
electronics

Article

On the Generality of Codebook Approach for
Sensor-Based Human Activity Recognition

Kimiaki Shirahama 1,* and Marcin Grzegorzek 1,2

1 Pattern Recognition Group, University of Siegen, Hoelderlinstr. 3, D-57076 Siegen, Germany;
marcin.grzegorzek@uni-siegen.de

2 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3 Str.,
40-226 Katowice, Poland

* Correspondence: kimiaki.shirahama@uni-siegen.de; Tel.: +49-271-740-3095

Academic Editor: name
Received: date; Accepted: date; Published: date

Abstract: With the recent spread of mobile devices equipped with different sensors, it is possible
to continuously recognise and monitor activities in daily life. This sensor-based human activity
recognition is formulated as sequence classification to categorise sequences of sensor values into
appropriate activity classes. One crucial problem is how to model features that can precisely represent
characteristics of each sequence and lead to accurate recognition. It is laborious or difficult to
hand-craft such features based on prior knowledge and manual investigation about sensor data.
To overcome this, we focus on a feature learning approach that extracts useful features from a large
amount of data. In particular, we adopt a simple but effective one, called codebook approach, which
groups numerous subsequences collected from sequences into clusters. Each cluster centre is called
a codeword and represents a statistically distinctive subsequence. Then, a sequence is encoded as a
feature expressing the distribution of codewords. The extensive experiments on different recognition
tasks for physical, mental and eye-based activities validate the effectiveness, generality and usability
of the codebook approach.

Keywords: sensor-based human activity recognition; sequence classification; feature learning;
codebook approach

1. Introduction

Recently, mobile devices equipped with different sensors have been made low-power, low-cost,
high-capacity and miniaturised [1–3]. This allows continuous recording of sensor data related to the
daily life of a person [4,5]. Especially, in addition to traditional accelerometers, gyroscopes and GPSs,
state-of-the-art sensors can capture physiological signals such as blood volume pressure, heart rate,
galvanic skin conductance, respiration rate and electrooculogram (EOG) [6–10]. This offers a possibility
to recognise not only physical behaviours of the person, but also his/her mental states (i.e., emotions)
and health conditions. Thus, activities in this paper include all of these ‘high-level’ descriptions that
can be potentially extracted from ‘low-level’ sensor data. This sensor-based human activity recognition is
useful for various applications, like intelligent human-computer interaction, effective lifelogging and
healthcare (ambient-assisted living).

Since data obtained from a sensor are usually formed of a sequence representing the value
(or vector of values) at each time point, sensor-based human activity recognition can be formulated
as sequence classification. This is generally solved in a machine learning framework, where a classifier
(recognition model) is built that takes a sequence as input and predicts its activity class. First, ‘training
sequences’ that are already annotated with activity classes are analysed. This leads to construct a
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classifier that captures characteristics of sequences in each activity class. Then, it is used to categorise
‘test sequences’ for which activity classes are unknown [1,3].

One of the most important issues is the choice of sequence representation. As the raw
representation of a sequence includes irrelevant information to classification, a classifier should
be built on a more abstracted representation, called ‘feature’, which expresses relevant characteristics
of the sequence. A good feature makes it easier to categorise the sequence into the appropriate activity
class. Regarding this, many existing methods rely on ‘hand-crafted’ features that are designed based
on prior knowledge and manual investigation. Examples of hand-crafted features are the mean and
variance of values in a sequence, the mean of first-order derivatives, and power spectrum in a certain
frequency domain [1,3,11–17]. However, hand-crafted features have two crucial problems: The first
is the lack of statistical validity. For example, rather than the mean value of a sequence, the “mean
plus 1.5” may lead to more accurate recognition. The second problem is the difficulty of representing
the detailed information in a sequence. In other words, a person can only perceive coarse-grained
tendencies of sequences.

To overcome these problems, this paper focuses on feature learning which extracts useful features
from a large amount of data [18,19]. In particular, a simple but effective one called codebook approach
is adopted. This has been originally developed in the fields of object detection/recognition and
image/video classification [20,21]. The original codebook approach analyses a large number of
patches (small regions) in images and constructs a codebook consisting of characteristic patches called
codewords. An image is then represented by a feature signifying the distribution of codewords. Here,
codewords are extracted as cluster centres obtained by grouping numerous patches into clusters of
visually similar ones. Thus, each codeword indicates a statistically distinctive patch. In addition,
the feature of an image preserves the detailed information by extracting hundreds/thousands of
codewords. We apply this codebook approach to sequence classification by regarding patches in
images as subsequences collected by sliding a window over sequences. Consequently, a codebook
consists of abundant codewords representing statistically distinctive subsequences, and details of a
sequence are encoded by a feature expressing their distribution.

This paper aims to evaluate the generality of the codebook approach in various activity
recognition tasks by considering the availability of unobtrusive wearable/mobile sensors. Specifically,
the following three tasks are selected: The first is the recognition of mental activities (i.e., emotions like
“joy”, “anger” and “hate”) using physiological data, such as blood volume pressures, galvanic skin
conductances and respiration rates [11]. These can be measured by latest wristbands [6,7] and clip-type
sensor [8]. The second task is the recognition of physical activities (e.g., jumping, bending, sitting down
and standing up) using accelerometer data of different body parts [22]. For example, body, hand and
head movements can be measured using accelerometers installed in a smartphone, wristband [6,7] and
intelligent glasses [9], respectively. The last task is the recognition of eye-based activities (e.g., reading,
writing and watching TV) using EOG data [10], which characterise eye movements and can be captured
by state-of-the-art intelligent glasses [9]. Through these experiments, we justify the generality of the
codebook approach for recognising various activities in daily life settings.

2. Related Work

Recent survey papers on sensor-based human activity recognition [1,3] present that the mean and
variance (standard deviation) of values in a sequence are the most popular features. However, only
with these, too much information is lost. To compensate this, researchers use additional features like the
mean of first-order derivatives, zero-crossing rate, power spectrum obtained by Fast Fourier Transform
(FFT), entropy of spectral powers, and biomedically engineered features (e.g., average duration
between heart beats, inhalation/exhalation duration, and eye-blinking rate) [10–17]. As extreme
examples, the methods in [12–14] use more than 100 features. Although the usage of many features is
one option to preserve details of a sequence, hand-crafting each of them requires both prior knowledge
and laborious manual investigation. Also, several methods adopt the ‘point-to-point comparison’
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where values in a sequence are matched with those in another sequence [23,24]. In other words, these
methods do not extract features, but directly use raw values in sequences. However, it is reported
that the point-to-point comparison is brittle to noise, and features capturing high-level structures are
necessary for accurate sequence classification [25,26].

Some sensor-based human activity recognition methods employ the codebook approach by
making different modifications [22,27–30] (Codebook-based methods have also been developed in
the fields of sequence/time series classification [25,26,31,32]. But, these are not discussed in this
paper, in order to focus on sensor-based human activity recognition.). These methods mainly differ
in how to represent a subsequence for codebook construction. Note that subsequences need to be
represented with features so that they can be compared and grouped into clusters. For clear discussion,
a feature of a subsequence is termed as a local feature, while the term ‘feature’ is used for a sequence and
derived by collecting local features of subsequences. In [28], targeting accelerometer and gyroscope
sequences, codewords are extracted by representing subsequences with local features that indicate
physical parameters of human motion, such as movement intensities, motion magnitudes along the
vertical/heading direction, and the correlation of accelerations between the gravity and heading
directions. In [29], for ElectroEncephaloGram (EEG) and ElectroCardioGraphic (ECG) sequences, local
features of subsequences are extracted as approximation coefficients obtained by Discrete Wavelet
Transform (DWT). The method in [30] analyses sequences of blood pressures and simply uses the
mean value of a subsequence as its local feature. The methods in [22,27] address multi-dimensional
sequences obtained from several accelerometer sensors, and represent a subsequence with a local
feature expressing means and variances in individual dimensions.

Compared to the above existing methods, our method extracts no local feature and groups
subsequences into clusters by comparing their raw values. In other words, the vector of raw values
in a subsequence is used as its local feature. Hence, our method does not rely on problem-specific
local features like the ones in [28,29]. Moreover, in contrast to very rough local features (means
and variances) [22,27,30], the detailed information of a subsequence is maintained by its raw values.
Although one may think that raw values are sensitive to noise, a huge number of subsequences are
available. This allows us to robustly discover statistically distinctive subsequences as codewords.
This is demonstrated in Figure 5 that shows codewords extracted using raw values. Like this, compared
to the existing methods, our codebook-based method is the most basic and general. To our best
knowledge, in the field of sensor-based human activity recognition, there is little work that benchmarks
method performances on the same dataset. One reason may be that researchers prefer to creating
a new system where a developed method is tested on their own dataset. Actually, all the methods
described above are tested on different datasets. In contrast, by keeping the most basic and general
form of the codebook approach, we aim to examine its generality in different recognition tasks. Also,
some generic extensions (soft assignment and early fusion) for the codebook approach are studied.

Finally, one of the most popular feature learning approaches is ‘deep learning’ that extracts a
feature hierarchy with higher-level features formed by the composition of lower-level ones based on a
multilayer neural network [18]. Deep learning has been recently applied to sensor-based human activity
recognition [33,34]. However, it is very difficult and requires extensive trial-and-error to appropriately
choose a network architecture and many hyper-parameters (e.g., learning rate, momentum, weight
decay and sparsity regularisation) [19,35]. In contrast, our method only involves four hyper-parameters
(i.e., the window size and sliding size for subsequence collection, the number of codewords and
the smoothing parameter). Despite this simplicity, the experimental results in Section 4 show that
stable and reasonable performances are accomplished in different recognition tasks. Furthermore,
characteristic subsequences are extracted as codewords by only tuning a few hyper-parameters.
Therefore, our codebook-based method is considered as an easy-to-use analytical tool for various
sensor data.
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3. Codebook-Based Human Activity Recognition

Figure 1 shows an overview of our codebook-based method, where emotion recognition on
sequences of respiration rates is used as an example task. Our method consists of the following three
steps: Firstly, the codebook construction step in Figure 1a collects subsequences from sequences and
groups them into clusters of similar ones. A codebook is constructed as a set of codewords each of
which is the centre of a cluster. Secondly, at the codeword assignment step in Figure 1b, the feature
of a sequence is extracted by assigning each subsequence to the most similar codeword. In other
words, this feature is a histogram representing the frequency of each codeword. Last, the classifier
training/test step in Figure 1c is based on the fact that sequences represented by such features can
be considered as points in a multi-dimensional space. A classifier is trained so as to discriminate
between training sequences annotated with a certain activity class and those annotated with the others.
In Figure 1c, such a classifier is depicted by the dashed line representing the boundary between the
mental activity “anger” and the others. Based on this boundary, the classifier determines the activity
class of a test sequence.

a) Codebook construction b) Codeword assignmentCodewords (Clusters of subsequences)

Histogram-type feature

c) Classifier training/test (Multi-dimensioal space)

Other sequences

Sequences
for "anger"

Figure 1. An overview of our codebook-based human activity recognition method. Here, sequences of
respiration rates are used to illustrate (a) how to construct a codebook; (b) how to extract the feature
of a sequence based on the extracted codebook; and (c) how such features are utilised to train/test a
classifier that distinguishes the mental activity “anger” from the others.

Codebook construction: Let us assume a window of size w. From each sequence, subsequences
are collected by locating the window at every l time points. Then, k-means clustering [36] is performed
to find N clusters consisting of similar subsequences. It should be noted that each subsequence
represents values at w time points, so it can be considered as a w-dimensional vector. Based on this,
the similarity between two subsequences is measured as their Euclidean distance. In addition, to focus
on shapes of subsequences, a translation is applied to each subsequence so that the value at the first
time point is zero. Lastly, since k-means clustering depends on initial cluster centres that are randomly
determined, it is conducted 10 times to select the best result yielding the minimum sum of Euclidean
distances between subsequences and their assigned cluster centres. Based on the best clustering result,
a codebook consisting of N codewords is obtained.

Codeword assignment: For each sequence, a histogram-type feature representing the distribution
of N codewords is extracted. First, subsequences are collected in the same way to codebook
construction. Then, for each subsequence, the most similar codeword is found and its frequency is
incremented. Finally, the probabilistic feature representation is obtained by normalising the frequency
of each codeword so that the sum of frequencies of all the N codewords is one.

The approach described above deterministically assigns a subsequence to a single codeword. This
hard assignment lacks the flexibility to deal with the uncertainty in codeword assignment. For example,
in Figure 1b, the first subsequence is the most similar to the second codeword from the left, but it is also
similar to the rightmost one. Hence, it is not reasonable to only increment the frequency of the former
codeword. To handle the uncertainty, soft assignment is adopted to implement smooth assignment of a
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subsequence to multiple codewords based on kernel density estimation [37]. Let xs and cn be the sth
subsequence (1 ≤ s ≤ S) in a sequence and the nth codeword (1 ≤ n ≤ N), respectively. The smoothed
frequency F(cn) of cn is computed as follows:

F(cn) =
1
S

S

∑
s=1

Kσ(D(xs, cn))

∑N
n′=1 Kσ(D(xs, cn′))

, (1)

where Kσ(D(xs, cn)) =
1√

2πσ2
exp(−D(xs, cn)2

2σ2 ). (2)

Here, D(xs, cn) is the Euclidean distance between xs and cn, and Kσ(D(xs, cn)) is its Gaussian
kernel value where σ is a smoothing parameter. A large σ causes a strong smoothness so that smoothed
frequencies of all codewords become similar. Note that when xs is similar to cn (i.e., D(xs, cn) is small),
Kσ(D(xs, cn)) is large, so xs offers a large contribution to F(cn) (this contribution is normalised by
the sum of kernel values for all codewords, as shown in the denominator of Equation (1)). This way,
soft assignment yields a feature representing the smoothed distribution of codewords based on their
similarities to subseuqneces. Finally, to avoid numerical underflow, Equation (1) is calculated by firstly
computing log(Kσ(D(xs, cn))/ ∑N

n′=1 Kσ(D(xs, cn′))) with the log-sum-exp trick [38].
Classifier training/test: Let us build a binary classifier that distinguishes training sequences

labelled with a target activity from the other training sequences. The former and latter are called
‘positive sequences’ and ‘negative sequences’, respectively. To gain the high discrimination power,
a variety of characteristic subsequences need to be considered using hundreds of codewords (i.e., N is
large). That is, each sequence is represented with a high-dimensional feature. Hence, a Support Vector
Machine (SVM) is used because of its effectiveness for high-dimensional data [39]. The SVM draws a
classification boundary based on the ‘margin maximization’ principle so that the boundary is placed in
the middle between positive and negative sequences. This makes the generalisation error of the SVM
independent of the number of dimensions [39]. Actually, the combination of the codebook approach
and an SVM has been justified in many image/video classification tasks using features with thousands
of dimensions [21,40]. For a test sequence, the trained SVM outputs a scoring value between 0 and 1
based on its distance to the classification boundary [41]. A larger value indicates that the test sequence
is more likely to belong to the target activity class. Finally, the recognition of C activities is conducted
using C SVMs, each of which is built as a binary classifier for one activity. Then, the activity of a test
sequence is determined as the one characterised by the highest SVM value.

The following two points deserve attention: The first is the ‘imbalanced problem’ that in general
negative sequences significantly outnumber positive ones, since a huge variety of sequences can
be negative [42]. This may have an adverse influence on classifier training, because meaningless
hypotheses that classify almost all sequences as negative get high accuracies on training sequences.
But, it has been experimentally proven that SVMs are not affected by the imbalanced problem [43].
In particular, SVMs are appropriately trained even in a situation where the number of negative
sequences is over 200 times the number of positive ones. The second point is the setting of SVM
parameters. Considering the generality, our method uses the Radial Basis Function (RBF) kernel that
has one parameter to control the complexity of a classification boundary. This parameter is set to the
mean of squared Euclidean distances among training sequences, because it stably offers reasonable
performances without conducting computationally expensive cross validation [44,45]. In addition, the
SVM parameter to control the penalty of mis-classification is empirically set to 2. This SVM parameter
setting is used throughout all the experiments.

Fusion of multiple features: Different sensors produce multiple sequences for the same activity
instance. The fusion of features extracted from these sequences is essential for accurate activity
recognition. Let us assume that every activity instance is associated with M features, each of which is
a histogram-type feature based on a separately constructed codebook. In general, there are two fusion
approaches, early fusion and late fusion [46]. The former concatenates M features into a high-dimensional
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feature. For example, if all of M features are N-dimensional, early fusion creates an MN-dimensional
feature. Late fusion firstly builds M classifiers that are individually built on single features. Then,
outputs by these classifiers are fused into a final scoring value.

We adopt early fusion for the following reasons: The first is its simplicity and computational
efficiency, because SVM training/test can be performed on concatenated features with no modification.
In particular, each of M features is normalised so that the sum of frequencies of all codewords is one
(this is true also for soft assignment). Hence, M features are fairly treated in the high-dimensional
feature created by their simple concatenation. On the other hand, late fusion requires not only
training/test of M classifiers, but also training/test of a classifier for fusing outputs by those M
classifiers. The second reason is that early fusion can consider correlations among dimensions in
different features, while late fusion based only on classifier outputs cannot consider them.

4. Experimental Results

This section presents the experimental results of our codebook-based method on three
sensor-based human activity recognition tasks. For each task, a brief description of the dataset is firstly
provided. Some implementation details are then explained to tune our method and its parameters.
Afterwards, the results are discussed from different perspectives like hard/soft assignment, fusion of
multiple sensors, and comparison to existing methods. In particular, for fair performance comparison,
our method is run in the same evaluation setting as existing methods. Finally, the computational cost
of our method is discussed.

It should be noted that, except the translation to make the first value of a subsequence zero
(see the “codebook construction” part in Section 3) and the statement in the “implementation details”
part in each task, no other processing like noise filtering has been done. With respect to this, our
codebook-based method has a robustness to noise because the feature of a sequence is extracted by
abstracting raw subsequences into statistically distinctive codewords. Even if these subsequences are
noisy, as long as they can be assigned to codewords having similar overall value changes, our method
can appropriately extract the feature of the sequence.

4.1. Mental Activity Recognition Using Physiological Data

Dataset description: The dataset introduced in [11] is used to examine the effectiveness of our
method on mental activity (emotion) recognition using physiological sensor data. The dataset includes
four types of physiological sequences, Blood Volume Pressure (BVP), Galvanic Skin Response (GSR),
RESpiration (RES) and ElectroMyoGram (EMG). These sequences are collected for eight emotions
(“no-emotion”, “anger”, “hate”, “grief”, “platonic-love”, “romantic-love”, “joy” and “reverence”) of
one subject for 20 days. For each type, there are 160 sequences (20 days× 8 emotions) that consist of
values at 2001 time points sampled at 20 Hz. Figure 2 presents the BVP, GSR, RES and EMG sequences
when the subject felt “anger” at the first day.

0 500 1000 1500 2000

0

5

0 500 1000 1500 2000
−5

0

5

0 500 1000 1500 2000
−1

0

1

0 500 1000 1500 2000
−5

0

5
GSR EMGBVP RES

Figure 2. Examples of four types of physiological sequences in the dataset [11]. From the left,
the first, second, third and last sequences represent values of Blood Volume Pressure (BVP), Galvanic
Skin Response (GSR), RESpiration (RES) and ElectroMyoGram (EMG), respectively. Note that these
sequences are normalised to have the mean zero and the variance one. In addition, to emphasise value
changes, each type of sequence is plotted using the vertical axis with a different range.

Implementation details: To reduce the bias of values depending on days, for each type, eight
sequences for one day are normalised so as to have the mean zero and the variance one. We have
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not conducted any other processing like noise filtering. A codebook is constructed using subsequences
collected from 160 sequences for each type. The performance is evaluated in the same way as [11].
Specifically, leave-one-out cross validation is conducted where 159 sequences are used for training and the
remaining one is used for test. This is iterated until all the sequences are tested. The emotion recognition
performance is measured as the accuracy (percentage) of how many sequences are correctly classified.

Our method has three main parameters, the window size w and the sliding size l for subsequence
collection, and the number of codewords N. First, l is the parameter to control how densely
subsequences are sampled from a sequence. In image/video classification, it is widely accepted
that denser sampling leads to a better performance [45,47]. Thus, l is set to 8 so that more
than 230 subsequences are sampled from a sequence. We consider that these subsequences
are enough for estimating the distribution of codewords in the sequence. Regarding w and N,
to avoid under-/over-estimating recognition accuracies, we test all the 20 combinations defined by
w ∈ {8, 16, 32, 64, 128} and N ∈ {64, 128, 256, 512} (It is possible to test parameters at a finer granularity
level and find a better parameter combination. But, we aim to validate the generality and usability of
the codebook approach, by showing that it can produce reasonable performances with roughly defined
parameters.). In addition, to capture periodic characteristics of RES sequences, their spectra called
‘RES_sp’ are analysed. Specifically, subsequences obtained by w ∈ {32, 64, 128, 256, 512} and l = 8 are
represented with amplitude spectra via FFT (the transform length is 256 and the hanning window is
used). Then, using N ∈ {64, 128, 256, 512}, these subsequences are clustered to construct a codebook in
terms of amplitude spectra. Therefore, in this experiment, one emotion instance is represented by five
features BVP, GSR, RES, EMG and RES_sp, which are integrated using early fusion.

Results: For each feature, a distribution of recognition accuracies is obtained by collecting the accuracy
for every combination of w and N. An example is shown in Figure 3a that presents the accuracy distribution
acquired using RES and hard assignment. Since grasping an overall trend from this distribution is
difficult, it is summarised into a box plot as depicted in Figure 3b. This indicates the maximum, upper
quartile, median, lower quartile and minimum of the accuracy distribution. In Figure 3b, the leftmost
box plot for each feature represents the accuracy distribution obtained by hard assignment. Except
RES_sp, the remaining five plots indicates the accuracy distributions resulting from soft assignment with
σ = 0.125, 0.25, 0.5, 1, 2. For RES_sp, σ = 1, 2, 4, 8, 16 are used as in Figure 3b. Moreover, the rightmost group
of box plots represents the accuracy distributions produced by early fusion of five features. Note that these
distributions are computed using the 12 combinations of w ∈ {32, 64, 128} and N ∈ {64, 128, 256, 512},
because of the difference between the w range for RES_sp and the one for the other features (i.e., w and
N are the same for all features). As indicated by the transition of median accuracies for each feature in
Figure 3b, soft assignment yields more accurate recognition than hard assignment, although accuracies
depend on σ. In addition, box plots for early fusion are located at considerably higher positions than the
ones for single features. This validates the effectiveness of early fusion.

a) Distribution of accuracies on RES
     (sliding size = 8, hard assignment)

b) Box plots of distributions of accuracies
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Figure 3. (a) An example of an accuracy distribution based on different combinations of w and N;
(b) Performance comparison between hard and soft assignments where accuracy distributions are
summarised into box plots. Box plots marked as BVP, GSR, RES, EMG, RES_sp and Fusion indicate
accuracy distributions obtained for blood volume pressure sequences, galvanic skin response sequences,
respiration sequences, electromyogram sequences, respiration spectra, and their fusion, respectively.
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We check more detailed characteristics of early fusion. Through the experiment in Figure 3,
we found that high recognition accuracies are stably accomplished using w = 128 and N = 512
(our preliminary experiment showed that larger w ∈ {256, 512, 1024} and N = 1024 cause the
performance degradation). In addition, based on Figure 3b, σ leading to the maximum median accuracy
is chosen for each feature. Specifically, σ = 0.5, 0.25, 1, 0.25 and 4 are used for BVP, GSR, RES, EMG and
RES_sp, respectively. Under this setting, all possible combinations of five features are tested. Figure 4
shows the transition of accuracies by these combinations, where each accuracy at the upper part is
obtained using the black-coloured features in the “fusion indicator” at the lower part. For example,
the sixth accuracy from the left (33.1%) is acquired using BVP and GSR features, as depicted by their
black-coloured elements in the fusion indicator. Figure 4 indicates that higher accuracies are generally
attained using more features. In particular, compared to the accuracy 54.4% using all features, only
two feature combinations yield higher accuracies, 55.0% by RES, EMG and RES_sp, and 56.3% by GSR,
RES, EMG and RES_sp. Here, the difference among these three accuracies is very small, and selecting
a specific subset of features lacks the generality. It can be said that a nearly optimal performance is
achieved using early fusion, which simply concatenates all the features into a single high-dimensional
feature. In other words, the discrimination between relevant and irrelevant features is appropriately
done by a classifier (i.e., SVM), so it does not have to be done manually in advance.

BVP
GSR
RES

EMG
RES_sp

(A
cc

ur
ac

y:
%

)

0

10

20

30

40

50

60

54.4%

56.3%55.0%

Figure 4. Transition of accuracies depending on fused features. The accuracies at the upper part
result from fusing features expressed by the “fusion indicator” at the bottom part. The first, second,
third, forth and last rows indicate the usages of features extracted from Blood Volume Pressure (BVP)
sequences, Galvanic Skin Response (GSR) sequences, RESpiration (RES), ElectroMyoGram (EMG)
sequences and RESpiration spectra (RES_sp). If a feature is used, the corresponding element is filled
with black, otherwise it is white.

Apart from early fusion, Figure 4 implies one issue regarding a domain for codebook construction.
In Figure 4, the codebook for RES is constructed by clustering subsequences in the time domain,
while the one for RES_sp is based on the frequency domain. Here, the accuracy (46.9%) only by RES
and the one (45.0%) only by RES_sp are very similar. In addition, the accuracy by the fusion of RES
and RES_sp is 46.9%, which indicates no improvement compared to only using RES. This can be
interpreted that RES and RES_sp features describe similar characteristics, so their fusion does not
yield any improvement. In other word, the codebook constructed in the time domain covers aspects
represented by the codebook in the frequency domain, because frequency aspects emerge as shapes
of subsequences. Thus, it can be thought as enough to only consider the time domain for codebook
construction. This is also checked by the comparison between the accuracy 53.1% by BVP, GSR, RES
and EMG to the accuracy 54.4% by the fusion of all features. The addition of frequency-based RES_sp
only leads to a very small improvement.

Table 1 shows the comparison between the accuracy of our method developed in this study
and that of the method in [11]. For each of BVP, GSR, RES and EMG sequences, the latter extracts
a six-dimensional statistical feature representing the mean, standard deviation, mean of first-order
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derivatives etc. Based on early fusion of such features, each emotion instance is represented by a
24-dimensional feature. Then, feature dimension selection and probabilistic classifier training/test
are conducted. The right column in Table 1 shows the accuracies that are reported in [11] (for fair
comparison, we omit accuracies based on heuristics like physiology-dependent and day-dependent
features, and accuracies on reduced sets of emotions). Since our main objective is to examine the
usefulness of features extracted by the codebook approach, the accuracies in parentheses in Table 1
are obtained in the settings where only features are different. Specifically, our method extracts
2048-dimensional features by early fusion of four N = 512-dimensional features on BVP, GSR, EMG
and RES (see the corresponding entry in Figure 4), while the comparison method uses 24-dimensional
features described above. Except this, both methods use the same SVM training/test. The resulting
accuracies signify that our method significantly outperforms the comparison method. This validates
the effectiveness of features extracted by the codebook approach.

Table 1. Comparison between our method developed in this study and the one in [11].

This Study Picard et al. [11]

Accuracy 54.4% (53.1%) 40.0–46.3% (37.5%)

Finally, let us examine what kind of codewords are extracted by our method. For each feature,
Figure 5 visualises 15 codewords that are extracted by grouping 37,600 subsequences collected by
w = 128 and l = 8 into N = 512 clusters. Rectangular regions display codewords (subsequences)
representing values at 128 time points, except RES_sp for which the first 50 of 128 spectral amplitudes
are displayed for clear visualisation. The number under a rectangular region indicates the ID of the
corresponding codeword. For example, the top-left rectangular region in BVP presents the 461th
codeword. As can be seen from Figure 5, our method could successfully extract codewords as
subsequences exhibiting various characteristic value changes. In addition, one can further investigate
codewords to discover knowledge about their relations to activities. For example, codewords specific
to certain activities can be found by checking the entropy of a codeword over activities. In Figure 5,
the 461th codeword for BVP appears 26 times over the whole set of sequences, but 25 appearances
occur in sequences for “no-emotion” (entropy = 0.235). Moreover, 27 of 31 appearances of the 74th
codeword for RES occur in sequences for “grief” (entropy = 0.659). This way, our codebook-based
method offers an easy-to-use analytical tool where a user only has to tune three parameters w, l and N.
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Figure 5. Examples of codewords extracted by our method. Codewords marked as BVP, GSR, RES,
EMG and RES_sp are extracted from Blood Volume Pressure (BVP) sequences, Galvanic Skin Response
(GSR) sequences, RESpiration (RES), ElectroMyoGram (EMG) sequences and RESpiration spectra
(RES_sp), respectively.
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4.2. Physical Activity Recognition Using Accelerometer Data

Dataset description: The dataset established in [22] is used to examine the effectiveness of our
method on physical activity recognition using accelerometer data. In addition to these data, the dataset
includes motion capture (mocap) data, multi-view video data by stereo vision, RGB-D data by Kinect
cameras, and audio data recorded by microphones. But, considering the data acquisition capability by
wearable/mobile devices, only accelerometer data are used in this experiment. These data are captured
using six three-axis wireless accelerometers attached to left/right wrists, left/right hips and left/right
ankles. Figure 6 displays example sequences obtained from these six accelerometers, each of which
produces a three-dimensional sequence at the sampling rate of about 30 Hz. Sequences are recorded for
the following 11 activities performed by 12 subjects: 1. jumping in place, 2. jumping jacks, 3. bending
(hands up all the way down), 4. punching (boxing), 5. waving (two hands), 6. waving (right hand),
7. clapping hands, 8. throwing a ball, 9. sit down then stand up, 10. sit down, and 11. stand up.
Every subject performs each action five times. Thus, there are a total of 660 activity executions, each of
which is associated with a set of six three-dimensional sequences. Actually, two executions failed to be
recorded, so this experiment is carried out on 658 executions.
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Figure 6. Examples of three-dimensional sequences from six accelerometers for the activity “jumping
in place” in [22].

Implementation details: First of all, since accelerometer data are acquired in a controlled setting,
no normalisation has been done on sequences. In other words, raw accelerometer data are used without
any preprocessing like noise filtering. For each of six accelerometers, our method constructs one
codebook where codewords represent characteristic ‘three-dimensional subsequences’. In other words,
these codewords capture correlations among three dimensions. To this end, a subsequence collected
by a window of size w is represented as a 3w-dimensional vector, where the first w, the subsequent
w and the last w dimensions represent values in the first, second and third dimensions, respectively.
Except this, no modification is needed for codebook construction (the translation to make the first
value zero is separately executed for each dimension). At the codeword assignment step, subsequences
in a three-dimensional sequence are assigned to codewords by computing similarities in terms of their
3w-dimensional vector representations. Six features extracted from three-dimensional sequences for
all accelerometers can be integrated by early fusion.

We follow the evaluation setting in [22] where sequences for the first seven subjects are used
for training, and sequences for the remaining five subjects are used for testing. Codebooks are
constructed only using training sequences. The performance of a method is evaluated with an accuracy
(classification rate) representing the percentage of correctly classified sequences. The parameters w,
l and N are set as follows: First, l is set to 2 by considering that sequences in this dataset relatively
short, because they are collected with a low sampling frequency of 30 Hz. In other words, small l is
needed to collect many subsequences from a short sequence, so that the resulting feature appropriately
represents the distribution of codewords. The 15 combinations defined by w ∈ {16, 32, 64} and
N = {32, 64, 128, 256, 512} are tested, and accuracies obtained by them are summarised into a box plot.
Note that a few sequences are too short and their lengths are less than w, so no subsequence can be
collected. Such sequences are represented by the feature where all dimensions have zero. Finally, early
fusion is used to concatenate six features each of which is computed using the same w, l, N and σ.
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Results: Figure 7 shows box plots of accuracies obtained by single features and their fusion.
For each feature (or fusion), the leftmost box plot is acquired with hard assignment, while the remaining
six plots are obtained using soft assignment with σ = 0.03125(= 2−5), 0.0625, 0.125, 0.25, 0.5, 1,
respectively. First of all, as can be seen from the leftmost box plot for the fusion, an accuracy of
97.8% is achieved even with hard assignment. Because of this very high accuracy, the effectiveness of
soft assignment is not so clear. Nonetheless, by taking a close look at box plots for the fusion, median
accuracies are slightly improved. Actually, while hard assignment achieves the accuracy of 97.8% only
by one parameter combination (w = 64, N = 256), the same accuracy is obtained by four parameter
combinations (w = 32, N = 128), (w = 32, N = 512), (w = 64, N = 256) and (w = 64, N = 512)
at σ = 0.25. This implies that soft assignment appropriately treats the uncertainty in codeword
assignment, so that high accuracies are stably obtained in many parameter settings. Compared to the
fusion, the degree of uncertainty in each single feature is lower. This can be considered as one reason
for the weak effect of soft assignment on single features. In addition, the accuracy obtained by hard
assignment on a single feature may be nearly maximum, so no further improvement can be achieved
only with this feature.
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Figure 7. Accuracies of our method with different σs on physical activity recognition using
accelerometer sensor data [22].

Finally, the accuracy of 97.8% presented above is significantly better than that of 85.4% reported
in [22]. Indeed, the method in [22] uses the codebook approach. The following three issues can be
considered as reasons for the big performance difference: The first is that the method in [22] extracts
codewords only by considering variances in individual dimensions of a subsequence. In consequence,
codewords only represent very brief information of subsequences. The second issue is the small number of
subsequences (30) collected from each sequence. This seems insufficient not only for performing statistically
robust clustering of subsequences to extract codewords, but also for extracting a feature that appropriately
represents the distribution of codewords in a sequence. The last issue is the small number of codewords (20),
so the discrimination power of a resulting 20-dimensional feature is not so high. Regarding these three
issues, our method compares raw values in subsequences so as to extract codewords representing detailed
characteristics. In addition, subsequences are sampled from a sequence much more densely using l = 2,
and a much larger number of codewords (N = 128, 256, 512) are used.

4.3. Eye-Based Activity Recognition Using EOG Data

Dataset description: Our method is tested on eye-based activity recognition using the EOG
dataset created in [10]. The eye acts as an electric potential field where the cornea and retina work as
the positive and negative poles, respectively. EOG signals represent changes in this electric potential
field. Two signal components, horizontal EOG (hEOG) and vertical EOG (vEOG), are used to capture
two-dimensional eye movements. Examples of hEOG and vEOG sequences are shown in Figure 8.
It has recently become possible to easily collect such EOG sequences using a wearable device like
intelligent glasses [9]. In [10], EOG sequences are collected to recognise activities related to eye
movements. At the sampling rate 128 Hz, hEOG and vEOG sequences are recorded for the following
six activities: 1. copying a text, 2. reading a printed paper, 3. taking handwritten notes, 4. watching
a video, 5. browsing the Web, and 6. pause (no specific activity). Each of eight subjects did two
executions of six activities in random orders. That is, the dataset consists of 16 hEOG/vEOG sequences.
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Note that these are not divided into segments corresponding to activities, instead every time point is
labelled with one of six activities (A part of time points are annotated with two ’noise’ labels (distraction
speak and distraction phone). These time points are excluded from the performance evaluation.).
Hence, different from the previous experiments where already-segmented sequences are categorised
into activities, this experiment aims to label each time point in an unsegmented sequence with the
appropriate activity, by considering values around this time point.

hEOG

vEOG

Figure 8. Examples of horizontal and vertical ElectroOculoGram (hEOG and vEOG) sequences in [10].

Implementation details: First, each of 16 hEOG (or vEOG) sequences is normalised to have
the mean zero and the variance one. No other preprocessing like noise filtering has been done.
For one activity execution by a subject, the set of hEOG and vEOG sequences is regarded as a
two-dimensional sequence. Similar to the previous experiment, a codebook is constructed by clustering
‘two-dimensional subsequences’, where the first w and the remaining w dimensions represent values in
the hEOG and vEOG sequences, respectively. Based on this, codebook construction is conducted using
about 186,000 subsequences collected from two-dimensional sequences for all the activity executions.
Early fusion is not needed in this experiment.

Apart from subsequences for codebook construction and codeword assignment, another type of
subsequences are extracted from a two-dimensional sequence by sliding a window of 30 s (3840 time
points) with the sliding size 0.25 s (32 time points). Such a subsequences is represented by a feature
and classified into one of six activities. The activity of a time point is determined by considering
classification results of subsequences around it. For clear discussion, this kind of subsequence to be
classified is called a ‘c-subsequence’. In other words, the c-subsequence is encoded into a feature by
assigning fine subsequences in it to codewords. Note that the comparison method in [10] uses the same
c-subsequence described above. We aim to compare the method in [10] to ours in the same setting.

The performance evaluation is conducted in the same ‘leave-one-person-out scheme’ as [10].
Two-dimensional sequences for all but one subject are used for training, and two-dimensional
sequences for the excluded subject are used for test. Under this setting, let us consider SVM training
for a certain activity. Our method does not use c-subsequences containing time points annotated
with different activities, but only uses c-subsequences in each of which all time points are labelled
with the same activity. As a result, about 10,000 positive c-subsequences and about 50,000 negative
c-subsequences are available for training an SVM. Considering the computational cost, we use all the
positive c-subsequences, and randomly select negative c-subsequences so that the total number of
training c-subsequences is 30,000 (our preliminary experiment showed that using more negative
c-subsequences does not yield performance improvement). Then, the SVM is applied to about
10,000 c-subsequences in test sequences. The method developed in [45] is used to efficiently conduct
large-scale SVM training/test.
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The overall score of each time point is computed using the ‘max-pooling’ approach. This
associates the time point with the SVM score, which is the maximum among the scores obtained
for c-subsequences covering this time point. This way, for each activity, an SVM is trained and applied
to test sequences. Thereby, every time point is associated with overall scores for all the six activities.
Finally, each time point is classified into the activity with the highest overall score. By comparing
such predicted activities to the ground truth, the performance in terms of a subject is measured as the
average of time-point-wise precisions and the one of recalls over six activities.

Regarding the parameter setting, l is firstly set to 16 so as to collect more than 200 subsequences
from a c-subsequence. Then, w is set to 128 by testing w ∈ {64, 128, 256, 512}. Afterwards, N is
configured as 4096 among N ∈ {128, 256, 512, 1024, 2048, 4096}. Finally, σ = 0.25 is used after testing
σ ∈ {0.125, 0.25, 0.5, 1, 2}.

Results: Table 2 shows the performance comparison between our method and the method
in [10]. Each column indicates a subject-specific performance, except the last one that represents
the average of subject-specific performances over eight subjects. The left and right numbers in each
element represent the average of time-point-wise precisions and that of recalls over six activities,
respectively, when sequences for the corresponding subject are tested. The comparison between
the second and third rows in Table 2 verifies the effectiveness of soft assignment. The bottom row
shows the performance of the method in [10]. It is about 10% higher than the performance of our
method using soft assignment. However, the method in [10] heavily relies on heuristics and prior
knowledge. For example, preprocessing for baseline drift removal conducts wavelet transformation
involving non-intuitive parameters like the decomposition level and order of Daubechies wavelet.
Detection of eye movements (saccades, fixations and blinks) requires several carefully-tuned thresholds.
Furthermore, 90 features are hand-crafted based on detected eye movements. Moreover, a parameter
for temporally smoothing classification results is needed. Compared to this, our method has no
problem-specific process and only uses intuitively-tunable parameters. In addition, except the
normalisation for zero-mean and unit-variance, no other preprocessing like drift or noise removal has
been conducted. Therefore, our codebook-based method is an easy-to-use analytical tool, because it
can achieve reasonable performance with no problem-specific knowledge, preprocessing or tuning.

Table 2. Performance comparison between our method and the one in [10].

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

Hard assignment 51.9/35.2 71.9/69.9 73.6/55.7 32.0/40.8 76.4/69.8 70.8/56.3 75.0/73.0

Soft assignment 45.6/49.4 75.8/74.7 79.9/65.5 50.9/43.3 78.0/70.6 75.4/62.4 75.5/74.6

Bulling et al. [10] 76.6/69.4 88.3/77.8 83.0/72.2 46.6/47.9 59.5/46.0 89.2/86.9 93.0/81.9

Subject 8 Mean

Hard assignment 53.1/48.4 63.1/56.1

Soft assignment 53.9/50.1 66.9/61.3

Bulling et al. [10] 72.9/81.9 76.1/70.5

4.4. Discussion about Computational Costs

The experiments below have been done using a single CPU core in Xeon X5690 (3.47 GHz) for
codebook construction, and a single core in i7-3970X (3.50 GHz) for codeword assignment and SVM
training/test. First, targeting 160 RES sequences in the dataset [11], 37,600 subsequences are collected
with w = 128 and l = 8 for codebook construction. Ten repetitions of k-means clustering with
N = 512 clusters take about 13 min and 362 MB memory. To extract a 512-dimensional feature from a
sequence of length 2001, hard and soft assignments demand 0.038 and 0.041 s, respectively. Then, SVM
training with 159 training sequences and its test on one test sequence take 3.81 and 1.00 (9.8× 10−5) s,
respectively (about 130 MB memory is used). These times are obtained using the method, which is
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developed for large-scale SVM training/test and implements batch computation of distances among
many sequences using matrix operation [45]. Since this batch computation involves an overhead to
transfer features of sequences to the Matlab environment, the test time in the parenthesis is obtained
without using the batch computation.

Similarly, from 16 EOG sequences in the dataset [10], 186,386 two-dimensional subsequences are
gathered using w = 128 and l = 16. Ten repetitions of their clustering into N = 4096 clusters take about
17.35 h and 9.2 GB memory. Then, 0.186 s (hard assignment) and 0.255 s (soft assignment) are required
to encode a c-subsequence of length 3840 into a 4096-dimensional feature. Using the method in [45],
SVM training on 30,000 training c-subsequences takes 92.3 s and about 25 GB memory, and its test on
7752 c-subsequences needs 7.1 s and about 735 MB memory (the time for encoding c-subsequences
into 4096-dimensional features is excluded). Like this, batch distance computation in [45] is effective
for large-scale SVM training/test. Also, without using the batch distance computation, SVM test on
one c-subsequence only takes 0.0066 s.

Let us assume that codebook construction and SVM training have been done in advance, and
sensor signals are sent to a PC in real-time. For a situation that is similar to the first experiment
described above, recognition of one activity using one feature is carried out at about 24 Hz (=1/0.041),
since almost all time is spent for feature extraction. In a situation like the second experiment,
recognition of one activity is executed at about 3.9 Hz (=1/0.255). Also, if real-time processing
is not necessary, it is possible to run SVM test with batch distance computation in the night when a
user is sleeping.

Considering the above-mentioned computational efficiency, we have developed an actual activity
recognition system and released its demonstration video on the Web (https://www.youtube.com/
watch?v=sIL08IE_QLE&t=101s). Roughly speaking, the system recognises 11 physical activities
(e.g., lying, sitting, standing, walking, stretching a hand etc.) using seven sensors in a smartphone
(accelerometer, gravity, gyroscope, linear accelerometer and magnetometer) and two sensors in a
smartwatch (accelerometer and gyroscope). The recognition is performed every 2.5 s (the actual
time required for executing one recognition is only about 0.005 s). For the first four sensors with the
sampling rate 200 Hz, features are extracted using w = 128 and l = 8, while w = 64 and l = 4 are
used to extract features from the remaining three sensors with the sampling rate 50 or 67 Hz. Each
feature is obtained as an N = 1024-dimensional vector with hard assignment. Early fusion is used to
merge features for the seven sensors into a 7168-dimensional vector, and the SVM-based recognition is
performed in exactly the same way as described in Section 3. No other processing has been done in the
system. As demonstrated in the video, very accurate activity recognition is achieved by our system
based on the codebook approach.

5. Discussion

The extensive experiments in this paper have justified the generality of the codebook approach as
well as its usability. Specifically, targeting various types of sequences shown in Figures 2, 6 and 8, our
codebook-based method achieved high or reasonable performances using a few intuitively tunable
parameters, and not-using any specific knowledge or heuristics. In addition, even with this ease of use,
our method can be used to extract codewords specific to a certain activity as discussed in the context
of Figure 5. This suggests a practical implication for end-users like clinicians. That is, previously
unknown, interesting knowledge could be discovered if the above kind of specific codewords extracted
from physiological (or accelerometer) sequences would be investigated by a clinician who is familiar
with physiology (or kinematics).

The following three issues will be explored in the future: The first is that a simple histogram-type
feature in this paper cannot precisely encode the distribution of codewords. Thus, we will adopt
features based on more sophisticated distribution models like Gaussian Mixture Model (GMM) [45]
and Fisher encoding [40,48]. Especially, these features are represented as very high-dimensional vectors
with more than 10,000 dimensions, so that accurate activity recognition can be achieved using a simple

https://www.youtube.com/watch?v=sIL08IE_QLE&t=101s
https://www.youtube.com/watch?v=sIL08IE_QLE&t=101s
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and fast classifier like linear SVM. The second issue is the incorporation of hidden variables into a
classifier. This has potentials to solve various problems in sensor-based human activity recognition.
For example, in the preparation of training sequences, it is difficult or labour-intensive to label the
interval of each activity in a sequence. One practical approach is to provide a label that just represents
the occurrence of the activity in a sequence. In this case, using a classifier where hidden variables
represent intervals, it is possible to jointly conduct the identification of suitable intervals and their
classification into activities [49]. Also, sequences significantly vary depending on contexts like user’s
movements and sensor displacements. This can be handled using a classifier that utilises hidden
variables corresponding to contexts, so that a different discrimination function is used depending on
a context [50]. Regarding the last issue, we have justified the effectiveness of our codebook-based
method by comparing it to the methods, which are presented in the papers originally introducing the
used datasets [10,11,22]. We plan to carry out a further comparison of our method to both traditional
methods based on hand-crafted features [1,3] and latest methods based on deep learning [33,34].

Supplementary Materials: A demostration video showing the effectiveness of the developed codebook-based
activity recognition method is available online at https://www.youtube.com/watch?v=sIL08IE_QLE&t=94s
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SVM Support Vector Machine
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hEOG horizontal EOG
vEOG vertical EOG
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27. Huỳnh, T.; Blanke, U.; Schiele, B. Scalable Recognition of Daily Activities with Wearable Sensors. Proc. of
LoCA 2007, 2007, pp. 50–67.

28. Zhang, M.; Sawchuk, A.A. Motion Primitive-based Human Activity Recognition Using a Bag-of-features
Approach. Proc. of IHI 2012, 2012, pp. 631–640.

29. Wang, J.; Liu, P.; She, M.F.H.; Nahavandi, S.; Kouzani, A. Bag-of-words Representation for Biomedical Time
Series Classification. Biomedical Signal Processing and Control 2013, 8, 634–644.
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