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Abstract: This paper presents a multidisciplinary experiment where a population of neurons,
dissociated from rat hippocampi, has been cultivated over a CMOS-based micro-electrode array
(MEA) and its electrical activity has been detected and mapped by an advanced spike-sorting
algorithm implemented on FPGA. MEAs are characterized by low signal-to-noise ratios caused by
both the contactless sensing of weak extracellular voltages and the high noise power coming from
cells and analog electronics signal processing. This low SNR forces to utilize advanced noise rejection
algorithms to separate relevant neural activity from noise, which are usually implemented via
software/off-line. However, off-line detection of neural spikes cannot be obviously used for real-time
electrical stimulation. In this scenario, this paper presents a proper FPGA-based system capable to
detect in real-time neural spikes from background noise. The output signals of the proposed system
provide real-time spatial and temporal information about the culture electrical activity and the noise
power distribution with a minimum latency of 165 ns. The output bit-stream can be further utilized
to detect synchronous activity within the neural network.

Keywords: biological neural networks; biosensors; neural engineering; digital circuits; field
programmable gate arrays; principal component analysis

1. Introduction

The communication between neurons is carried out through action potentials (AP), transient
changes of a trans-membrane voltage of about 100 mVPP and few kHz bandwidth. High spatial
resolution detection of AP signals (thousands of recording sites/pixels) opens an unthinkable scenario
in neuroscience since it allows to observe simultaneously large populations of neurons and their
communications [1–4]. For several years, the most common technique to observe neurons utilized
needle-shaped probes that deeply penetrate the cells, reducing the average-life of the cells to few days
due to the irreversible damage caused to the pierced neural membrane but can extract AP signals
at high signal-to-noise ratio (SNR [5–7]). Recently, state-of-the-art approaches have been widely
exploiting minimally-invasive sensing techniques, which are based on CMOS microelectrode arrays
(MEAs [8–10]). This avoids penetration of the neural membrane and therefore greatly limits tissue
damage, allowing months-long observations of neural cultures and opening the road to long-term
implants [1]. However, SNR is heavily reduced due to the lower signal power of extracellular signals.

Electronics 2018, 7, 392; doi:10.3390/electronics7120392 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0905-151X
https://orcid.org/0000-0003-0389-8023
https://orcid.org/0000-0003-2609-4722
https://orcid.org/0000-0002-8844-5754
https://orcid.org/0000-0003-1061-1262
http://www.mdpi.com/2079-9292/7/12/392?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7120392
http://www.mdpi.com/journal/electronics


Electronics 2018, 7, 392 2 of 16

For this reason, recorded signals are typically improved by advanced post-processing spike sorting
algorithms that separate relevant neural spikes (deterministic events) from background noise (random
fluctuations), even in presence of very low SNR [9,11]. Thus, they deeply analyze the behavior of
neurons populations [11], whereas a complete digital processing hardware implementation is needed
to apply event-driven electrical stimulation techniques (e.g., deep brain stimulation) [12].

Therefore, closed-loop neurons stimulation intrinsically needs advanced electronics systems
composed by:

• analog stages to acquire the biological signals and perform the conversion into digital domain;
• advanced digital spike-sorting algorithms to separate in real-time AP signals from

background noise;
• electrical stimulation stages that interact with neurons in response to their activity

This work analyzes the digital spike-sorting hardware design. More specifically, a complete
action potential detector has been implemented on a Xilinx Spartan 6 FPGA (XC6SLX45-2C, -2 speed
grade) [13] that includes a noise-rejection algorithm based on principal component analysis (PCA [9]).
The hereby proposed neural spike digital detector (NSDD) identifies single AP signals with amplitudes
around 200–600 µV that are recorded with a 16 × 192 pixel-submatrix from a 256 × 384 pixel CMOS
MEA with an average noise power per pixel of about 100 µVRMS. It maps in real-time the neural
culture electrical activity in terms of total AP number of events (over a time width of 15 s acquisition),
AP frequency (enabling the detection of synchronous pattern), and noise power spatial distribution.

Hardware implementation of spike sorting algorithms is very important for implanted devices
because of their intrinsic limited power budget. Performing neural activity recognition in situ greatly
limits the bandwidth required to transmit data from the MEA and therefore the associated power
consumption, at the cost of some additional digital circuitry which however consumes very little
power in scaled technologies.

This paper is organized as follows. Section 2 introduces the experimental setup composed by
the neuronal cells culture, the electronics read-out for neural potential sensing/digitalization and the
FPGA NSDD. Section 3 illustrates how the digital spike sorting algorithm has been implemented on
FPGA. Finally, Section 4 provides experimental results in terms of neural network electrical activity
mapping, noise spatial distribution and spatial detection of synchronous neural activity. At the end of
the paper, conclusions will be drawn.

2. Neural Spike Digital Detector (NSDD)

Figure 1 illustrates the top-level block-scheme of the experimental setup described in this work.
The neuronal cells dissociated from rat hippocampi are seeded on the CMOS MEA composed by
two main stages: the sensor matrix (based on electrolyte-oxide–metal-oxide-semiconductor (EOMOS)
transistors) that capacitively senses the neuronal cells electrical activity and the electronics signal
processing stages (analog front-end in Figure 1).
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The CMOS MEA is organized in a matrix of 256 × 384 pixels (for an overall 98,304 pixels
spatial resolution). The pixels are organized in a hexagonal grid with 6.5 × 5.8 µm pitch. 16 × 192
pixels are time-division-multiplexed to one of 32 analog output channels. The 32 output signals are
off-chip digitized.

A communication interface (TCP/IP COM) forwards the digitized signals from one selected
output to the NSDD FPGA at 14.1 MS/s. The single pixel signal time evolution is shown in Figure 2
(0.1 s time window and at 4.6 kSample/s).
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2.1. Neuronal Cell Culture

A top-view microscope image of the neuronal cells culture is shown in Figure 3. After dissociation
from the tissue, the hippocampal neurons in culture are able to reconstruct a vital network with specific
connections, thus being useful in validating the performance of devices for electrophysiological
signal detection.
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Figure 3. Example of hippocampal neurons culture on the chip.

Wistar rats (Charles River) are maintained in the Animal Research Facility of the Department
of Biomedical Sciences—University of Padova. All the procedures involving animals are realized
according to Italian and local regulation concerning animal welfare (OPBA Unipd and dL 26/2014).
All the reagents and media are from Gibco (Thermo Fisher Scientific - Life Technologies Italia, Monza,
Italy). Neuronal cells are dissociated from the hippocampi of E18–E19 embryos, as previously
described [10]. Briefly, the dissected hippocampi are digested in 0.125% Trypsin for 20 min at
37 ◦C and then dissociated to a single cell suspension in complete DMEM-GlutaMAX-1 (medium
supplemented with 10% FBS, 1 u/mL penicillin and 1 µg/mL streptomycin). After centrifugation
at 250 g for 10 min, the pellet is gently re-suspended in complete DMEM and pre-plated onto a cell
culture dish for 2 h in an incubator at 37 ◦C and 5% (v/v) CO2 to reduce the percentage of glial
cells in the final culture. The collected supernatant is then centrifuged at 250 g for 10 min and the
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pellet re-suspended in complete DMEM. The surface of the sensors is coated with a proteic layer
of poly-L-lysine, that helps neuronal adhesion and differentiation. About 150,000 neurons/cm2 are
seeded on the chip in L15 medium added with 5% FBS and 1% penicillin/streptomycin for 2 h and then
maintained in the incubator in complete NeuroBasal medium (added with 2% B27 supplement and
1% GlutaMAX-1). Pyramidal (excitatory) neurons are usually more represented in culture than other
type of neurons. The mature neuronal network presents an extensive branching with large amount of
synaptic connections [9]. The experiments are realized on mature cultures at DIV (days in vitro) 20–30.

2.2. Neural Interface Noise

The CMOS MEAs sense the extracellular voltage induced by neurons transmembrane
ionic currents. This saves biological tissues from disruptive penetration, does not prevent
biological regeneration and finally enable long-time cell observation. Unfortunately, extracellular
signal amplitudes are two orders of magnitude smaller compared to more invasive techniques
(i.e., intracellular needles probes) and therefore SNR is lower. Moreover, adhesion of cells to the
surface increases the noise power [6]. For this reason, accurate sensing of neural cells electrical activity
needs an accurate spatial evaluation of the noise power.

The noise power of the signal has been obtained by analyzing the experimental data coming from
a 2.5 s time window of the culture activity, obtaining the noise power spatial map vs. pixels in Figure 4
(not in scale). It is possible to identify two principal areas, depending on the noise power level: areas
without cells exhibit about 80 µVRMS noise power (blue regions in Figure 4), while the pixels beneath
the cells have higher noise power (120 µVRMS, yellow/red in Figure 4).
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The difficulty to separate the AP from noise is also evident in Figure 2 that shows the single pixel
time evolution.

Due to the high noise power, using a simple 5·σ-threshold-crossing detector is not a viable
option [11], because it would lead to discarding most of the action potentials. In particular,
with reference to Figure 2, a 5·σ-detector at 120 µVRMS noise would lead to a 600 µV threshold
voltage and hence jump over several relevant action potentials events.

2.3. Principal Component Analysis

MEAs are characterized by high spatial and temporal resolution that can be exploited by
correlation algorithms such as principal component analysis (PCA) [11]. The pixel density and
the sample frequency are sufficiently high that a single AP deterministic event can be detected by nine
adjacent pixels for three consecutive time samples (3 × 3 pixel square, see 9PIX-Sub-Set in Figure 5).

Thus, a single AP can be observed in a total of 27 samples in close spatial/temporal proximity.
The PCA algorithm is used to calculate the probability to detect AP events in front of noise (statistical
thermal fluctuations).
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The AP detection implies to comply with the condition [9,11]

∑
pixj=1→9

∑{n,n−1,n−2} PIXj(n)2

σNOISE,j
2 ≥ AP_Threshold ∼= 84.6 (1)

where PIXj indicates the j-th pixel (sampled at 3 different instants: n, n − 1 and n − 2).
The signal is encoded in a digital word of 14 bits. σNOISE,j

2 is the calculated noise power over the
3 × 3 matrix. Therefore, to separate the eventual AP spike from noise, the algorithm takes nine-pixel
sub-set (9PIX-Sub-set as indicated in Figure 5).

Electronics 2018, 7, x FOR PEER REVIEW  5 of 15 

 

The signal is encoded in a digital word of 14 bits. σNOISE,j2 is the calculated noise power over the 
3 × 3 matrix. Therefore, to separate the eventual AP spike from noise, the algorithm takes nine-pixel 
sub-set (9PIX-Sub-set as indicated in Figure 5). 

 
Figure 5. Input buffer data management functional scheme. 

The square sum of three consecutive time-samples of nine adjacent pixels is divided by the noise 

(i.e., 
∑ ௉ூ௑௝(௡)మሼ𝑛,𝑛−1,𝑛−2ሽఙಿೀ಺ೄಶ,ೕమ ) and is then compared with the AP detection threshold (AP_Threshold). The 

AP_Threshold value is calculated imposing that the whole MEA produces one false positive event per 
second due to noise random fluctuation. Using a MEA subset of 16 × 192 pixels at 4.6 KS/s sampling 
rate per pixel, the calculated AP_Threshold is 84.6. 

Such a technique can improve the global SNR for a sub-set of nine pixels, at the cost of a small 
spatial resolution reduction (the final spatial map will have 14 × 190 equivalent extracted pixels, since 
two generic nine-pixel subsets share two columns and are thus partially overlapped). Figure 6 shows 
the PCA output for a specific sub-set of nine pixels, compared with the threshold value. After the 
PCA processing the SNR increases. It goes from 1 dB (without PCA) up to 7 dB (with PCA). 

 
Figure 6. PCA output (left side of Equation (1)) compared with threshold. 

Figure 5. Input buffer data management functional scheme.

The square sum of three consecutive time-samples of nine adjacent pixels is divided by the

noise (i.e., ∑{n,n−1,n−2} PIXj(n)2

σNOISE,j
2 ) and is then compared with the AP detection threshold (AP_Threshold).

The AP_Threshold value is calculated imposing that the whole MEA produces one false positive event
per second due to noise random fluctuation. Using a MEA subset of 16 × 192 pixels at 4.6 KS/s
sampling rate per pixel, the calculated AP_Threshold is 84.6.

Such a technique can improve the global SNR for a sub-set of nine pixels, at the cost of a small
spatial resolution reduction (the final spatial map will have 14 × 190 equivalent extracted pixels,
since two generic nine-pixel subsets share two columns and are thus partially overlapped). Figure 6
shows the PCA output for a specific sub-set of nine pixels, compared with the threshold value. After the
PCA processing the SNR increases. It goes from 1 dB (without PCA) up to 7 dB (with PCA).

Thus, it is now more reliable to apply a threshold crossing approach (threshold value is placed at
84.6) and to detect two AP events at 1.9 s and 2.2 s. On average, when no AP occurs, the signal RMS

power for each pixel will be equal to σNOISE,j. Therefore, on average PIXj(t)2

σNOISE,j
2 will be equal to 1, and the

combined 27-samples value ∑
pixj=1→9

∑t=0,1,2 PIXj(t)2

σNOISE,j
2 will be 27. The AP detection condition implies that
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an AP is detected when the PCA output signal (Figure 6) is higher than 84.6. This leads to a minimum
SNR value of at least 7 dB (2).

SNRdB = 20log10

(
84.6
27

)
− 3dB ∼= 7dB (2)
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3. FPGA Neural Spike Digital Detector

The PCA algorithm has been implemented on FPGA by a dedicated digital design that is
interfaced with the neurons culture in order to detect and separate APs spikes from noise. The system
implementing the PCA is embedded in the NSDD system in Figure 1 and it also manages the MEA
output data rate performing a real time detection of the relevant APs. Thus, it operates by three
main stages:

• the input-buffer-data-management (IBDM) synchronously receives the data coming from the
biosensor via the TCP/IP communication interface;

• the action potential detector (APD), that is the digital circuit implementing the PCA algorithm;
• a specific set of MATLAB functions that provide graphical representation of the on-going

neural activity.

The main requirement for a real time processing of the signal coming from the MEA is that the
NSDD data throughput must be equal or higher than the MEA sample rate.

This translates in the Equation (3) condition that correlates the MEA sample rate (MEAOUT,RATE),
the FPGA master clock frequency (fCLK) and the total number of clock cycles needed to process one
sample (NCLK)

fCLK ≥ NCLK·MEAOUT,RATE (3)

In this way, the APD throughput capability is able to manage the input data rate. This approach
has the following advantages:

• no data pile-up occurs in the input buffer;
• PCA algorithm on-line runs for long periods of time with minimum buffer size requirements.
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3.1. Input Buffer Data Management

The NSDD receives a stream of data from the Venneos-CAN-Q machine (VCQ [14]) via an Ethernet
connection using TCP/IP protocol. Data are acquired by the VCQ from the MEA matrix using a specific
raster scanning algorithm, whose general procedure is shown in Figure 5.

Each pixel of the MEA is sampled at 4.6 kS/s and data from the whole pixel matrix are then
time-division-multiplexed into a single data-stream that is sent via TCP/IP COM to the input buffer
data management stage. The multiplexed data-stream is obtained by transmitting the first time-sample
acquired by each pixel, starting from the top-left pixel (first data) and scanning the whole matrix
with a raster pattern, thus one-pixel-by-one from left to right and one-line-by-one from top to bottom.
After the whole MEA is scanned for the first time-frame, the raster scan is repeated for the subsequent
time frames.

The MEA is composed by 3072 pixels and therefore for the first 3072 clock cycles the NSDD
receives the first time-sample of each pixel. During the second 3072 clock cycles the NSDD receives
the second time-sample of each pixel and then the TCP/IP COM follows this procedure up to the last
sample of the last pixel.

The IBDM manages the input data-stream by controlling the Ethernet interface and storing the
received data in a dedicated buffer. Then, it sends a data-stream from the buffer to the APD stage to
perform the PCA algorithm.

Effectively, Equation (1) establishes that three consecutive time-samples for nine adjacent pixels
(27 samples in total) will be used for thresholding. Therefore, the APD can compute the PCA on the
first nine-pixel sub-set (corresponding to 9PIX-Sub-set1 in Figure 5) only after the MEA has been
scanned completely two times (3072 + 3072 clock cycles) and the VCQ sends the third time-sample of
each pixel of the first two rows (192 + 192 clock cycles) plus the third time-sample of the first three
pixels of the third row. Therefore, the first output data comes after an initial start-up time of 447.3 µs
(corresponding to a total of 6531 clock periods) that are needed to sense and transfer to the APD all the
27 samples from 9PIX-Sub-set1. After this start-up time, the PCA is performed on one 9PIX-Sub-set per
clock cycle, and the 9PIX-Sub-set is moved on the MEA matrix in a raster scan pattern, synchronous
to the input data-stream. Thus, after the start-up time latency, the system on FPGA will operate in
real-time providing spike detection at the same TCP/IP sample rate (14.1 MHz).

3.2. Action Potential Detector Algorithm

The action potential detector is that stage in the system implementing the PCA algorithm.
A flowchart of the FPGA-APD operations is shown in Figure 7.

Each time a new data (PIXj(n), is received from the MEA, the APD executes the operations
illustrated in the flowchart. The algorithm starts reading the input data up to providing an output
data. Output data encodes whether an AP has been detected in the n-th timeframe (time pointer) and
in the j-th pixel (spatial pointer).

The APD performs all the operations that are required to verify the specific condition expressed in
Equation (1). First it calculates the square sum of three consecutive time-samples from the same pixel

OUT_Σ1 = ∑
{n,n−1,n−2}

PIXj(n)2 (4)

PIXj(n), PIXj(n − 1), PIXj(n − 2) are 16-bits data words coming from IBDM. They encode the n-th
time-samples of the j-th pixel. Hence j is the pixel spatial pointer (j = 1, . . . , 3072).

Secondly, it calculates the OUT_DIV number, which is the result of the division between the
OUT_Σ1 and the RMS noise (σ2

NOISE (j)) of the j-th pixel

OUT_DIV =
OUT_Σ1
σNOISE,j

2 =
∑{n,n−1,n−2} PIXj(n)2

σNOISE,j
2 (5)
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σ2
NOISE (j) is offline calculated for every pixel, and stored in the σ2-Register.

The OUT_DIV data is then stored into an intermediate buffer (IMB) until all OUT_DIV values of
a nine-pixel sub-set are available. Then the sum of OUT_DIV over nine adjacent pixels is calculated

OUT_Σ2 = ∑
j=1→9

OUT_DIVj = ∑
j=1→9

∑{n,n−1,n−2} PIXj(n)2

σNOISE,j
2 (6)

The OUT_Σ2 value is compared with AP_Threshold (stored in a specific 16 bits register) to
determine whether an AP has occurred or not

AP_Bit =


′1′ i f ∑

pixj= 1→9

∑{n,n−1,n−2} PIXj(n)2

σNOISE,j
2 ≥ AP_Threshold

′0′ otherwise
(7)

AP_Bit is at ‘1’ logic level if Equation (7) is true, meaning that an action potential has been detected
on the 3 × 3 pixel sub-set in the three consecutive timeframes. Otherwise, it is at ‘0’ logic level and no
neural activity has been detected.
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Notice that the algorithm uses a spatial bit/flag (called spatial synchronicity bit (SSB)) whose
time evolution w.r.t. the MEA input data stream is qualitatively shown in Figure 8. The SSB flag is
high when the input sample comes from the first pixel of the matrix, otherwise it is low.
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Figure 9 shows the AP_Bit and the SSB time evolution extracted from the FPGA output pins
using Agilent 16821A logic analyzer [15]. The input pattern signals have been directly taken from the
experimental setup in Figure 1.Electronics 2018, 7, x FOR PEER REVIEW  9 of 15 
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From top to bottom, the signals recorded by the logic analyzer are:

• the FPGA master clock;
• the IBDM_ENABLE signal which is at ‘1’ logic level when a new input sample is received from

the IBDM;
• the spatial synchronicity bit (SSB);
• the AP_Bit.

3.3. APD FPGA Hardware Implementation

The algorithm schematized in Figure 7 has been implemented by a VHDL digital circuit,
whose block diagram is shown in Figure 10. The circuit consists of a control unit (CU) and an
arithmetic logic unit (ALU).
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The ALU consists of arithmetic, logic, and memory blocks that perform the operations given
in Equations (4)–(7). Input data are encoded as signed 14-bit integers, but thanks to their limited
dynamic range (cantered around zero and with maximum values around 150–200), can be re-coded
with nine-bit resolution (−256 to 255) to limit the hardware requirement without introducing any
error. The operations are then performed with unsigned integer arithmetic since after calculating
the square value in Σ1_CALC all the values become positive. After each block of the ALU, data are
again re-coded to be represented with the minimum resolution compatible with their dynamic range,
thus minimizing hardware requirements. The only operation that introduces computational errors
while performed with integers is the division, implemented with a Radix-2 algorithm and neglecting
the reminder. To minimize this error to below 1%, the numerator (OUT_ Σ1) has been multiplied by
256 by left-shifting before performing the division. The 256-fold increase in the OUT_DIV value has
then been compensated by increasing the AP_Threshold value by 256 as well. The CU regulates the
behavior of the ALU using specific enable signals and spatial pointers. The enable signals sequentially
activate the stages of the ALU, controlling the evolution of the algorithm. The time evolution of the
CU output signals is illustrated in Figure 11. When the IBDM_ENABLE signal is high, new data is
read from the input buffer in IBDM.
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Afterwards the OUT_Σ1_ENABLE, the DIV_ENABLE, and the OUT_Σ2_ENABLE signals are
progressively and synchronously activated. The last signal is the ENCODER_ENABLE whose main
scope is to regulate the timing of the output signals (AP_Bit and SSB).
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Thus, this circuit on FPGA achieves the fundamental objective to encode the entire spatial and
temporal activity of the biological neuronal net in three single bits: AP_Bit (that gives the detection
information), the FPGA master clock (temporal pointer), and the SSB (spatial pointer).

Each operation is performed during a single cycle of the FPGA master clock, except the division
that lasts three clock cycles. Hence, to process a single data, seven clock cycles will be needed in
principle. In order to reduce the required clock frequency of the hardware implementation, this design
adopts a dedicated pipeline control of the ALU operation as follows. The most relevant FPGA resources
utilized for this design are represented in Table 1.

Table 1. FPGA resources utilization summary.

Resource Utilization

Number of Slice Registers 1009 (1%)
Number of Slice LUT 3278 (12%)
Number of DSP48A1s 1 (1%)

Number of RAMB16BWERs 58 (50%)

3.4. APD Control Unit Pipeline Approach

With reference to Equation (3), for a 14.1 MSample/s input data rate, the minimum frequency of
the FPGA master clock for a proper control unit operation is 98.7 MHz.

It is possible to achieve the same data throughput with reduced FPGA master clock frequency
by using a pipeline approach. The operations in Equations (4)–(7) are scheduled in consecutive clock
cycles and the results are stored in separate registers.

Thus, these operations can be executed in parallel, saving time and reducing clock frequency.
In fact, when a certain sample (N-th sample in Figures 11 and 12) is processed by a specific stage
(Σ1_CALC, DIVIDER, etc.) then such stage waits for six clock cycles for the next data ((N + 1)-th)
without performing an operation and practically entering in stand-by mode.Electronics 2018, 7, x FOR PEER REVIEW  11 of 15 
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This intrinsic inefficiency can be mitigated by providing a new data input to the ALU as soon as
the first stage (Σ1_CALC) has produced an output.

In this way, the system will accept a new input data every three master clock cycles. Thus,
the minimum master clock frequency to handle 14.1 MS/s input data rate will be 42.3 MHz. Figure 12
shows the CU enable time diagram used in the pipelined APD (P-APD). Each enable is now high once
every three clock cycles instead of seven. Figure 13 shows the output data stream for the pipeline APD.
The signal in the second line shows the input data rate, which now requires only three clock cycles to
perform all the PCA operations. The final clock frequency adopted in this design is thus 42 MHz.
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4. Experimental Results

The NSDD for real-time detection of the neural spikes has been validated by two different setups:
behavioral and biological. The behavioral setup is a dedicated test-bench schematized in Figure 14 with
the main aim to check the efficacy of the digital system vs. single pixel SNR. It is based on dedicated
constructed pattern with a priori known SNR. This test can verify the false positive/negative AP
events and quantifying the single pixel SNR range in which the NSDD is able to operate at minimum
detection faults.

On the other hand, the biological setup is used in order to directly check the NSDD behavior
under the signals coming from the CMOS MEA. This setup has the ultimate scope to detect AP signals
under the real-life conditions and manage the effective noise spatial map of the MEA.Electronics 2018, 7, x FOR PEER REVIEW  12 of 15 
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4.1. Behavioral Validation

The behavioral validation has been performed at two distinct levels: nine-pixel subset and the
whole matrix.

A specific nine-signal pattern has been generated by MATLAB, where each pixel signal has a
rate of 4.6 KSample/s and is composed by two main contributions: the noise and 250 AP-like signals
spaced of 10 ms with 1 ms time-width.

The duration of each track is 2.5 s. Each spike in the subset has the same phase. The noise power
is also the same in each pixel (120 µVRMS) whereas the SNR ranges from 0 dB up to 15 dB (i.e., the last
SNR corresponding to a sinusoidal signal at 5·σ power). This way, since the pattern (and thus the
instant in which the AP-like signal will occur) is a priori known, it is then possible to compare the
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NSDD output bit with the input pattern and to evaluate the robustness of the system (i.e., the eventual
fault vs. SNR).

Figure 15 shows the percent value of the detected AP vs. the SNR. Obviously for high SNR
(>7 dB) practically all the input APs will be detected by the hardware. At very low SNR the correlation
algorithm features a certain detection fault (25% of detected APs at 3 dB SNR), losing several spikes.

Increasing the SNR of the single pixel up to 6 dB the NSDD has very high performance and detects
98% of APs, coherently with the error probability imposed in Equation (1).

APs with 250 µV0-peak amplitude are detected with 98% efficacy.
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4.2. NSDD Biological Validation

The NSDD has been finally tested with the signals coming from the neurons culture. The hereby
described system outputs in real-time (with 165 ns delay) a binary signal (AP_Bit) encoding spatial
and temporal information about the detected neural spikes. This single-bit signal has two important
features:

• it enables event-driven communication, and/or it can be used for instantaneous control of the
electrical stimulation signal;

• it can be further processed by dedicated hardware and/or software algorithms in order to perform
spatial and temporal mapping of the APs above the MEA.

More specifically, the NSDD system has been tested by monitoring the neurons culture for 15 s
and using a dedicated set of MATLAB functions to extract AP information from the real-time generated
AP_Bit.

This way, the data coming from FPGA-APD allows representing the neuronal cells culture
electrical activity by:

• neural spike spatial map, representing the cumulative number of AP vs. pixel for a given 15 s
acquisition time;

• noise power spatial map, showing the noise power spatial distribution within 2.5 s single pixel
time evolution;

• action potential bursting map, detecting eventual synchronous spikes activity over the entire
MEA covered area (time window is again 2.5 s).

Figure 16 shows the neural spike spatial map where colour intensity is related to the local neuron
activity detected by the NSDD in 15 s time window. Notice that yellow/red regions point out 6/12
spikes over 15 s, resulting in the highest AP rate over the given time window. It has been shown that
hippocampal neuronal cell cultures exhibit spontaneous electrical activity with rates coherent with the
ones observed by the NSDD [10]. For sake of completeness, Figure 16 also shows the neural spike map
superimposed on the culture photo.
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4.3. Action Potential Bursting

The AP_Bit can be used to detect whether any synchronous activity of the neuron population
is happening at any given moment. Simultaneous spiking by multiple neurons could hint at
particular medical conditions such as the beginning of an epilepsy seizure. In order to produce
strong synchronous behaviours in cell cultures, external chemical/electrical stimulations are usually
required [16,17]. However, for this experiment no external stimulus has been provided, and therefore
only minor synchronicity levels have been observed. More precisely, by counting the total APs detected
over 10 ms time-windows, few points over MEA area have shown at some point some (casual/random)
synchronous spiking. Figure 17 shows the total number of synchronous spikes referred to the whole
MEA during a 10 ms time window. It is possible to observe that some pixels have disclosed some
synchronous spiking, for example between 910 ms and 920 ms a total of four areas on the MEA
produced some APs. The correspondent spatial map for this particular bursting event is also shown
in the bottom part of the same Figure 17. This demonstrates the capability of the proposed system
to operate in complex cultures where a more pervasive synchronous activity is imposed. In fact,
the NSDD minimizes the data volume produced by the MEA by efficiently encoding only the relevant
information about actual neuron activity. This greatly simplifies the real-time implementation of
subsequent higher-level algorithms such as AP bursting detection or, more generally, algorithms that
can detect neural patterns and abnormal neural activity (i.e., epileptic seizures).Electronics 2018, 7, x FOR PEER REVIEW  14 of 15 

 

 
Figure 17. Neuronal spikes map of action potential bursting. 

5. Conclusions 

This paper presents the design of a complete FPGA-based digital circuit that monitors the 
electrical activity of a hippocampal neuronal cells culture over a micro-electrode array and detects 
action potentials from background noise. The system has been almost entirely implemented by 
dedicated hardware solutions that allow real-time detection of the on-going neural activity and 
encodes the temporal and spatial information using a dual bit stream at 14.1 MHz. The system is 
composed by the VHDL-based FPGA design and a proper set of MATLAB functions for data 
evaluation. A behavioral validation testbench has been developed and has been used to extrapolate 
the algorithm detection efficacy vs. SNR. 

The system has been experimentally validated by producing a spatial map of the on-going 
electrical activity, which was shown consistent with spontaneous neural activity rates. The hereby 
proposed system can also provide the spatial distribution of the noise power over the biosensor, 
which is linked to adhesion/presence of cells over the MEA surface. Finally, the output bit-stream has 
been used to detect AP bursting events, highlighting synchronous neural activity over the biosensor. 

Author Contributions:  M.D.M and S.V conceived the experiments; E.A.V. designed the FPGA-based system 
and performed the experiments in collaboration with M.R., D.G, F.R. and G.C.; A.B. supervised the digital 
design; M.M. prepared the neuronal cells cultures; R.Z. provided technical support; All the authors contributed 
to the writing of the paper. 

Funding:  This research received no external funding 

Conflicts of Interest:  The authors declare no conflicts of interest. 

References 

1. Rutten, W.L. Selective electrical interfaces with the nervous system. Ann. Rev. Biomed. Eng. 2002, 4, 407–452. 
2. Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; 

Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. 
Nature 2006, 442, 164–171. 

3. Vallicelli, E.A.; De Matteis, M.; Baschirotto, A.; Rescati, M.; Reato, M.; Maschietto, M.; Vassanelli, S.; 
Guarrera, D.; Collazuol, G.; Zeiter, R. Neural spikes digital detector/sorting on FPGA. In Proceedings of 
the Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017. 

4. Vallicelli, E.A.; Fary, F.; Baschirotto, A.; De Matteis, M.; Reato, M.; Maschietto, M.; Rocchi, F.; Vassanelli, S.; 
Guarrera, D.; Collazuol, G.; et al. Real-time digital implementation of a principal component analysis 
algorithm for neurons spike detection. In Proceedings of the 2018 International Conference on IC Design & 
Technology (ICICDT), Otranto, Italy, 4–6 June 2018. 

5. Kim, R.; Joo, S.; Jung, H.; Hong, N.; Nam, Y.;; Recent trends in microelectrode array technology for in vitro 
neural interface platform. Biomed. Eng. Lett. 2014, 4, 129–141. 

6. Cogan, Stuart, F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. 

Figure 17. Neuronal spikes map of action potential bursting.

5. Conclusions

This paper presents the design of a complete FPGA-based digital circuit that monitors the electrical
activity of a hippocampal neuronal cells culture over a micro-electrode array and detects action
potentials from background noise. The system has been almost entirely implemented by dedicated
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hardware solutions that allow real-time detection of the on-going neural activity and encodes the
temporal and spatial information using a dual bit stream at 14.1 MHz. The system is composed by the
VHDL-based FPGA design and a proper set of MATLAB functions for data evaluation. A behavioral
validation testbench has been developed and has been used to extrapolate the algorithm detection
efficacy vs. SNR.

The system has been experimentally validated by producing a spatial map of the on-going
electrical activity, which was shown consistent with spontaneous neural activity rates. The hereby
proposed system can also provide the spatial distribution of the noise power over the biosensor,
which is linked to adhesion/presence of cells over the MEA surface. Finally, the output bit-stream has
been used to detect AP bursting events, highlighting synchronous neural activity over the biosensor.

Author Contributions: M.D.M. and S.V. conceived the experiments; E.A.V. designed the FPGA-based system and
performed the experiments in collaboration with M.R., D.G., F.R. and G.C.; A.B. supervised the digital design;
M.M. prepared the neuronal cells cultures; R.Z. provided technical support; All the authors contributed to the
writing of the paper.
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