workload in the system. These elements
include the number of chains present in the system, the data packet size transmitted from
PoDS/micro-ROS to the ROS 2 Agent, and the callback execution time within each chain.
In every sub-experiment, we modify one variable individually to maintain experiment
control while keeping all other conditions constant. Each chain in the experiment consists
of one timer callback and two regular callbacks. Importantly, the first and last callbacks are
registered in PoDS/micro-ROS, while the middle one is executed in ROS 2. Furthermore,
the priority of callbacks within each chain increases with their indices, whereas the priority
of chains decreases with their indices. To focus on evaluating the performance of PoDS
or micro-ROS, we set the execution time of the middle callback in each chain to zero, and
the size of data packets transmitted by the middle callback is fixed at 10 bytes. For the
underlying communication, we employ Micro XRCE-DDS, opting for the best-effort Quality
of Service (QoS).

Influence of the number of chains. In this experiment, the number of chains registered
in PoDS/micro-ROS ranges from 1 to 5, and the timer callback period of each chain is set
to 500 ms. The data packet size transmitted from PoDS/micro-ROS to the ROS 2 Agent
is fixed at 100 bytes. The execution time of callbacks registered in PoDS/micro-ROS is
fixed at 10 ms. The maximum end-to-end latency observed for the highest-priority chain is
depicted in Figure 10.

1 2 3 4 5
The number of chains

0

20

40

60

80

100

120

M
ax

im
um

 e
nd

-to
-e

nd
 la

te
nc

y
[m

s]

36.82 37.12 41.02 40.95 40.96
36.6

54.19

76.19

98.2

120.17
PoDS
micro-ROS

Figure 10. Influence of the number of chains on maximum end-to-end latency.

The results show that as the number of chains increases, the end-to-end latency of
the highest-priority chain in PoDS remains relatively unchanged, while in micro-ROS,

Electronics 2024, 13, 1658 13 of 18

it consistently increases. The reason for this is that callbacks in the low-priority chains
of micro-ROS interfere with the high-priority chains, whereas PoDS remains unaffected.
For instance, when only one chain is registered, the end-to-end latency of this chain is
identical in both PoDS and micro-ROS. However, when multiple chains are registered in
micro-ROS, the batch-based callback scheduling strategy adopted by the RCLC Executor
can cause priority inversion problems. In contrast, the TIDE Executor in PoDS does not
experience these priority inversion issues, resulting in minimal changes in end-to-end
latency for the highest-priority chain. Further analysis reveals that as the number of chains
increases, the end-to-end latency of the highest-priority chain in micro-ROS increases
approximately linearly. With the addition of each low-priority chain, the end-to-end latency
of the highest-priority chain in micro-ROS increases by approximately 20 ms. This is due to
the impact of the execution time and the data transmission time of timer callbacks in two
lower-priority chains.

Influence of the data packet size. The data transmission time in PoDS/micro-ROS
is closely related to the size of the transmitted data packet. Therefore, the impact of data
transmission time on the real-time performance of PoDS/micro-ROS can be evaluated by
varying the size of the transmitted data packet. Furthermore, we can roughly determine the
byte range of the transmitted data packet by examining the generic robot-specific message
types (common_msgs) [17] widely used by ROS applications. For example, the NavSatFix
Message exceeds 116 bytes, and the PoseWithCovariance Message greatly exceeds 288 bytes.
In this experiment, the data packet size transmitted from PoDS/micro-ROS to the ROS 2
Agent ranges from 100 to 500 bytes. There are three chains registered in PoDS/micro-ROS,
and the timer callback period of each chain is set to 500 ms. The execution time of callbacks
registered in PoDS/micro-ROS is fixed at 5 ms. The maximum end-to-end latency observed
for the highest-priority chain is depicted in Figure 11.

100 200 300 400 500
Data packet size [byte]

0

20

40

60

80

100

120

140

160

M
ax

im
um

 e
nd

-to
-e

nd
 la

te
nc

y
[m

s]

22.39
31.12

39.82
48.49

57.69
51.32

77.91

104.51

131.11

157.7
PoDS
micro-ROS

Figure 11. Influence of transmitted data packet size on maximum end-to-end latency.

The results demonstrate that as the size of transmitted data packets increases, the
end-to-end latency of the highest-priority chain in both PoDS and micro-ROS exhibits a
linear growth trend. However, the growth rate of micro-ROS significantly exceeds that
of PoDS. For every additional 100 bytes of data packets, the end-to-end latency of the
highest-priority chain in PoDS increases by approximately 10 ms, precisely matching the
time cost of transmitting the 100 bytes data packet to the ROS 2 Agent. This indicates that
the higher-priority chain in PoDS remains unaffected by lower-priority chains. For data
packets of the same size, the end-to-end latency of the highest-priority chain in micro-ROS
exceeds that of PoDS. This excess is equivalent to the sum of the execution time of timer
callbacks and the data transmission time in two low-priority chains. Overall, as the size
of data packets increases, the end-to-end latency of the highest-priority chain in PoDS is
solely affected by its own data transmission time, while that of micro-ROS is influenced by
the data transmission times of all three chains.

Electronics 2024, 13, 1658 14 of 18

Influence of the callback execution time. In this experiment, the execution time of
callbacks registered in PoDS/micro-ROS ranges from 10 to 50 ms. There are three chains
registered in PoDS/micro-ROS, and the timer callback period of each chain is set to 500 ms.
The data packet size transmitted from PoDS/micro-ROS to the ROS 2 Agent is fixed at
100 bytes. The maximum end-to-end latency observed for the highest-priority chain is
depicted in Figure 12.

10 20 30 40 50
Callback execution time [ms]

0

50

100

150

200

M
ax

im
um

 e
nd

-to
-e

nd
 la

te
nc

y
[m

s]

30.77

60.59

90.6

120.59

150.74

62.42

102.42

142.42

182.42

222.41
PoDS
micro-ROS

Figure 12. Influence of callback execution time on maximum end-to-end latency.

The results indicate that the end-to-end latency of the highest-priority chain in micro-
ROS surpasses that of PoDS when the callback execution time is identical. Moreover,
as the callback execution time increases, the latency gap between micro-ROS and PoDS
progressively widens. Typically, the end-to-end latency of a chain comprises two callback
execution times and one data transmission time. However, in PoDS, the executor thread can
parallelly manage callback execution and data transmission due to the parallel transmission
handler. For 50 bytes data packets, the data transmission time of approximately 7 ms is
lower than the callback execution time of 10 ms. This shorter transmission time is masked
by the execution time of timer callbacks, resulting in the end-to-end latency of the highest-
priority chain being represented by the sum of three callback execution times. In contrast,
the batch-based callback scheduling strategy employed by the RCLC Executor in micro-
ROS results in the end-to-end latency of the highest-priority chain comprising the sum of
four callback execution times and three data transmission times. Upon examination, when
the callback execution time is equivalent, the excess portion of the end-to-end latency on
micro-ROS, compared to PoDS, precisely aligns with one callback execution time and three
data transmission times.

6.2.2. Performance under Reliable Communication

The goal of this experiment is to evaluate the real-time performance of PoDS compared
to that of micro-ROS in the reliable communication mode. In this experiment, there are three
chains registered in PoDS/micro-ROS, each containing three callbacks: a timer callback and
two regular callbacks. While the middle callback is executed using ROS 2, the first and last
callbacks are handled by PoDS/micro-ROS. The timer callback period of each chain is set to
500 ms. The size of data packets transmitted from PoDS/micro-ROS to the ROS 2 Agent is
fixed at 100 bytes. The execution time of callbacks registered in PoDS/micro-ROS is fixed at
10 ms. To focus on evaluating the performance of PoDS or micro-ROS, the execution time of
the middle callback in each chain is set to zero, with the size of data packets transmitted by
the middle callback fixed at 10 bytes. For the underlying communication, Micro XRCE-DDS
is employed, utilizing the reliable Quality of Service (QoS).

In this experiment, we measure the end-to-end latency of the highest-priority chain
500 times. Throughout the experiment, we intercept the acknowledgment messages sent
back from the ROS 2 Agent and customized their parsing content. In certain cases, the

Electronics 2024, 13, 1658 15 of 18

acknowledgment messages indicate that the first data transmission from PoDS/micro-ROS
to ROS 2 Agent is considered successful. On the contrary, in the remaining cases, the
acknowledgment messages indicate that the first data transmission failed. At this time,
PoDS or micro-ROS is required to retransmit the previous data packet to the ROS 2 Agent,
with the second data transmission guaranteed to be successful. We define the ratio of the
number of first successful transmissions to the total number as the successful probability.
The end-to-end latency observed for the highest-priority chain 500 times varies with the
successful probability as depicted in Figure 13.

0 20% 40% 60% 80% 100%
Successful probability

40

50

60

70

80

90

100

110

120

Ob
se

rv
ed

 e
nd

-to
-e

nd
 la

te
nc

y
[m

s] PoDS
micro-ROS

Figure 13. Influence of successful probability on end-to-end latency under reliable communication.

The results show that when the successful probability is equal, the end-to-end latency
of the highest-priority chain in micro-ROS consistently exceeds that of PoDS as detailed
in the preceding section. As the successful probability increases, the average end-to-end
latency of the highest-priority chain in both micro-ROS and PoDS shows a decreasing trend.
However, the difference in end-to-end latency between the successful probability of 0%
and 100% for the highest priority chain in micro-ROS is approximately three times that of
PoDS. This is because, in the event of the first data transmission failure, the end-to-end
latency of the highest-priority chain on PoDS only includes the second data transmission
time within the same chain. In contrast, the end-to-end latency of the highest-priority
chain in micro-ROS includes the second data transmission time not only within the same
chain but also within the two lower-priority chains. This demonstrates that, under reliable
communication mode, the timing determinism of the end-to-end latency for the high-
priority chain in PoDS remains significantly higher than that of micro-ROS. A more detailed
numerical comparison is presented in Table 1, which includes the minimum (MIN), average
(AVE), maximum (MAX), and standard deviation (STD) values of the end-to-end latency
of the highest-priority chain in each group. We can observe that the STD value of the
micro-ROS with different successful probability rates is significantly higher than that of
PoDS, which indicates that our PoDS demonstrates a more stable real-time performance
compared to micro-ROS.

Electronics 2024, 13, 1658 16 of 18

Table 1. Performance comparison under reliable communication.

Successful Probability 0 20% 40% 60% 80% 100%

micro-ROS
[ms]

MIN 114.27 84.11 84.34 84.34 84.01 84.16

AVE 115.09 107.44 102.96 96.87 91.15 85.03

MAX 115.96 115.81 116.19 116.54 115.78 85.80

STD 0.34 10.79 10.73 14.70 12.03 0.33

PoDS
[ms]

MIN 48.31 40.94 40.94 40.94 40.94 41.06

AVE 48.97 47.04 45.59 43.97 42.48 41.07

MAX 49.70 49.42 49.95 49.77 49.67 41.09

STD 0.30 3.10 3.84 3.71 3.10 0.01

7. Related Work

Significant research efforts have been directed towards improving real-time perfor-
mance in ROS [18–20]. For example, a real-time ROS architecture for multi-core processors
is introduced in [18] and a real-time scheduling framework for ROS is introduced in [21].
However, these studies are applicable only to early versions of ROS and lack analytical
methods to ensure real-time timing constraints.

Since the release of ROS 2 in 2017, numerous studies have been conducted aimed at
improving or evaluating its real-time performance. For example, ref. [22] presented the
first formal analysis and modeling of ROS 2 to bound the end-to-end latency of ROS 2
applications. Subsequent work [23] further improved the response time bound for the
default ROS 2 executor. The ROS 2 employs two types of executors internally: the single-
threaded executor and the multi-threaded executor. Tang et al. in [24] conducted a response
time analysis of the single-threaded executor through formal modeling. Jiang et al. in [25]
focused on real-time scheduling and analysis under the multi-threaded executor in their
work. Furthermore, in recent research conducted by Choi et al. [26,27], novel chain-level
priority-based scheduling schemes were proposed for the ROS 2 executor with the objective
of improving real-time performance. Liu et al. in [28] proposed a new multi-threaded
executor called RTeX for ROS 2 to improve system performance in terms of both run-time
efficiency and timing predictability.

Although micro-ROS is a variant of ROS 2 focused on putting ROS 2 onto resource-
constrained microcontrollers, research on micro-ROS is currently limited. The official
website of micro-ROS [5] only provides tutorials on how to use micro-ROS, without offering
a comprehensive exploration of its internal mechanisms or comparative evaluations with
other embedded real-time systems. In [29], an advanced budget-based real-time executor
with multithreading support was introduced but failed to explore or discuss the limitations
of the default RLCL Executor in micro-ROS. Recent works such as [30,31] are dedicated
to exploring the practical application development of micro-ROS in real-world scenarios.
Meanwhile, Peter et al. [32] strove to conduct the modeling and timing analysis of micro-
ROS applications, while their ultimate objective being the implementation of micro-ROS
on alternative platforms.

Besides micro-ROS, mROS [33] also integrates resource-constrained microcontrollers
with classic ROS. It provides a basic implementation of core ROS concepts on embedded
devices, allowing for the creation of multiple ROS nodes on the same microcontroller.
The mROS features an efficient shared memory communication mechanism for message
exchange between nodes on the same microcontroller, and utilizes the lightweight TCP/IP
stack lwIP [34] for data communication between remote ROS nodes. Recently, mROS
2 [35] was published to offer a basic implementation of the fundamental concepts of ROS 2
directly on the embedded device. EmbeddedRTPS [36,37] and Data Distribution Service

Electronics 2024, 13, 1658 17 of 18

(DDS) are used in mROS 2 to achieve efficient communication between remote nodes, but
its scalability remains to be improved.

8. Conclusions and Future Work

In this paper, we identify three crucial issues stemming from unreasonable designs
within micro-ROS after conducting in-depth research on its callback scheduling and com-
munication models. To improve the timing predictability and run-time efficiency of micro-
ROS, we design and implement a priority-driven chain-aware scheduling system (PoDS)
based on the existing micro-ROS architecture, which consists primarily of the following
three components. The TIDE Executor makes the collection and execution of ready call-
backs more fine-grained, and the priority-based data-processing mechanism enables the
data-processing module to recognize callback priorities. They effectively resolve prior-
ity inversion issues present in micro-ROS. The Communication Daemon can ensure the
communication efficiency of PoDS and ROS 2 Agent in multiple communication modes.
Through a comprehensive series of experiments, our proposed PoDS demonstrates superior
and more stable real-time performance compared to the default micro-ROS.

The PoDS is developed on the existing micro-ROS framework, where the ROS 2
Agent significantly affects the real-time performance of micro-ROS or PoDS. The mROS 2
achieves an agentless and lightweight runtime environment for embedded devices using
embeddedRTPS. In the future, we hope to overcome the limitations of the ROS 2 Agent by
introducing the concept of embeddedRTPS design within the PoDS framework.

Author Contributions: Methodology, S.L., D.J. and W.Y.; Software, Z.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by NSFC Project under Grant 62302083 and in part by Liaoning
Provincial United Natural Science Foundation (2023BSBA-123) and in part by the Fundamental
Research Funds for the Central Universities (N2316009).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. ROS Introduction. Available online: http://wiki.ros.org/ROS/Introduction/ (accessed on 24 March 2024).
2. ROS Robots. Available online: https://robots.ros.org/ (accessed on 8 February 2024).
3. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the

wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]
4. Belsare, K.; Rodriguez, A.C.; Sánchez, P.G.; Hierro, J.; Kołcon, T.; Lange, R.; Lütkebohle, I.; Malki, A.; Losa, J.M.; Melendez, F.;

et al. Micro-ros. In Robot Operating System (ROS) The Complete Reference; Springer International Publishing: Cham, Switzerland,
2023; Volume 7, pp. 3–55.

5. micro-ROS Puts ROS 2 on Microcontrollers. Available online: https://micro.ros.org/ (accessed on 13 February 2024).
6. Li, B.; Ma, Z.; Zhao, Y. 2D Mapping of Mobile Robot Based on micro-ROS. In Proceedings of the 2022 4th International Symposium

on Robotics & Intelligent Manufacturing Technology (ISRIMT 2022), Online, 23–25 September 2022; IOP Publishing: Bristol, UK,
2022; Volume 2402, p. 012030.

7. Features and Architecture. Available online: https://micro.ros.org/docs/overview/features/ (accessed on 13 February 2024).
8. Barry, R. FreeRTOS. Internet, Oct. 2008. Available online: https://www.freertos.org/RTOS.html (accessed on 1 January 1980).
9. The Zephyr Project. Available online: https://www.zephyrproject.org/ (accessed on 24 March 2024).
10. Apache NuttX. Available online: https://nuttx.apache.org/ (accessed on 21 February 2024).
11. eProsima Micro XRCE-DDS. Available online: https://micro-xrce-dds.docs.eprosima.com/en/latest/ (accessed on 30 March

2024).
12. Micro XRCE-DDS. Available online: https://micro.ros.org/docs/concepts/middleware/Micro_XRCE-DDS/ (accessed on 13

February 2024).
13. Micro XRCE-DDS Memory Profiling. Available online: https://micro.ros.org/docs/concepts/middleware/memo_prof/ (ac-

cessed on 13 February 2024).
14. Staschulat, J.; Lütkebohle, I.; Lange, R. The rclc executor: Domain-specific deterministic scheduling mechanisms for ros appli-

cations on microcontrollers: Work-in-progress. In Proceedings of the 2020 International Conference on Embedded Software
(EMSOFT), Shanghai, China, 20–25 September 2020; pp. 18–19.

http://wiki.ros.org/ROS/Introduction/
https://robots.ros.org/
http://doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
https://micro.ros.org/
https://micro.ros.org/docs/overview/features/
https://www.freertos.org/RTOS.html
https://www.zephyrproject.org/
https://nuttx.apache.org/
https://micro-xrce-dds.docs.eprosima.com/en/latest/
https://micro.ros.org/docs/concepts/middleware/Micro_XRCE-DDS/
https://micro.ros.org/docs/concepts/middleware/memo_prof/

Electronics 2024, 13, 1658 18 of 18

15. rclc Executor. Available online: https://micro.ros.org/docs/concepts/client_library/execution_management/#rclc-executor
(accessed on 13 February 2024).

16. NUCLEO-F767ZI. Available online: https://www.st.com/en/evaluation-tools/nucleo-f767zi.html (accessed on 5 April 2024).
17. common_msgs—ROS Wiki. Available online: https://wiki.ros.org/common_msgs (accessed on 21 April 2024).
18. Wei, H.; Shao, Z.; Huang, Z.; Chen, R.; Guan, Y.; Tan, J.; Shao, Z. RT-ROS: A real-time ROS architecture on multi-core processors.

Future Gener. Comput. Syst. 2016, 56, 171–178. [CrossRef]
19. Saito, Y.; Sato, F.; Azumi, T.; Kato, S.; Nishio, N. Rosch: Real-time scheduling framework for ros, In Proceedings of the 2018 IEEE

24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hakodate, Japan,
28–31 August 2018; pp. 52–58.

20. Suzuki, Y.; Azumi, T.; Kato, S.; Nishio, N. Real-time ros extension on transparent cpu/gpu coordination mechanism. In
Proceedings of the 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), Singapore, 29–31
May 2018; pp. 184–192.

21. Saito, Y.; Azumi, T.; Kato, S.; Nishio, N. Priority and synchronization support for ROS. In Proceedings of the 2016 IEEE 4th
International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), Nagoya, Japan, 6–7 October 2016;
pp. 77–82.

22. Casini, D.; Blaß, T.; Lütkebohle, I.; Brandenburg, B. Response-time analysis of ROS 2 processing chains under reservation-based
scheduling. In Proceedings of the 31st Euromicro Conference on Real-Time Systems, Stuttgart, Germany, 9–12 July 2019; pp. 1–23.

23. Blaß, T.; Casini, D.; Bozhko, S.; Brandenburg, B.B. A ROS 2 response-time analysis exploiting starvation freedom and execution-
time variance. In Proceedings of the 2021 IEEE Real-Time Systems Symposium (RTSS), Dortmund, Germany, 7–10 December
2021; pp. 41–53.

24. Tang, Y.; Feng, Z.; Guan, N.; Jiang, X.; Lv, M.; Deng, Q.; Yi, W. Response time analysis and priority assignment of processing chains
on ros2 executors. In Proceedings of the 2020 IEEE Real-Time Systems Symposium (RTSS), Houston, TX, USA, 1–4 December
2020; pp. 231–243.

25. Jiang, X.; Ji, D.; Guan, N.; Li, R.; Tang, Y.; Wang, Y. Real-time scheduling and analysis of processing chains on multi-threaded
executor in ros 2. In Proceedings of the 2022 IEEE Real-Time Systems Symposium (RTSS), Houston, TX, USA, 5–8 December 2022;
pp. 27–39.

26. Choi, H.; Xiang, Y.; Kim, H. PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In Proceedings of the 2021
IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS), Nashville, TN, USA, 18–21 May 2021;
pp. 251–263.

27. Sobhani, H.; Choi, H.; Kim, H. Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In
Proceedings of the 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS), San Antonio, TX,
USA, 9–12 May 2023; pp. 106–118.

28. Liu, S.; Jiang, X.; Guan, N.; Wang, Z.; Yu, M.; Yi, W. RTeX: An Efficient and Timing-Predictable Multi-threaded Executor for ROS 2.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2024, Early Access.

29. Staschulat, J.; Lange, R.; Dasari, D.N. Budget-based real-time executor for micro-ROS. arXiv 2021, arXiv:2105.05590.
30. Bappanadu, S.R. Modeling and Timing Analysis of Micro-ROS Application on an Off-Road Vehicle Control Unit. Master’s Thesis,

University of Stuttgart, Stuttgart, Germany, 2022.
31. Mudalige, N.D.; Zhura, I.; Babataev, I.; Nazarova, E.; Fedoseev, A.; Tsetserukou, D. Hyperdog: An open-source quadruped

robot platform based on ros2 and micro-ros. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 436–441.

32. Nguyen, P. Micro-Ros for Mobile Robotics Systems. 2022. Available online: https://mdh.diva-portal.org/smash/record.jsf?pid=
diva2%3A1670378&dswid=7005 (accessed on 23 April 2024).

33. Takase, H.; Mori, T.; Takagi, K.; Takagi, N. mROS: A lightweight runtime environment for robot software components onto
embedded devices. In Proceedings of the 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, Nagasaki, Japan, 6–7 June 2019; pp. 1–6.

34. lwIP—A Lightweight TCP/IP Stack—Summary. Available online: https://savannah.nongnu.org/projects/lwip/ (accessed on 19
April 2024).

35. mROS 2. Available online: https://github.com/mROS-base/mros2 (accessed on 19 April 2024).
36. Kampmann, A.; Wüstenberg, A.; Alrifaee, B.; Kowalewski, S. A portable implementation of the real-time publish-subscribe

protocol for microcontrollers in distributed robotic applications. In Proceedings of the 2019 IEEE intelligent transportation
systems conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 443–448.

37. embeddedRTPS. Available online: https://github.com/embedded-software-laboratory/embeddedRTPS (accessed on 19 April
2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://micro.ros.org/docs/concepts/client_library/execution_management/#rclc-executor
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://wiki.ros.org/common_msgs
http://dx.doi.org/10.1016/j.future.2015.05.008
https://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1670378&dswid=7005
https://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1670378&dswid=7005
https://savannah.nongnu.org/projects/lwip/
https://github.com/mROS-base/mros2
https://github.com/embedded-software-laboratory/embeddedRTPS

	Introduction
	Background
	Micro-ROS Architecture
	Callback Scheduling Model in Micro-ROS
	Communication Model between Micro-ROS and ROS 2 Agent
	Data Transmission
	Data Reception

	Motivation
	Unpredictability in Callback Scheduling
	Inefficiency and Unpredictability in Data Communication
	Inefficiency in Data Transmission
	Unpredictability in Data Reception

	Overview
	Design Goals and Challenges
	PoDS Overview

	Design
	TIDE Executor
	Priority-Based Data-Processing Mechanism
	Communication Daemon
	Parallel Transmission Handler
	Interrupt-Based Data Reception Handler

	Evaluation
	Environment Setup
	Experimental Results
	Basic Characteristics
	Performance under Reliable Communication

	Related Work
	Conclusions and Future Work
	References

