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Abstract: In the paper, the author presents acoustic-based fault diagnosis of a commutator
motor (CM). Five states of the commutator motor were considered: healthy commutator motor,
commutator motor with broken rotor coil, commutator motor with shorted stator coils, commutator
motor with broken tooth on sprocket, commutator motor with damaged gear train. A method of
feature extraction MSAF-15-MULTIEXPANDED-8-GROUPS (Method of Selection of Amplitudes
of Frequency Multiexpanded 8 Groups) was described and implemented. Classification methods,
such as nearest neighbour (NN), nearest mean (NM), self-organizing map (SOM), backpropagation
neural network (BNN) were used for acoustic analysis of the commutator motor. The paper
provides results of acoustic analysis of the commutator motor. The results had a good recognition
rate. The results of acoustic analysis were in the range of 88.4–94.6%. The NM classifier and the
MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 94.6%.
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1. Introduction

Fault diagnosis of electrical rotating motors has been extensively investigated since the 20th
century, and can increase the reliability and safety of electrical rotating motors. Condition monitoring
of electrical motors are very important for industry, reducing loss due to unforeseen faults and damage.
Unforeseen faults and damage of electrical rotating motors lead to the loss of production and income.
Unfortunately, stator and rotor are the most important components in electrical rotating motors.
Stator and rotor faults appear very often. Stators and rotors of electrical rotating motors must be
monitored. Condition monitoring guarantees safe operation of machines and prevents unforeseen
breakdowns. Acoustic signals contain a lot of diagnostic information, and can be used for detection
of faults. Therefore, acoustic signals and signal processing methods should be deeply studied for
proper recognition. Scientists developed many diagnostic methods of fault diagnosis. They are used
for various types of machines and faults. Faults of electrical rotating motors (stator faults, rotor faults,
broken rotor bar, ring cracking, bearing failures, rotor shaft failure, air-gap irregularities, broken teeth
on sprocket) can be diagnosed by vibration [1–12] and acoustic signals [13–22]. Electric current
analysis [23–31] and thermal analysis [32–34] are mostly used for limited faults, such as stator faults,
rotor faults, and bearing failures. Acoustic signals are difficult to process, because they are very
noisy (for example, several operating motors generate many acoustic signals). The advantage of
acoustic-based fault diagnosis is non-invasive measurement (for example, we can measure an acoustic
signal two meters from the machine). Vibration-based fault diagnosis is similar, but we have to put
our measuring device close to the machine. Vibration signals are less noisy than acoustic signals.

The paper presents acoustic-based fault diagnosis of the commutator motor (CM). Five states
of the commutator motor (CM) were considered: CM with shorted stator coils (Figures 1a and 2a),
CM with broken rotor coil (Figures 1b and 2b), healthy CM (Figure 1c), CM with broken tooth on
sprocket (Figure 3), CM with damaged gear train (Figure 4).
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Figure 1. (a) Commutator motor (CM) with shorted stator coils; (b) CM with broken rotor coil; (c) 
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Figure 2. (a) CM with shorted stator coils; (b) CM with broken rotor coil. 

 

Figure 3. Broken tooth on sprocket of the electric impact drill. 

Figure 1. (a) Commutator motor (CM) with shorted stator coils; (b) CM with broken rotor coil;
(c) healthy CM.
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Figure 4. Damaged gear train of the electric impact drill.

The described approach consists of methods of signal processing, such as amplitude normalization,
FFT, the MSAF-15-MULTIEXPANDED-8-GROUPS, nearest neighbour (NN), or nearest mean (NM)
or SOM (self-organizing map) or BNN (backpropagation neural network). The paper provided the
results of acoustic analysis of the CM.

2. Acoustic-Based Fault Diagnosis Technique of the Commutator Motor

Acoustic-based fault diagnosis technique was based on pattern recognition. It used a pre-processing
step, feature extraction step, and classification step. A block diagram of acoustic-based fault diagnosis
technique was shown in Figure 5.
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Figure 5. Flowchart of acoustic-based fault diagnosis techniques of the CM using the MSAF-15-
MULTIEXPANDED-8-GROUPS.

Acoustic signals were measured using ZALMAN ZM-MIC1 microphone. The following steps
of signal processing were used: recording of acoustic signal of the CM, split of soundtrack into
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smaller data files, amplitude normalization, FFT, the MSAF-15-MULTIEXPANDED-8-GROUPS,
NN classifier or NM classifier or SOM or BNN. Recording of the acoustic signal of the CM was carried
out using digital voice recorder (format: WAVE, number of channel-1, sampling frequency-44,100
Hz). There was also possibility to record acoustic signals using a capacity microphone with a
computer (Figures 6 and 7). Next, splitting the soundtrack into smaller data files was carried
out. The obtained data files (1 second samples) were processed by amplitude normalization,
windowing (window size of 32,768), FFT, and the MSAF-15-MULTIEXPANDED-8-GROUPS.
The MSAF-15-MULTIEXPANDED-8-GROUPS selected 1–15 frequency components, forming feature
vectors consisting of 1–15 frequency components. Computed feature vectors were used for pattern
creation and testing. Methods such as NN, NM, SOM, and BNN were used for data classification.
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Figure 7. Capacity microphone (ZALMAN ZM-MIC1 microphone) and the commutator motor (electric
impact drill).
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2.1. Method of Selection of Amplitudes of Frequency Multiexpanded 8 Groups

The Method of Selection of Amplitudes of Frequency Multiexpanded 8 Groups
(MSAF-15-MULTIEXPANDED-8-GROUPS) depended on differences of spectra of acoustic
signals. Differences of spectra of acoustic signals depended on generated acoustic signals of the CM.
Generated acoustic signals depended on type of the motor, motor size, rotor speed, and analysed
faults of the motor. The author analysed 5 states of the CM (healthy CM, CM with broken rotor coil,
CM with shorted stator coils, CM with broken tooth on sprocket, and CM with damaged gear train).
Steps of the MSAF-15-MULTIEXPANDED-8-GROUPS were listed below:

1. Compute frequency spectra of acoustic signals of commutator motors (the author used 6
one-second samples for state A, 6 one-second samples for state B, 6 one-second samples for
state C, 6 one-second samples for state D). Computed frequency spectrum of state A (healthy CM)
was described as vector of 16,384 elements hcm = [hcm1, hcm2, ..., hcm16384]. Computed frequency
spectrum of state B (CM with broken rotor coil) was denoted as vector of 16,384 elements cmbrc
= [cmbrc1, cmbrc2, ..., cmbrc16384]. Computed frequency spectrum of state C (CM with shorted
stator coils) was expressed as vector of 16,384 elements cmssc = [cmssc1, cmssc2, ..., cmssc16384].
Computed frequency spectrum of state D (CM with broken tooth on sprocket) was expressed as
vector of 16384 elements cmbts = [cmbts1, cmbts2, ..., cmbts16384]. Computed frequency spectrum
of state E (CM with damaged gear train) was expressed as vector of 16,384 elements cmdgt =
[cmdgt1, cmdgt2, ..., cmdgt16384].

2. Compute differences of computed frequency spectra of states A, B, C, D, E: hcm − cmbrc, hcm −
cmssc, cmbrc − cmssc, cmbts − hcm, cmbts − cmbrc, cmbts − cmssc, cmdgt − hcm, cmdgt −
cmbrc, cmdgt − cmssc, cmdgt − cmbts.

3. Compute absolute values: |hcm − cmbrc|, |hcm − cmssc|, |cmbrc − cmssc|, |cmbts −
hcm|, |cmbts − cmbrc|, |cmbts − cmssc|, |cmdgt − hcm|, |cmdgt − cmbrc|, |cmdgt −
cmssc|, |cmdgt − cmbts|.

4. Select 15 maximum differences of computed frequency spectra of states A, B, C, D, E: max1(|hcm
− cmbrc|), max2(|hcm − cmbrc|), . . . , max15(|hcm − cmbrc|), max1(|hcm − cmssc|),
max2(|hcm − cmssc|), . . . , max15(|hcm − cmssc|), max1(|cmbrc − cmssc|), max2(|cmbrc
− cmssc|), . . . , max15(|cmbrc − cmssc|), max1(|cmbts − hcm|), max2(|cmbts − hcm|), . . . ,
max15(|cmbts− hcm|), max1(|cmbts− cmbrc|), max2(|cmbts− cmbrc|), . . . , max15(|cmbts
− cmbrc|), max1(|cmbts − cmssc|), max2(|cmbts − cmssc|), . . . , max15(|cmbts − cmssc|),
max1(|cmdgt − hcm|), max2(|cmdgt − hcm|), . . . , max15(|cmdgt − hcm|), max1(|cmdgt
− cmbrc|), max2(|cmdgt − cmbrc|), . . . , max15(|cmdgt − cmbrc|), max1(|cmdgt −
cmssc|), max2(|cmdgt − cmssc|), . . . , max15(|cmdgt − cmssc|), max1(|cmdgt − cmbts|),
max2(|cmdgt− cmbts|), . . . , max15(|cmdgt− cmbts|). The result of feature extraction method
MSAF-15 is the vector consisted of 1–15 frequency components. Let us see following example
using the MSAF-15. There are 5 states of the CM: A, B, C, D, E. Five frequency spectra of
acoustic signals of the CM ((FS-A), (FS-B), (FS-C), (FS-D), (FS-E)-frequency spectra of states
A, B, C, D, E) were computed. The MSAF-15 computed frequency components 100, 160, 200,
260, 300 Hz for difference |(FS-A) − (FS-B)|. The MSAF-15 computed frequency components
120, 160, 210, 260, 310 Hz for difference |(FS-A) − (FS-C)|. The MSAF-15 computed frequency
components 120, 170, 220, 230, 310 Hz for difference |(FS-B) − (FS-C)|. The MSAF-15 computed
frequency components 400, 410, 420, 430, 440 Hz for difference |(FS-D) − (FS-A)|. The MSAF-15
computed frequency components 405, 415, 425, 435, 445 Hz for difference |(FS-D) − (FS-B)|.
The MSAF-15 computed frequency components 410, 415, 420, 425, 430 Hz for difference |(FS-D)
− (FS-C)|. The MSAF-15 computed frequency components 500, 505, 510 Hz for difference |(FS-E)
− (FS-A)|. The MSAF-15 computed frequency components 515, 520, 525 Hz for difference |(FS-E)
− (FS-B)|. The MSAF-15 computed frequency components 530, 540, 550 Hz for difference |(FS-E)
− (FS-C)|. The MSAF-15 computed frequency components 560, 570, 580 Hz for difference |(FS-E)
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− (FS-D)|. None of common frequency components were selected for the presented example.
The MSAF-15-MULTIEXPANDED-GROUPS extends the MSAF-15 method. A parameter called
TCoF-TS (Threshold of common frequency components-training sets) was used. This parameter
was defined as: TCoF-TS = (number of required common frequency components of analysed
training sets)/(number of analysed differences).

5. Set the parameter TCoF-TS. This parameter affects the number of common frequency components.
Let us consider following example using the MSAF-15-MULTIEXPANDED. Four training sets of
acoustic training samples are given: (A1, B1, C1, D1, E1), (A2, B2, C2, D2, E2), (A3, B3, C3, D3, E3),
(A4, B4, C4, D4, E4), where A1, A2, A3, A4—denoted 4 acoustic training samples of state A; B1, B2,
B3, B4—denoted 4 acoustic training samples of state B; C1, C2, C3, C4—denoted 4 acoustic training
samples of state C; D1, D2, D3, D4—denoted 4 acoustic training samples of state D; E1, E2, E3,
E4—denoted 4 acoustic training samples of state E. The MSAF-15-MULTIEXPANDED computed
frequency components (FS-A1, FS-B1, FS-C1, FS-D1, FS-E1), (FS-A2, FS-B2, FS-C2, FS-D2, FS-E2),
(FS-A3, FS-B3, FS-C3, FS-D3, FS-E3), (FS-A4, FS-B4, FS-C4, FS-D4, FS-E4), where FS-A1, FS-A2,
FS-A3, FS-A4—denoted 4 frequency spectra of state A, FS-B1, FS-B2, FS-B3, FS-B4—denoted 4
frequency spectra of state B, FS-C1, FS-C2, FS-C3, FS-C4—denoted 4 frequency spectra of state
C, FS-D1, FS-D2, FS-D3, FS-D4—denoted 4 frequency spectra of state D, FS-E1, FS-E2, FS-E3,
FS-E4—denoted 4 frequency spectra of state E. Next, 40 differences between frequency spectra
are computed: |(FS-A1) − (FS-B1)|, |(FS-A1) − (FS-C1)|, |(FS-B1) − (FS-C1)|, |(FS-D1) −
(FS-A1)|, |(FS-D1) − (FS-B1)|, |(FS-D1) − (FS-C1)|, |(FS-E1) − (FS-A1)|, |(FS-E1) − (FS-B1)|,
|(FS-E1) − (FS-C1)|, |(FS-E1) − (FS-D1)|, ... , |(FS-A4) − (FS-B4)|, |(FS-A4) − (FS-C4)|,
|(FS-B4) − (FS-C4)|, |(FS-D4) − (FS-A4)|, |(FS-D4) − (FS-B4)|, |(FS-D4) − (FS-C4)|, |(FS-E4)
− (FS-A4)|, |(FS-E4) − (FS-B4)|, |(FS-E4) − (FS-C4)|, |(FS-E4) − (FS-D4)|. Let us consider
following example. If we set TCoF-TS = 4/40 = 0.1, then the MSAF-15-MULTIEXPANDED
selects frequency components found 4 times for 40 differences. If we set TCoF-TS = 6/40 =
0.15, then the MSAF-15-MULTIEXPANDED selects frequency components found 6 times for
40 differences. The MSAF-15-MULTIEXPANDED found frequency component 160 Hz-6 times,
frequency component 210 Hz-4 times. The MSAF-15-MULTIEXPANDED selects 160, 210 Hz (if
TCoF-TS = 4/40 = 0.1). The MSAF-15-MULTIEXPANDED selects 160 Hz (if TCoF-TS = 6/40 =
0.15). The MSAF-15-MULTIEXPANDED selects none of frequency components (if TCoF-TS =
8/40 = 0.2). The parameter TCoF-TS depends on analysed signal.

6. Select groups of common frequency components. The MSAF-15-MULTIEXPANDED-8-GROUPS
used 8 groups. Each group of common frequency components consists of the best frequency
components for recognition. Let us analyse following example. There are 4 states of the CM:
A, B, C, D (for 5 states it will be similarly). The MSAF-15-MULTIEXPANDED-8-GROUPS
found: frequency component 210 Hz (4 times), frequency component 160 Hz (6 times), frequency
component 400 Hz (7 times). The frequency component 210 Hz is good for recognition of |(FS-A)
− (FS-B)|, |(FS-A) − (FS-C)|, |(FS-B) − (FS-C)|. The frequency component 160 Hz is good
for recognition of |(FS-D) − (FS-A)|, |(FS-D) − (FS-B)|, |(FS-D) − (FS-C)|. The frequency
component 400 Hz is good for recognition of |(FS-A) − (FS-B)|. Essential frequency components
are 210 Hz and 160 Hz. The frequency component 400 Hz is not good for analysis. The essential
frequency components 160 Hz and 210 Hz form 1 group of essential frequency components.

7. Use 1–8 computed groups.
8. Form a feature vector.

The author presented the MSAF-15-MULTIEXPANDED-8-GROUPS in Figure 8.
The author used 30 one-second training samples for proper pattern creation process. The author

used 6 training sets (30 one-second samples). Computed absolute values of differences: |hcm
− cmbrc|, |hcm − cmssc|, |cmbrc − cmssc|, |cmbts − hcm|, |cmbts − cmbrc|, |cmbts −
cmssc|, |cmdgt − hcm|, |cmdgt − cmbrc|, |cmdgt − cmssc|, |cmdgt − cmbts| were depicted in
Figures 9–18 (rotor speed-3000 rpm, training set 6).



Electronics 2018, 7, 299 7 of 21

The MSAF-15-MULTIEXPANDED-8-GROUPS found 28 essential frequency components: 48, 50,
79, 81, 97, 101, 128, 157, 159, 1469, 1471, 1672, 1926, 1927, 1934, 1935, 1939, 1942, 1953, 1957, 1958, 1961,
1978, 2038, 2039, 2042, 2059, 2547 Hz for TCoF-TS = 0.125 (3/18 = 0.125). Computed essential frequency
components were presented in Tables 1–5 (Figures 19–23).Electronics 2018, 7, x FOR PEER REVIEW  7 of 21 
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Table 1. Computed essential frequency components for vector hcm (healthy CM).

Value of Feature

0.006776 0.011506 0.003938 0.006896
0.003093 0.007896 0.005020 0.006722
0.009599 0.006721 0.034127 0.041374
0.006398 0.001086 0.006096 0.002857
0.004421 0.002796 0.005071 0.005120
0.006776 0.011506 0.003938 0.006896
0.003093 0.007896 0.005020 0.006722

Table 2. Computed essential frequency components for vector cmbrc (CM with broken rotor coil).

Value of Feature

0.005696 0.009528 0.026896 0.004757
0.005556 0.010468 0.026023 0.012042
0.003759 0.009350 0.006706 0.007029
0.005175 0.006020 0.013454 0.003632
0.008541 0.000666 0.005728 0.005724
0.005696 0.009528 0.026896 0.004757
0.005556 0.010468 0.026023 0.012042

Table 3. Computed essential frequency components for vector cmssc (CM with shorted stator coils).

Value of Feature

0.002803 0.002988 0.008468 0.004678
0.004008 0.002770 0.001949 0.006048
0.021171 0.004456 0.005253 0.002312
0.005484 0.005549 0.003781 0.004390
0.005037 0.000740 0.008683 0.004213
0.002803 0.002988 0.008468 0.004678
0.004008 0.002770 0.001949 0.006048

Table 4. Computed essential frequency components for vector cmbts (CM with broken tooth on
sprocket).

Value of Feature

0.007080 0.007388 0.006834 0.001410
0.006244 0.007172 0.003946 0.005266
0.002335 0.002029 0.004501 0.007593
0.020768 0.016296 0.016799 0.018125
0.003584 0.011559 0.007451 0.003169
0.007080 0.007388 0.006834 0.001410
0.006244 0.007172 0.003946 0.005266

Table 5. Computed essential frequency components for vector cmdgt (CM with damaged gear train).

Value of Feature

0.002066 0.002245 0.001124 0.000820
0.000845 0.000655 0.002080 0.001540
0.002178 0.001563 0.000810 0.001933
0.002259 0.001234 0.002635 0.003116
0.002729 0.006634 0.000739 0.004000
0.051576 0.012309 0.007059 0.015156
0.019388 0.008816 0.028623 0.016604
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Found essential frequency components were classified by the NN classifier [35,36], NM classifier,
SOM [37], BNN [38–44]. There was possibility to use another classifier such as naive Bayes,
support vector machine [45–47], linear discriminant analysis [48], fuzzy classifiers [49,50], and fuzzy
c-means clustering [51]. The results of recognition depended on number of found essential frequency
components and selected classification method.

2.2. Nearest Neighbour Classifier

A classification step can be achieved by the nearest neighbour (NN) classifier. This method
of classification is well-known. It is used in economics, telecommunication, pattern recognition,
fault diagnosis, and image recognition. The NN classifier can classify data (linearly separable and
non-linearly separable) with high recognition rate. The NN is simple to implement, and it requires
a few training feature vectors for proper classification. It uses labels for classification of test feature
vectors. The classifier uses metric distance to compare two vectors (training and test feature vectors).
There are many distance metrics to compare training and test vector. Distance metrics such as Euclidean,
Manhattan, and Minkowski had similar results. In this paper, the classification step was carried out
using Manhattan distance (1):

d(x−cmbrc) =
1

∑
i=1
|(xi − cmbrci)| (1)
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where d(x-cmbrc)—computed distance, unknown test feature vector x = [x36, x37, x59, x60, x72, x75,
x95, x117, x118, x1092, x1094, x1243, x1432, x1433, x1438, x1439, x1442, x1444, x1452, x1455, x1456, x1458, x1471, x1515,
x1516, x1518, x1531, x1894] and training feature vector cmbrc = [cmbrc36, cmbrc37, cmbrc59, cmbrc60, cmbrc72,
cmbrc75, cmbrc95, cmbrc117, cmbrc118, cmbrc1092, cmbrc1094, cmbrc1243, cmbrc1432, cmbrc1433, cmbrc1438,
cmbrc1439, cmbrc1442, cmbrc1444, cmbrc1452, cmbrc1455, cmbrc1456, cmbrc1458, cmbrc1471, cmbrc1515, cmbrc1516,
cmbrc1518, cmbrc1531, cmbrc1894]. The result of classification was depended on the nearest distance d().
Description of the NN classifier is available in following articles [35,36].

2.3. Nearest Mean Classifier

Similar to the NN classifier, the nearest mean (NM) classifier is also based on computed distance.
It uses average feature vector instead of training feature vectors. Average feature vector afv is
defined as (2)

afv =
1
p

p

∑
i=1

yi (2)

where afv—average feature vector, p—number of essential frequency components, and yi—value of
essential frequency component with i index.

The nearest distance between test and average feature vector is computed. Next, the label
occurring with specific average feature vector is the label for the test feature vector. The NM classifier
can classify data with a high recognition rate. For the classification step, the author used Manhattan
distance (1).

2.4. Self-Organizing Map

The self-organizing map was used for machine learning. The self-organizing map (SOM) is
a clustering method. It does not use labels for classification of test feature vectors. The SOM is
an unsupervised neural network. It is used for clustering data, meteorology and oceanography,
project prioritization, selection, and failure analysis. For example, the SOM is used for meteorological
applications such as climate change analysis, precipitation, snow, wind, air temperature, etc. The SOM
analysis has been applied for computed feature vectors of acoustic signals. Similarity between feature
vectors depends on the location of features on the two-dimensional map (nodes). The SOM uses
training step and testing step. In the training step, weights of nodes are changed (at the beginning,
values of weights are random). The author used the following self-organizing map (Figure 24). It was
implemented in MATLAB. Description of the SOM is available in the following article [37].
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2.5. Backpropagation Neural Network

Backpropagation neural network (BNN) was also used for machine learning. It is a supervised
learning method. It is also a well-known method of data classification. It has been used for many
applications, such as speaker recognition, image recognition, signal recognition, control, prediction,
computer games, robots, etc. The applied backpropagation algorithm has been described in the
literature [38–44]. The author implemented a backpropagation neural network (Figure 25).
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Layers of BNN had following number of neurons: input layer—28, hidden layer—100,
output layer—5. The values of output neurons were 10000—healthy CM, 01000—CM with shorted stator
coils, 00100—CM with broken rotor coil, 00010—CM with broken tooth on sprocket, and 00001—CM
with damaged gear train. More information about BNN can be found in following papers [38–44].

3. Results of Acoustic-Based Fault Diagnosis Technique of the Commutator Motor

Measurements of acoustic signals of commutator motors were conducted in the workshop.
The author measured and analysed 5 states of the CM: healthy CM, CM with shorted stator
coils (Figure 26a), CM with broken rotor coil (Figure 26b), CM with broken tooth on sprocket
(Figure 27), and CM with damaged gear train (Figure 28). Analysed commutator motors had the
following parameters: WoM = 1.84 kg, PoM = 500 W, RSoM = 3000 rpm, VoM = 230 V, foM = 50 Hz,
where WoM—weight of the motor, PoM—rated power of the motor, RSoM—rotor speed, VoM—supply
voltage of the motor, and foM—current frequency of the motor.
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The author used 30 one-second training samples for proper pattern creation process. The author
used 500 one-second test samples for proper testing process. Training and test samples of the CM were
processed and analysed. The author used technique presented in Section 2 for proper fault diagnosis.
Acoustic data of the CM were analysed using efficiency of recognition (ERCM). It was defined as (3):

ERCM = (NTSCMTP)/(NATSCM) · 100% (3)

where: ERCM—efficiency of recognition of the CM for defined class, NTSCMTP—number of test samples
of the CM for defined class tested properly, NATSCM—number of all test samples of the CM for
defined class.

Total efficiency of recognition of the CM (TERCM) was introduced to evaluate efficiency of
recognition of all states of the CM. It was expressed as (4):

TERCM = (ERCM1 + ERCM2 + ERCM3 + ERCM4 + ERCM5)/5 (4)

where TERCM—total efficiency of recognition of the CM, ERCM1—efficiency of recognition of the
healthy CM, ERCM2—efficiency of recognition of the CM with broken rotor coil, ERCM3—efficiency
of recognition of the CM with shorted stator coils, ERCM4—efficiency of recognition of the CM with
broken tooth on sprocket, and ERCM5—efficiency of recognition of the CM with damaged gear train.

Acoustic signal analysis of the CM is presented in Tables 6–9. The acoustic signal analysis of
the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and the NN are presented in Table 6
(28 analysed frequency components).
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Table 6. Acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the NN.

Type of Acoustic Signal ERCM [%]

Healthy CM 90
CM with broken rotor coil 87

CM with shorted stator coils 94
CM with broken tooth on sprocket 100

CM with damaged gear train 100
TERCM [%]

94.2

Table 7. Acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the NM.

Type of Acoustic Signal ERCM [%]

Healthy CM 89
CM with broken rotor coil 91

CM with shorted stator coils 93
CM with broken tooth on sprocket 100

CM with damaged gear train 100
TERCM [%]

94.6

Table 8. Acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the SOM.

Type of Acoustic Signal ERCM [%]

Healthy CM 87
CM with broken rotor coil 86

CM with shorted stator coils 81
CM with broken tooth on sprocket 90

CM with damaged gear train 98
TERCM [%]

88.4

Table 9. Acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the BNN.

Type of Acoustic Signal ERCM [%]

Healthy CM 85
CM with broken rotor coil 88

CM with shorted stator coils 82
CM with broken tooth on sprocket 91

CM with damaged gear train 99
TERCM [%]

89

The acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the NM are shown in Table 7 (28 analysed frequency components).

The acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the SOM were presented in Table 8 (28 analysed frequency components).

The acoustic signal analysis of the CM using the MSAF-15-MULTIEXPANDED-8-GROUPS and
the BNN were presented in Table 9 (28 analysed frequency components).

The method of feature extraction the MSAF-15-MULTIEXPANDED-8-GROUPS and
selected classifiers provided high recognition rates (TERCM in the range of 88.4–94.6%).



Electronics 2018, 7, 299 18 of 21

The MSAF-15-MULTIEXPANDED-8-GROUPS used 28 frequency components of the CM. The NN
classifier and the MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 94.2%. The NM
classifier and the MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 94.6%. The SOM
(self-organizing map) and the MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 88.4%.
The BNN and the MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 89%.

Self-organizing map and backpropagation neural network are trained. The training is different
each time. The NN classifier and the NM classifier had the same results each time. Moreover,
feature vectors had small differences between them. The NN classifier and the NM classifier were
better for the recognition of close feature vectors.

4. Conclusions

The article presented acoustic-based fault diagnosis technique of the CM. Five states of the CM
were considered: healthy CM, CM with broken rotor coil, CM with shorted stator coils, CM with
broken tooth on sprocket, and CM with damaged gear train. The method of feature extraction
MSAF-15-MULTIEXPANDED-8-GROUPS was described and implemented. Classifiers NN, NM, SOM,
and BNN were used for acoustic analysis of the CM.

Analysed values of TERCM were in the range of 88.4–94.6%. The NM classifier and the
MSAF-15-MULTIEXPANDED-8-GROUPS provided TERCM = 94.6%. The implementation of the
proposed fault diagnosis technique had low cost. Laptop and microphones are available for $300.
Other types of rotating electric motors (such as DC motors, synchronous motors, induction motors)
can also be diagnosed using acoustic analysis.

The proposed acoustic-based fault diagnosis technique has its limitations. If the motor runs
too quietly, it is difficult to use the mentioned technique and microphone. However, the presented
acoustic-based fault diagnosis technique is appropriate for acoustic signals of rotating motor and other
types of acoustic signals (for example acoustic signal of an engine). The proposed acoustic-based fault
diagnosis technique can be extended to detect more complicated faults. Future research will focus
on the analysis of new feature extraction methods, other types of faults, and other diagnostic signals,
such as vibrations.
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