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Abstract: The advancement in electrical load forecasting techniques with new algorithms offers reliable
solutions to operators for operational cost reduction, optimum use of available resources, effective
power management, and a reliable planning process. The focus is to develop a comprehensive
understanding regarding the forecast accuracy generated by employing a state of the art optimal
autoregressive neural network (NARX) for multiple, nonlinear, dynamic, and exogenous time varying
input vectors. Other classical computational methods such as a bagged regression tree (BRT),
an autoregressive and moving average with external inputs (ARMAX), and a conventional feedforward
artificial neural network are implemented for comparative error assessment. The training of the applied
method is realized in a closed loop by feeding back the predicted results obtained from the open
loop model, which made the implemented model more robust when compared with conventional
forecasting approaches. The recurrent nature of the applied model reduces its dependency on the
external data and a produced mean absolute percentage error (MAPE) below 1%. Subsequently,
more precision in handling daily grid operations with an average improvement of 16%–20% in
comparison with existing computational techniques is achieved. The network is further improved
by proposing a lightning search algorithm (LSA) for optimized NARX network parameters and an
exponential weight decay (EWD) technique to control the input error weights.

Keywords: short-term load forecasting (SLTF); non-linear auto-regressive neural network with
external input (NARX); mean absolute percentage error (MAPE); lightning search algorithm (LSA);
exponential weight decay (EWD)

1. Introduction

Short Term Load Forecasting has ended up one of the major research fields in power system
designing. With the recent changes in weather conditions determining power operation costs,
the demand response and future load are more essential today than ever before. A power system
operates by coordinating numerous stakeholders who can be influenced by an inaccurate forecasting
estimate: Generation planning required a 24–48 h demand forecast in order to allocate the power
resources economically [1]. The consumer can know energy prices and response based on the forecasted
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demand. The transmission sector ought to know the transmitted power necessities in order to
allot assets, plan load shedding, draft commercialization strategies, and do risk management and
contingency planning, which are all affected by the accuracy of load forecasting. Error in forecasted
load can result in increase of operating cost [2]. Overestimation of demanded load will result in
significant speculation for the development of abundance power sources while underestimation of
demand will result in deficiencies and customer disappointment.

Generally, forecasting is divided into three main categories mainly determined by the forecasting
period: long; medium, and short terms, respectively.

Short-term forecasting is based more on climate conditions such as dry bulb temperature, wet bulb
temperature, humidity, and dew point temperature. Usually, the estimate load is from an hour to
a week and is pivotal in generation scheduling or shutdowns, network flow rate optimization etc.
Forecasting for medium-term and long-term depend more on financial variables and political choices.
Medium-term lasts from a week to a year and is utilized for apportioning assets, arranging operations
and establishing economic components such as tariffs, rate plans, and regulations. Long-term is
generally for more than a year. A long time prediction is valuable for arranging the generation assets
that need to be accessible at any point in time and extending them when required [3]. Experts for
forecasting utilize numerous methods with each having a certain advantage and disadvantage [4].
Load forecasting techniques can be categorized in three sections, the statistical or parametric approach,
a combination of statistical and computational methods, and intelligent computational techniques.
The expert system, fuzzy logic, and the neural network are among the commonly-used computational
intelligent techniques [5]. Ordinary load variations are not linear and, thus, non-linear networks have
demonstrated high success in generating accurate short-term estimates. Neural Networks (NN) gave
an exact perspective to the solve nonlinear problem and have the benefit of not necessarily having a
thorough understanding of the inputs and output fundamental relationship. NN can be a crossover
strategy that employs regression and dynamic time series. The NN observe past data information
and finds patterns from that information. It employs that information to foresee the load demand
using forecasted weather data. There are diverse structures for NN utilized to anticipate load, such as
backpropagation, Boltzmann machines and Hopfield. Backpropagation is a commonly used NN
technique for load forecasting. Contrary to statistical techniques, the mathematical model for NN is not
required to be characterized “a priori.” The input layer can easily incorporate important parameters
as a node and the network learns the relationship among parameters. Numerous creators [6–10]
have analyzed the outcomes of distinctive artificial neural network (ANN) strategies. ANN has
demonstrated an improvement in forecasting error and proved to be an effective forecaster when
compared with corresponding statistical methods. This paper focuses on the range of expected accuracy
obtained by comparing existing statistical, computational, and ANN techniques. The research meets at
the junction of load forecasting, time-series forecasting, and ANN. The focus lies on short-term load
forecasting utilizing ANN.

A unique and improved NARXNN based recurrent load forecaster is developed using the lighting
search algorithm, which determines the optimal value for the number of hidden layer neurons,
feedback delays, and input delays. This paper develops a recurrent neural network (RNN) with an
LSA optimization algorithm to increase the robustness and intelligence of the forecasting method.
The other heuristic optimization techniques such as particle swarm optimization, genetic algorithm,
and simulated annealing are considered in pre-study due to the superiority of LSA in terms of speed,
convergence, and error reduction. Only LSA is considered and explained in the proposed solution.

1.1. Literature Review

Bennett et al. [11] performed a comparison between ARIMAX and a multilayer feed forward
network (MLFFN) to forecast a head peak demand and energy use. The hybrid model incorporated
linear and quadratic multipliers for temperature and humidity parameters in the ARIMAX model.
The MAPE for ARIMAX and ANN model calculated is in a range of 7% and 6%, respectively. Data is
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taken for 128 residential houses with introduction of dual exponential regression techniques to analyze
the data trend. The hybrid mix of ANN-ARIMAX further improved the fit and accuracy. Hernandez
et al. [12] took three layer MLFFN to forecast the regional load in Spain. Bayesian backpropagation
is utilized for training. The hidden neurons are optimally determined by using a heuristic method.
Averagely MAPE is 2.4%, which reached to 4% on specific days. Another work [13], forecasted city load
by using two different MLFFN models. The output from a first conventional MLFFN model is fed to a
modified two-stage second model to determine the day ahead load peaks and valleys. MAPE reduced
from 2.4% to 1.6% in the modified model.

A support vector regression ANN model (SVR) is used by Fattaheian et al. [14]. Backpropagation
is used to train a biased radial function. Initially, regression is executed by means of SVR then
four different kernels, i.e., polynomial, linear, radial, and sigmoid are tested for better accuracy.
The problem is solved optimally and is associated with a combinatorial model to obtain the lowest
error. A fuzzy logic algorithm is used by Mahmoud et al. [15], which utilized post-processed output
from a conventional forecaster with additional inputs to determine its output. This made the system
more robust and covered all the missing data information. The model converged to a defined range,
which optimized the error by functioning like a PI controller. The proposed technique is applied
to MLFFN, SVR, and the FBTFS network improved MAPE to 4.2%, 4.9%, and 4.5%, respectively.
Clustering regression is used in Reference [16] for Short Term Load Forecasting by multiple tests on
time series data. The proposed regression and clustering stages proved more robust than conventional
estimators. Authors in References [17,18] ensemble load patterns together by proposing a grouped
framework of ANN, parameter estimation, and clustering. Currently, forecasting the load peak is also
very critical since it effects significantly in the power system improvement and regional economic
stability. Researchers have demonstrated keen interest to foresee such an event in Reference [19].
A data mining scheme is proposed for peak detection using a pattern recognition method instead of a
time series approach. The algorithm demonstrated accuracy of 96.2% in day ahead peak detection.
In Reference [20], variability of household behavior is analyzed using grade correspondence analysis
with a post clustering approach. The electricity usage regularity is analyzed and the method is tested
for 46 household data from Austin Texas, USA. In Reference [21], the neural network has been utilized
to solve the nonlinear load-forecasting problem for economic generation planning. A leader following
algorithm is utilized in 20 dimensions and shown high accuracy when compared with other forecasting
algorithms in 2, 3, 5, 10, and 20 dimensions.

Ekonomou et al. [22] considered the de-noising wavelet algorithm to improve the accuracy for
a hybrid model in order to neutralize input data before feeding it to a feedforward neural network.
A comparison of two training algorithms, i.e., Levenberg–Marquardt and gradient decent with three
different activation functions is done in Reference [23]. Different combinations of hidden layers
and neurons are tested to analyze model performance on a yearlong real time data from Greece.
A prediction accuracy test is performed in Reference [24] using the NARX ANN method on ERCOT
data. Different training algorithms are used with varying lengths of training data set, effects of
size, and the number of hidden layers are analyzed on network performance. Recently, heuristic
and Meta heuristic optimization methods are extensively deployed to handle foresting problems.
These methods are stochastic in nature and perform according to a natural phenomenon such as
evolution, natural selection, and self-grouping. LSA is maintaining dominance among these techniques
in terms of speed, convergence, and error reduction. The LSA search for the best solution using fast
searching projectiles mimicking natural lighting process. A study [25] with 24 benchmarks and
multiple characteristic functions is performed to test the robustness and efficiency of LSA. The result
demonstrated LSA reliability. Krogh et al. [26] utilized the linear weight decay method in the predicted
model and successfully tested its performance. The authors in References [27,28] presented a general
improvement in the model by masking the error weights.



Electronics 2018, 7, 432 4 of 27

1.2. Contributions

The paper presented a strategy of attaining a more precise short-term residential load forecast
utilizing a recursive ANN approach with varying climate factors as exogenous input vectors. A fully
connected neural network with 10 hidden layers and a logistic sigmoid as an activator in hidden nodes
and linear activator in output nodes forecasts a 24-h output as the yield. The input vector incorporates
month, day, the specific day of the week, working day or holiday, climate information, and historical
load data as an exogenous input. Some available algorithms to train NN are: Bayesian regularization,
Levenberg-Marquardt, gauss-newton, and gradient decent. In the proposed method, the weight
of hidden layers are updated by using the Levenberg-Marquardt algorithm. The node weights are
calculated by training the network in an open loop, utilizing existing load data, and then the forecasted
load is utilized as an input in a close-loop to the regenerate forecast. Due to network recurrent
behavior, it will reutilize its calculated output and will not require retraining in order to proceed to
provide the forecast. The results show a notable development when compared with statistical methods
i.e., ARMAX and state space, Decision Tree i.e., BRT and conventional feedforward ANN FitNet
method without exogenous inputs. The proposed method does encounter stability issue generated
during the closed loop, used optimal value for feedback, and input the time lag. The proposed method
is further furnished by applying a unique and improved NARXNN based recurrent load forecaster
using a lighting search algorithm (LSA), which determines the optimal value for the number of hidden
layer neurons, feedback delays, and input delays. Moreover, an error decay method is employed
and gives more weight to the error from recent data and exponentially decreases the error weight
from lagged data. The final outcome of the proposed method is compared with the results from two
training algorithms i.e., Bayesian regularization and Levenberg-Marquardt and two activation function
i.e., Hyperbolic Tangent and Logistic Sigmoid with and without an exponential decay function to
demonstrate the chosen parameters’ efficiency.

1.3. Organization

The remainder of the manuscript is prepared as follows: Section 2 sheds light on the nature of the
data with Pearson correlation analysis of different input parameters. A brief introduction about the
reference forecasting methods is presented in Section 2 with introduction about foresting methods in
Section 3. The proposed framework is thoroughly analyzed in Section 4. The performance evaluation
of the proposed model with comparative analysis is presented in Section 5. The discussion on results
is presented in Section 6 and the conclusion is drawn in the last section.

2. Load Consumption IESCO

Islamabad is the capital city of Pakistan and has developed infrastructure with the number
of residential load zones. The city has an extensive socio-economic growth in past decades and,
with the same pace of development, the EVs will become a considerable common household load
with a prominent grid impact. The electrification responsibility of the region is under Islamabad
electric supply company IESCO, which is a state owned distribution firm. The power demand for
Pakistan is experiencing a steep increase and it becomes very important to estimate the forecasted load
accurately in order to satisfy the customer needs as well as properly plan and build the power system
infrastructure. In this paper, the IESCO data for active power consumption of different residential
units is analyzed. The houses are categorically divided into four types depending on their power
consumption and occupied land area. The details of minimum and maximum demand in the winter
and summer and specific names associated with each type are as follows:

• 1 Kanal = 10,042 Square Meter approx., Load Demand; winter (3.5 kW–8.5 kW); Summer
(2.5 kW–8 kW)

• 10 Marla = 5021 Square Meter approx., Load Demand; winter (2.5 kW–6.5 kW); Summer
(2 kW–6 kW)
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• 7 Marla = 3514 Square Meter approx., Load Demand; winter (1 kW–3.5 kW); Summer (1 kW–3kW)
• 5 Marla = 2510 Square Meter approx., Load Demand; winter (0.5 kW–2 kW); Summer

(0.5 kW–1.7 kW)

The hourly real-time data was collected from a substation in Islamabad for five years from 2012 to
2016 [29]. The substation caters only residential load. From data, it is analyzed that the time series
load variations for residential consumers have strong seasonal and weather dependency. The yearly
residential load profile, as shown in Figure 1, follows a specific seasonal pattern considering the 24-h
profile. The summer morning peak appears from 07 to 10 h and the evening peak occurs from 15 to
20 h. In the winter, the morning peak is from 07 to 09 h and the evening peak period is from 17–21 h.
The load profile for weekends follows a different trend unlike the working days. The monthly pattern
analyzed for the summer and winter showed that the consumer peak demand is during the month of
July in the summer and December in the winter, respectively, which shows strong seasonal influence
on load variation.
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Figure 1. Residential load pattern for different house categories.

Figure 2 shows the triangle plots for seasonal variations [30] (Dew Point & Dry Bulb Temperature)
vs. Load. It can be seen that, during the winter, at a low temperature, there is a considerable rise in
demand due to heating load and similarly the trend repeats for the summer due to the air conditioning
load. The comfort zone is during the autumn and spring at around 20 to 24 ◦C when there is no heating
and cooling load.
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Figure 2. Load variations vs. weather data.
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Variables like humidity, working hours, and temperature were considered to find the variations
in load trends. The Pearson correlation shown in Figure 3 of all chosen predictors is analyzed and only
significant variables with a 90% confidence interval is used since it can been seen that the wet bulb has
the same effect on the load as dew point temperature. Therefore, it is not considered as an input vector
in the model.
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3. Load Forecasting Methods

Short Term Load Forecasting (STLF) can be methodically categorized into three sections based on
past studies.

Statistical Methods, Statistical-Computational Methods, and Intelligent Computational Methods.
LF is largely a nonlinear regression issue and the connections between diverse factors are

examined with the assistance of historical data samples [31]. With the following concept, distinctive
sorts of STLF models with a shifting success ratio are created. Numerous components particularly time
periods, climatic changes, and the air condition are considered as a part of the model. The technique
and the precision of the LF model change due to a given situation.

3.1. Statistical Methods

Statistical strategies incorporate all forms of parametric and autoregressive models. Nonlinear
relationships are attempted to distinctly model by utilizing regression techniques, which act as linear
devices. When nonlinear regression is utilized, the relationship between the required output and the
illustrative inputs is exceptionally complex and it is difficult to approve observationally.

The common statistical methods utilized for the short-term load forecasting are shown below [32,33].

1. ARMA-Auto Regress Moving Average
2. ARIMA-Auto Regress Integrated Moving Average
3. State Space
4. Linear Regression
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ARIMA/State Space

To begin with, the ARIMA prerequisites must be met and a prior information transformation
needs to be performed. ARIMA models are the foremost non-linear general class models for forecasting
time series data. The most necessity for the data while applying the ARIMA model is that the data
must be stationary, i.e., the data characteristics must not be subordinate on which time outline is
chosen. This implies that there must be no patterns within the data or any predictable reaction on the
model residuals. Diverse strategies for making the data stationary are utilized including the favorable
ones of which are deflating or logging differences. The objective to achieve with this change is to attain
a data set in which its autocorrelations stay consistent over time. We must begin with recognizing the
control range of the data series for the purpose to decide the natural frequencies that exist within the
fundamental data. We apply the ARIMA model by performing the following steps.

1. Apply quick Fourier transformation, remove trends, and ensure the model is stationary.
2. Autocorrelation and partial autocorrelation graphs are analyzed to check if the moving average

and autoregressive models are suitable. To confirm ARMA configuration, check for the extended
data autocorrelation graph.

3. Different ARMA model sets are tested for the lowest Akaike’s Information (AIC) and Schwartz
Bayesian Information (BIC) Criterion.

The ARIMA model is developed by using the model optimizer in SPSS, the optimal parameters
found are AR = 2, I = 1, and MA = 8, which is an autoregressive model of second order, the differences
of one degree, and a moving average of the eighth degree. The fitting error is reduced from the output
using proposed ARIMA configuration in Expert Modeler platform of SPSS. The resulting ARIMA
model is further transformed to generate a state space model for a comparison purpose. This fitting
produce does not necessarily confirm a good forecasting output since a lot of periodic data information
is left in the residuals. An improvement is done by implementing the proposed neural network model.
The result of this is presented in the simulation and result section.

3.2. Computational-Statistical Methods

In data mining, generally, the decision tree method is taken as a combination of statistical and
computational techniques. It uses a tree predictive model and branches to represent the observation
about an item and leaves to represent the target values. This approach is utilized in data mining,
statistics, and machine learning. Decision trees are classified in two main types, which includes
Regression tree and Classification tree, respectively. Some ensemble methods used to construct a
multiple decision tree are as follows: Boosted trees; Bootstrap aggregated, and Rotation forest. In this
paper, the bootstrap aggregated decision tree approach is utilized to test the performance of the
proposed model.

Bootstrap Regression Tree

Bootstrap bagging or aggregation may be the most effective outfit strategy given by Leo Breiman,
which exact individual model estimation by incorporating different machine learning tools [34]. Since a
singletree is liable to over fit, bagging is utilized to diminish the fluctuation among calculations like
regression trees. Nevertheless, the outcomes of numerous selected trees are combined by bagging
to overcome the overfitting issue. The in-bag test samples, which represent each independent tree,
are generated individually as a replica from the input data set. Almost one-third of out-of-bag test
samples, which are an excluded dataset, are utilized for estimating the error in the forecast model.
The input dataset is separated in two sets: training set 2012 to 2015 and test set 2015 to 2016. The training
set is utilized for the model parameters estimation while the test set is utilized to check the forecasting
model credibility. The forecast model with set of regression trees is built utilizing MATLAB Bagger
Tree function with each individual tree performing regression with a diverse set of rules. Initially,



Electronics 2018, 7, 432 8 of 27

20 such trees with 40 least leaf estimates are utilized. The regression tree size is determined by the
leaf size and the smaller trees have larger leaf size. The size of the tree measure provides the power to
control performance execution and overfitting.

3.3. Computational Intelligent Methods

Computational intelligence (CI) strategies incorporate, expert system, fuzzy logic technique,
and artificial neural systems (ANN). Typically, for the nonlinear load, these techniques are more
compelling in producing a short-term forecast. Particularly, ANNs gave operators a freedom of not
having basic numerical understanding of the issue and have the advantage of generating yield with
less complexity. Recently, ANNs are compelling a forecasting technique among researchers. The results
of different studies proved ANN held a statistical counterpart [35,36]. A brief description of ANN
architecture is given in the section below.

Artificial Neural Network (ANN) Description

An Artificial Neural Network is a nonlinear intelligent computational method of cross-connected
neurons propelled by centrally controlled nervous system as in human creatures. The neuron is defined
as a fundamental cell in ANN. Different neurons operate side by side to handle the mathematical
information similar to a human brain. A fundamental network architecture demonstration is given in
Figure 4 that is comprised of three crucial capacities: scalar weights, the summing intersections, and a
transfer function, which produce scalar yield.

The numerical representation of a fundamental neural network is given below [37].

Yl = ∑m
l=1 Wl Pl (1)

where Pl represents the kth input, Wl is the weight designated to lth input, and Yl is lth yield of ANN
and l = 1, 2, 3, . . . , m.

The parallel neurons get mathematical information and handle it in two steps. Directly duplicate
the value with weights Wl and forward the weighted values to summing the intersection that appeared
in Figure 5. The intersections are represented by circles. A comprehensive study on ANNs is displayed
in Reference [38].

Electronics 2018, 7, x FOR PEER REVIEW  8 of 26 

 

compelling in producing a short-term forecast. Particularly, ANNs gave operators a freedom of not 
having basic numerical understanding of the issue and have the advantage of generating yield with 
less complexity. Recently, ANNs are compelling a forecasting technique among researchers. The 
results of different studies proved ANN held a statistical counterpart [35,36]. A brief description of 
ANN architecture is given in the section below. 

Artificial Neural Network (ANN) Description 

An Artificial Neural Network is a nonlinear intelligent computational method of cross-
connected neurons propelled by centrally controlled nervous system as in human creatures. The 
neuron is defined as a fundamental cell in ANN. Different neurons operate side by side to handle the 
mathematical information similar to a human brain. A fundamental network architecture 
demonstration is given in Figure 4 that is comprised of three crucial capacities: scalar weights, the 
summing intersections, and a transfer function, which produce scalar yield. 

The numerical representation of a fundamental neural network is given below [37]. 𝑌 = ∑ 𝑊 𝑃   (1) 

where 𝑃  represents the kth input, 𝑊  is the weight designated to lth input, and 𝑌  is lth yield of 
ANN and l = 1, 2, 3, …, m. 

The parallel neurons get mathematical information and handle it in two steps. Directly duplicate 
the value with weights 𝑊  and forward the weighted values to summing the intersection that 
appeared in Figure 5. The intersections are represented by circles. A comprehensive study on ANNs 
is displayed in Reference [38]. 

Wk0

Wk1

Wkm

Π F(k) Y(k)

Transfer 
Function

G(k)
Outputs

X1

X2

Xm

Inputs Weights

• 
• 
• 
• 

 
Figure 4. ANN Basic Architecture. 

 
Figure 5. ANN Process Stages. 

1

2

3

4

1

2

3

4

1

2

Input  
Layer

Hidden 
Layer

Output 
Layer

Inputs Outputs

Figure 4. ANN Basic Architecture.

Artificial intelligence-based models are considered more solid, adaptable, and precise in
comparison with regular regression-based strategies but need a huge set of information for data
training and validation. However, regression techniques are commonly utilized when the accessibility
of notable information may be a huge issue. In recent years, there is an increase in adaptation of
AI-based estimating models among the analysts. ANNs is favored for the most part because of the
inborn capacity to bargain with the nonlinearities among parameters such as the cyclic load behavior
and weather changings, which are complicated to grasp in ordinary models [39]. NN is supplanting
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the conventional techniques utilized for day a head load and cost predictive analysis due to their
straightforwardness and high accuracy. Most ANN strategies come about with a mean absolute
percentage error (MAPE) of around 2% to 4% compared to statistical strategies, which produce an error
within the range of 5% to 6%. The objective is to get a reliable estimate for the forecast error, which is
lower than preferred statistical techniques. An SPSS and a Matlab information system was built up in
order to generate forecasting results through a nonlinear statistical regression model, which can be
utilized as a benchmark for examining the execution of the proposed ANN. The important features
utilized in the proposed model to build a competent ANN model are explained in the proposed
network section.
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4. NARX Neural Network

The applied network is designed to take exogenous inputs i.e., weather and time variables and
endogenous inputs i.e., electrical load, and give a 24-h load as an output. The general architecture of
the NARX network is given below.

4.1. NARX Architecture

In general forecasting, the independent variable u has a cause-effect relationship with forecasted
variable y, which can be represented by Equation (2). For time series, forecasting the previous outputs
yt and previous time interval yt−p determine the output for the next interval and can be expressed
by Equation (3). The time series model forecasting accuracy is improved by taking into account the
predictors and time lagged variables as inputs to produce the output, which is defined by Equation (4).

y = f (u1, u2, . . . , un) (2)

yt+1 = f
(
yt, yt−1, . . . , yt−p

)
(3)

→
y t+1 = f

(→
u 1,
→
u 2, . . . ,

→
u p,

→
y t,
→
y t+1, . . . ,

→
y t−q

)
(4)

In Equation (3), accuracy is improved by considering up variables, which represents an external

predictor vector along with
→
y t−q. This represents a lagged output vector.

→
y t is a 24 × 1 output vector

containing the day-a-head load forecast. In addition, it is important to keep in mind that each of
the inputs is in itself a vector of different variables. In the present work, the exogenous predictors
→
u 1,

→
u 2, . . . ,

→
u p are the time and weather variables shown in Figure 1. The time-lagged vector variables

→
y t,
→
y t+1, . . . ,

→
y t−q are the past values of the load. These variables are fed to the model in three vector

streams as inputs: five-year hourly load values, last week’s hourly load values, and the last 24-h hourly
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load values. The justification of this overlap is to increase the weight of more recent values of the
output variables over the oldest values. The Input-output relationship of ANN using NARX can be
formulated as follows [40].

y(t) = F[u(t), u(t− ∆t), . . . , u(t− n∆t), y(t), y(t− ∆t), . . . , y(t−m∆t)] (5)

In this case, n and m represent the delay time step in input and fed back output, respectively,
where F represents a nonlinear function. The actual values of load y(t) are used to train the network
and, in order to produce the forecasted 24-h load, the predicted y(t) load values are fed back in a
closed loop in a step of one hour. A backpropagation Levenberg–Marquardt training algorithm is used
to train the network in open loop utilizing the previous 365 days of data consecutively. The last 24-h
data is fed to the network as input in the closed loop mode while the fed back calculated the load
produced output with hour increments.

While operating in a closed-loop, the well-known, time varying exogenous variables such as
(working days, holidays, specific day in week, month, day, and hour) are utilized as regular inputs.
However, the forecasted values of weather parameters (dry bulb and dew point temperatures) are
taken for the chosen 24-h span where the load is being forecasted.

For a proposed framework, a feed forward perceptron neural network is constructed to study
the behavior of output yt at time t, utilizing inputs ut. The regression model for the output layer y is
represented in a nonlinear functional form below.

yt = ϕ
[

β0 + ∑q
i=1 βihit

]
(6)

In this scenario, the hidden layer hit is given as:

hit = Ω
[
γi0 + ∑n

j=1 γijxjt

]
(7)

ϕ is the output activation function, is linear, and is given as:

ϕ(x) = x (8)

Ω is the logistic sigmoid activation function for hidden neurons, which is of form:

Ω(t) =
1

1 + e−t (9)

The logistic function is utilized to limit or flatten the neuron weights. The bias value of output is
represented by β0. The output layer weights are represented by βi and input bias and weights of input
layer are represented here by γi0 and γij respectively, where sub index of q neurons and n inputs are
represented by i and j, respectively. From Equations (6) and (7), we have:

yt = ϕ
{

β0 + ∑q
i=1 βiΩ

[
γi0 + ∑n

j=1 γijxjt

]}
(10)

Then, for recurrent network description, an autoregressive, dynamic term is added on the output.
The hidden layers are represented by the equation below.

hit = Ω
[
γi0 + ∑n

j=1 γijxjt + ∑q
r=1 δirhr,t−1

]
(11)

Here, the delayed term weight is represented by δir and the feedback term by hr,t−1. Replacing
Equation (11) into Equation (6), we obtain:

yt = ϕ
{

β0 + ∑q
i=1 βiΩ

[
γi0 + ∑n

j=1 γijxjt + ∑q
r=1 δirhr,t−1

]}
(12)
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Equation (12) shows multiple inputs and past values of the output, which generally represents
the dynamics of the network. However, the equation represents the model as having only one hidden
neural layer, which can be extended to N layers by introducing the k index. Where k = 1, . . . , τ, and τ

outputs have a multi-dimensional nature.

yk
t = ϕ

{
βk

0 + ∑N
l=1 ∑q

i=1 βl
iΩ
[
γl

i0 + ∑n
j=1 γl

ijxjt + ∑q
r=1 δirhr,t−1

]}
(13)

Equation (13) represents the proposed NARX network. The network description for the open
loop and the closed-loop only varies by the method through which the delayed output is drawn.
In open-loop, the values of y is obtained from known historical output values and, taken as a regular
network input but in a closed-loop case, the value of y is obtained from predicted output values.
This description is given in Reference [11].

4.1.1. Non Recurrent or Recurrent Network

For feed forward topology, the proposed framework is trained initially in the open loop with a
training data set containing historical hourly load and weather data. The network is made recurrent
after feeding the output as an input into ANN, which is calculated after determining the node weights
in the open loop. Figure 6 shows the proposed Nonlinear autoregressive network. Two position
switches for open and close loop are shown. The switch is connected in the open loop phase during
training and in the closed loop phase during forecasting where the future value is predicted by utilizing
the calculated load values. The network weight is determined in the open loop during the training
process since the actual load output y(t) is a known reason. During the forecasting phase in the closed
loop, the actual load output is unknown. Therefore, the predicted load value with delay is fed back to
the network to produce a forecasted value.

4.1.2. Optimal Parameters

The network optimal structure is determined by iterating the number of neurons and the best
network with optimal fit is saved for forecasting purposes. However, for determining the optimal
value for input and feedback lag, certain procedures are needed due to the model recursive nature.
They are complicated to determine analytically.
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The procedure can be categorized in three types. Direct method: Retrain the network until a
minimum error is obtained (difficult to generalize error threshold, as network abilities are unknown and
its time consuming to retrain). Select Stopping Criteria: by dividing the data into training, testing and
validation set, a more consistent stopping criteria can be acquired. The training is stopped based on
minimum error on the validation set. The error weight on the training set is continuously decaying
but the error on validation set stops after decreasing to a minimum value until it increases again.
When the error is at a minimum, on the validation set, the network and generalized characteristics are
optimal and it determines a good fit. Using this approach, the need to retain the network for a fixed
error threshold can be omitted since the optimal value for input and feedback lags are determined
without utterly retraining the network. The general architecture for stopping criteria is shown in
Figure 7. Meta Heuristic Optimization: Multiple heuristic optimization techniques such as particle
swarm optimization, genetic algorithm, and simulated annealing are considered in the pre-study.
However, due to superiority of LSA in terms of speed, convergence, and error reduction, only LSA is
considered and explained in the proposed solution.

Lighting Search Algorithm

Lighting Search Algorithm (LSA) is a metaheuristic optimization technique invented in 2005 [25].
The optimal solution is determined by propagating the step leader particles known as projectiles.

Electronics 2018, 7, x FOR PEER REVIEW  13 of 26 

 

step+1 of the space projectile is given as 𝑝𝑆 = (𝑝1
𝑆; 𝑝2

𝑆; … ; 𝑝𝑁
𝑆 ). The Exponential distribution PDF in 

this case is given as: 

𝑓(𝑥𝑠) = {
1

𝜇
𝑒

−
𝑥𝑠

𝜇  𝑓𝑜𝑟 𝑥𝑠 ≥ 0

0 𝑓𝑜𝑟 𝑥𝑠 ≤ 0 
  (17) 

The updated position at step+1 stating the distance between space and lead projectile with 

exprand as exponential random function is given as: 

𝑝𝑖(𝑛𝑒𝑤)
𝑠 = 𝑝𝑖

𝑠 ± 𝑒𝑥𝑝𝑟𝑎𝑛𝑑(𝜇𝑖)  (18) 

Step leader expand to 𝑠𝑙𝑖(𝑛𝑒𝑤)  when appropriate results are achieved at step+1, with 

corresponding value for 𝑝𝑖(𝑛𝑒𝑤)
𝑠 , if expansion of 𝑝𝑖(𝑛𝑒𝑤)

𝑠  surpass 𝑠𝑙𝑖(𝑛𝑒𝑤)  then the new leader 

changed into the lead projectile. 

▪ Lead State Projectile 

With 𝜎; 𝜇 as a scaling parameter and shaping parameter respectively a random number model 

is generated for lead projectile, with a normal distribution, given as: 

𝑓(𝑥𝐿) =
1

𝜎√2𝜋
𝑒

−
(𝑥𝐿−𝜇)2

2𝜎2   (19) 

At step+1 the lead projectile updated position with norm and representing normal random 

function is given as: 

𝑝𝑖(𝑛𝑒𝑤)
𝐿 = 𝑝𝑖

𝐿 ± 𝑛𝑜𝑟𝑚𝑟𝑎𝑛𝑑(𝜇𝐿 , 𝜎𝐿)  (20) 

▪ Forking Method 

Forking in LSA occurred in two ways: 

1. With production of symmetrical channels due to collusion in nucleus, given as: 

𝑝�̅� = 𝑎 + 𝑏 − 𝑝𝑖  (21) 

The one-dimensional original and opposite projectiles are represented by 𝑝𝑖  and 𝑝�̅� , 

respectively, with a and b as boundaries, a satisfied fitness value is chosen by the forking 

leader in order to increase the method efficacy. 

2. After the number of propagation, the unsuccessful step leaders re-forward the energy. In 

such a case, a successful leader tip is expected to produce a channel to generate forking. 

▪ Optimization Algorithm 

• Objective 

Based on a minimum objective function value, the number of hidden neurons, feedback delays, 

and input delays are optimized using the equation below. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min [
1

𝑁
∑(𝐼𝑒𝑠 − 𝐼𝑎)2

𝑁

𝑖=1

] (22) 

In this case, the actual 𝐼𝑎 and estimated 𝐼𝑒𝑠 values are presented for N observations. 

• Implementation 

Through an iterative process using input and constraints, the objective function is minimized to 

obtain the best solution. The LSA algorithm is summarized as follows: 

1. The parameters values are declared, which includes population size, channel time, and 

number of iterations. Moreover, boundaries are assigned for three-dimensional numbers 

of hidden neurons, feedback delays, and input delays. 

Projectiles Properties

The projectile velocity vp and kinetic Energy EP are given by the equation below.

EP =


 1√

1−
(

vp
c

)2

− 1

mc2 (14)

vp =

1−

 1√
1−

(
vp
c

)2
− sFi

mc2


−2

− 1
2

(15)

In this scenario, v0 is initial velocity, vp is current velocity, s represents the traveling path length of
the projectile, m represents the particle mass, Fi is the constant rate of ionization, and c is the speed
of light.

In LSA, projectiles are divided into three categories, i.e., transition, space, and lead projectiles.
Movement of the step leader and projectiles modeling are explained below.
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Transition State Projectile

Initially, a leader tip is created randomly whose probability density function (PDF) could be
mathematically represented as:

f
(

xT
)
=

{
1

b−a f or a ≤ xT ≤ b
0 f or x

〈
a or xT〉b (16)

sli gives the step leader value with a and b as a solution space upper and lower bounds,
solution space is represented as SL = (sl1; sl2; sl3; . . . ; slN), Esli gives tip energy of step leader whose
initial value is given by the random value xT with a population of N with solution dimensions
pT =

(
pT

1 ; pT
2 ; . . . ; pT

N
)
.
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2. After the number of propagation, the unsuccessful step leaders re-forward the energy. In 

such a case, a successful leader tip is expected to produce a channel to generate forking. 

▪ Optimization Algorithm 

• Objective 

Based on a minimum objective function value, the number of hidden neurons, feedback delays, 

and input delays are optimized using the equation below. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min [
1

𝑁
∑(𝐼𝑒𝑠 − 𝐼𝑎)2

𝑁

𝑖=1

] (22) 

In this case, the actual 𝐼𝑎 and estimated 𝐼𝑒𝑠 values are presented for N observations. 

• Implementation 

Through an iterative process using input and constraints, the objective function is minimized to 

obtain the best solution. The LSA algorithm is summarized as follows: 

1. The parameters values are declared, which includes population size, channel time, and 

number of iterations. Moreover, boundaries are assigned for three-dimensional numbers 

of hidden neurons, feedback delays, and input delays. 

Space State Projectile

When the N movement in step leader tips is observed, a random number model is generated with
partial properties having exponential distribution and shaping parameter µ. The position at step+1 of
the space projectile is given as pS =

(
pS

1 ; pS
2 ; . . . ; pS

N
)
. The Exponential distribution PDF in this case is

given as:

f (xs) =

{
1
µ e−

xs
µ f or xs ≥ 0

0 f or xs ≤ 0
(17)

The updated position at step+1 stating the distance between space and lead projectile with exprand
as exponential random function is given as:

ps
i(new) = ps

i ± exprand(µi) (18)

Step leader expand to sli(new) when appropriate results are achieved at step+1, with corresponding
value for ps

i(new)
, if expansion of ps

i(new)
surpass sli(new) then the new leader changed into the

lead projectile.
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In this case, the actual 𝐼𝑎 and estimated 𝐼𝑒𝑠 values are presented for N observations. 

• Implementation 

Through an iterative process using input and constraints, the objective function is minimized to 

obtain the best solution. The LSA algorithm is summarized as follows: 

1. The parameters values are declared, which includes population size, channel time, and 

number of iterations. Moreover, boundaries are assigned for three-dimensional numbers 

of hidden neurons, feedback delays, and input delays. 

Lead State Projectile

With σ; µ as a scaling parameter and shaping parameter respectively a random number model is
generated for lead projectile, with a normal distribution, given as:
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f
(

xL
)
=

1
σ
√

2π
e−

(xL−µ)
2

2σ2 (19)

At step+1 the lead projectile updated position with norm and representing normal random
function is given as:

pL
i(new) = pL

i ± normrand(µL, σL) (20)
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] (22) 

In this case, the actual 𝐼𝑎 and estimated 𝐼𝑒𝑠 values are presented for N observations. 

• Implementation 

Through an iterative process using input and constraints, the objective function is minimized to 

obtain the best solution. The LSA algorithm is summarized as follows: 

1. The parameters values are declared, which includes population size, channel time, and 

number of iterations. Moreover, boundaries are assigned for three-dimensional numbers 

of hidden neurons, feedback delays, and input delays. 

Forking Method

Forking in LSA occurred in two ways:

1. With production of symmetrical channels due to collusion in nucleus, given as:

pi = a + b− pi (21)

The one-dimensional original and opposite projectiles are represented by pi and pi, respectively,
with a and b as boundaries, a satisfied fitness value is chosen by the forking leader in order to
increase the method efficacy.

2. After the number of propagation, the unsuccessful step leaders re-forward the energy. In such a
case, a successful leader tip is expected to produce a channel to generate forking.
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number of iterations. Moreover, boundaries are assigned for three-dimensional numbers 

of hidden neurons, feedback delays, and input delays. 

Optimization Algorithm

• Objective

Based on a minimum objective function value, the number of hidden neurons, feedback delays,
and input delays are optimized using the equation below.

objective f unction = min

[
1
N

N

∑
i=1

(Ies − Ia)
2

]
(22)

In this case, the actual Ia and estimated Ies values are presented for N observations.

• Implementation

Through an iterative process using input and constraints, the objective function is minimized to
obtain the best solution. The LSA algorithm is summarized as follows:

1. The parameters values are declared, which includes population size, channel time, and number of
iterations. Moreover, boundaries are assigned for three-dimensional numbers of hidden neurons,
feedback delays, and input delays.

• 100 iterations are considered with 10-channel time.
• The hidden nodes range are set from 0–20.
• Delays are set in range 1–64.

2. Step leaders are generated randomly within the bounded range for the number of hidden neurons,
feedback delays, and input delays.

3. Levenberg–Marquardt is used for training with a logistic sigmoid as an activation function.
During training, the objective function is calculated for each step leader.

4. Considering all step leaders, the iterative process is initiated to find an optimal solution.
5. Considering step leader movement, the bad channel is eliminated and the channel time

is resettled.
6. Step leaders are estimated based on best and worst performance.
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7. With revised kinetic energy, Ep the network is retrained and the activation function is re-executed.
For each step leader, the objective function is reassessed.

8. Ejecting space particles and lead particles.
9. In case the energy of space and lead projectiles greater than step leader energy, their direction

and position are updated using Equations (18) and (20).
10. Re-initialize the updated projectile. The network is retrained and the objective function for lead

and space particles is reassessed.
11. Two identical channels are formed at the fork point in the case of occurrence of forking. With the

least energy, elimination of the channel time is revised.
12. All values in the population are updated and the procedure is repeated until the maximum

iteration limit.
13. The optimal result for the number of hidden neurons, feedback delays, and input delays are

utilized in the NARXNN network for the best training and validation.

The Flow chart explaining the LSA optimization algorithm is shown in Figure 8.

4.1.3. Operating Parameters

The data set for five years is segmented into one-year groups including: Date; Month; Year;
Hour; Week day; Holiday/Working day; Dry Bulb Temperature; Dew Point Temperature; Humidity;
Hourly Load. The data set also include redundant inputs, previous week, and previous day load values.
The data is pre-processed to match the size of input neurons. The sub set of each year is used for testing.
The processed data is distributed into training, testing, and validation sets. Open loop weights are
obtained by training data through Levenberg–Marquardt backpropagation, Bayesian Regularization
Backpropagation, and Scaled Conjugate Gradient Backpropagation methods. The process is repeated
for a multiple neuron count in order to achieve minimum MAPE criteria. The loop is closed after
selecting the Minimum MAPE open loop network. In order to forecast the next 24-h load, the forecasted
weather and desired date is fed to the network with one-hour increments. The forecasted output
generated is fed back to produce the next 24-h load output. The main parameters of the model include
input values, lagged input values, neuron counts in each particular layer, hidden layers, and connection
among neurons. The inputs are selected by performing partial and multiple correlation analysis among
available variables. The importance of selected predictors is shown in Figure 1. The stepwise selection
method is used to find the highest correlated subset. The lag in the input is determined by testing
the model form 1-h to 168 h in the case of validation set stopping criteria. The partially best model
performance is obtained at a 24-h lag with 10–20 neurons count in the hidden layer. In the case of
applied NARX-LSA based criteria, the optimal value for input and feedback delays are 18 and 15,
respectively, with 10 hidden neurons. The selected network is fully connected as per NARX definition.

4.1.4. Parameters Selection

A correlation analysis between input predictors and output is performed to maintain a
parsimonious nature of the network, i.e., a network that perform more precisely and require minimum
inputs. Each input vector is statistically correlated with available residential load, as shown in
IESCO data section. The weight given to each predictor in the predictive model is shown Figure 9.
The maximum weight is given to inputs connected with weekdays.
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The parameters for best NARX network performance with minimum inputs are as follows:

1. Input variables are determining the number Input nodes. In the proposed case, 10 variables are
taken excluding wet bulb temperature.

2. 10 hidden layers have been considered here for the best solution. The number of hidden layers
can only be ≥1.

3. The input nodes are equal to the number of hidden nodes.
4. The output nodes are determined by the size of the forecasting period.
5. Logistic Sigmoid is used as an activation function, which is mathematically given as:

S(t) =
1

1− e−t (23)

6. The Levenberg–Marquardt backpropagation is used as a learning algorithm, which is mathematically
represented as:

xi+1 = xi −
(

JT J + ∂I
)−1

JTe (24)
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Here, J is the Jacobin matrix, I is the identity matrix, e is to calculate error, xi+1 is the iterative
input values, and ∂ varies between 0–1 and increases only the error in the objective increased
during iterations.

The data preparing and pre-processing procedure for NN calibration with proposed methodology
is shown in Figure 10. The feature-scaling method is used for normalizing and preprocessing the data.
The range is set from [0, 1] and is mathematically represented as:

Ú =
U −Umin

Umax −Umin
(25)

The data set is divided as: 70% for training, 15% for validation, and, for testing the remaining,
15% is used. For improving the network, seasonal dependency of the model is trained with diverse
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sample sizes varying from two to three years. In the case of the NARX-LSA network, the model
training utilized 70% data with 30% data for testing.
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4.1.5. Closed Loop Stability

A proper initial weight selection is pivotal for the network convergence to deal with a closed loop
stability issue. A framework is determined in Reference [41] to choose the initial weights for the NARX
network. The stability is achieved when the modulus of initial weight fulfill the following.

ωm
kl ≤

4√
KJ

(26)

where ωm
kl is the initial weight and K and J give the number of neurons in output and hidden layer

respectively. For the proposed case, K = 1 and J = 10, which gives an initial weight value of ≤1.26 .
The initial weight is taken within the proposed range for resolving the stability issue.

4.1.6. Error Weight Decay

The proposed weight decay function is given as [26]:

E(ω) = Eo(ω) +
1
2

µ ∑i ω2
i (27)

Here, E(ω) represents the error function, µ is the decaying constant, and w is a vector representing
bias and weight of the network. For constant error weight, the function for ith iteration is given as:

E(ω) =
1
N ∑N

i=1

(
yi −

⇀
y i

)2
(28)
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Here. y is the output,
⇀
y is the calculated value of output, and N represents the number of neurons.

The above equation is converted for the proposed exponential weight decay and is given below.

E(ω) =
1
N ∑N

i=1(1− ε)N−i
(

yi −
⇀
y i

)2
(29)

The higher weight values are given to the error generated by recent data and weight values are
exponentially reduced for the error generated by historical data.

4.1.7. Performance Metrics

The performance is measured by the mean absolute percent error. The error measuring method
allows us to determine the accuracy of the utilized forecasting techniques applied to specific time
series data. The MAPE and RMSE is defined as:

MAPE =
1
n ∑n

i=1|Ei| × 100% (30)

RMSE =
1
n

√
∑n

i=1

(
LActual

i − LForecast
i

)2 (31)

The Error Ei is represented as:

Ei =
LActual

i − LForecast
i

LActual
i

(32)

The performance is measured for all employed techniques, for BRT, fit net NARX close loop case
and NARX-LSA-EWD case. The corresponding error is determined as the fit error, which is the residue
between the real load value and corresponding output from the validation set. The best network is
selected from the minimum error values and is exploited for forecasting. In a closed loop, the actual
load known from the past validation set is known. The error is the difference between past output
validation data and the forecasted output and is termed as the forecast error.

5. Simulation and Results

ANNs configuration varies structurally depending on parameters used such as counts of hidden
layers, a connection strategy among layers, feedback loops, consecutives, and non-consecutiveness
layers, feedback within the layers, series-parallel layers etc. Furthermore, important parameters that
contribute for best results are:

• Number of Neurons
• Input and Feedback time lags
• Training Data
• Training Algorithm
• Activation function for neurons

The combination of different topologies and parameters provide multiple structural configurations
that empowers a particular configuration to work best with diverse data sets. MATLAB 2016 NN
Toolbox is used to simulate NARX Network. The Model is run with the IESCO dataset, hourly varying,
real-time residential load data is obtained from the IESCO grid operator from 2012–2016. The following
network parameters were chosen for simulation purpose: (1) Data is divided into three different
periods; multiple runs on each iteration were performed in order to lower the dependency of output
on initial conditions. (2) 10-hidden layers a considered with 20 neurons after training the network
under define stopping criteria. (3) Levenberg–Marquardt backpropagation algorithm with a logistic
sigmoid activation function is used for training.
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Based on best MAPE fit on the available data, an open loop NARX model is chosen for a forecasting
purpose. The network training is performed in open loop utilizing past available data and the output
is used as a next step input for forecasting in a closed-loop. The simulation result comparing actual and
predicted load is shown in Figure 11. For a comparative purpose, a FitNet, BRT model is developed in
MATLAB along with ARMAX and the state space model in

IBM’s SPSS Package. The results are generated with default FitNet configuration using
Levenberg–Marquardt algorithm with 10 hidden layers and 20 trees having the least leaf estimate of
40 are considered for BRT simulation.

SPSS generated the best result for 2,1,8 ARIMA configuration, which is selected by using expert
modeler based on the minimum fitness error. The model is then transformed into state space for
comparative analysis.

Table 1 shows the absolute error percentage and the mean absolute percentage error for a 24-h
predicted load. The MAPE for the FitNet is 2.97%, for BRT is 2.84%, for the ARMAX model 1.43%,
for the state space is 2.68%, and for applied NARX network is 0.99%. A notable improvement is
achieved by applied the NARX network with approximately 20% reduction in a forecasting error,
as can be seen through a maximum value of an absolute error percentage.

Table 1. Model comparison statistics.

Hour FitNet
Absolute Error%

BRT
Absolute Error%

ARMAX
Absolute Error%

State Space
Absolute Error%

NARX
Absolute Error%

1 2.38 2.49 1.15 1.27 0.84
2 2.31 2.71 1.49 1.20 0.83
3 2.13 3.11 0.61 5.18 0.81
4 2.02 2.02 1.49 8.82 0.78
5 2.15 2.06 1.99 1.77 0.75
6 2.57 4.01 1.63 0.97 0.84
7 3.71 6.52 1.85 2.41 1.30
8 4.63 5.83 2.73 6.45 1.45
9 3.91 2.46 2.05 2.08 1.41

10 2.71 1.42 1.02 3.58 1.02
11 2.85 1.46 1.11 2.01 0.83
12 2.45 2.01 1.02 0.78 1.01
13 3.21 2.56 1.10 1.88 1.04
14 3.13 2.51 1.32 2.51 1.13
15 3.24 2.51 1.35 3.83 1.13
16 2.95 2.47 1.89 1.18 1.16
17 3.15 2.06 1.90 3.31 1.16
18 3.12 2.45 1.17 1.80 1.18
19 3.17 4.01 0.98 1.81 1.25
20 3.25 3.92 1.68 1.19 1.22
21 3.24 2.51 1.22 2.21 1.03
22 3.35 2.49 0.78 4.15 0.71
23 2.86 2.13 0.65 3.17 0.41
24 2.75 2.41 0.87 0.85 0.50

Maximum 4.63 6.52 2.73 8.82 1.45
RMSE 9.83 9.75 4.73 8.09 2.61

MAPE% 2.97 2.84 1.43 2.68 0.99

For time series dynamic nonlinear load variations, NARX generates the closest forecast.
The advantages and disadvantages of different techniques are given in Table 2.

Proposed Improvement

The performance efficacy of the NARX network is improved by utilizing LSA optimal solution
for hidden neuron, input, and feedback delays. The proposed network performed more accurately
with less variance and best fitting. The optimal parameters are utilized to perform training with
Levenberg–Marquardt and logistic sigmoid as an activation function.
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Figure 11. (a) Actual load vs model prediction (1-Kanal), (b) actual load vs model prediction (10-Marla),
(c) actual load Vs model prediction (7-Marla), (d) actual load Vs model prediction (5-Marla).

Table 2. Advantage and disadvantage for forecasting methods.

Methods Advantage Disadvantage

ARIMA/State Space

• General class of nonlinear model used for
forecasting a regression model and
developing a fit.

• Parametric and autoregressive model used
for forecasting applications.

• Need Data linearization.
• Can only work with stationary data.
• Required complex data preprocessing.
• Loss of information in residuals for periodic

data determined by autocorrelation and partial
autocorrelation graphs.

• Need complex differencing, deflating,
and logging techniques for data linearization.

• Less accuracy with time series data.

Decision Tree

• Require less effort for data preparation.
• Tree performance is not effected by

nonlinear data.
• Easy interpretation.

• Required more memory.
• Difficult to prune.
• High computational time.

FitNet
• Simplicity, improved forecast accuracy.
• Autocorrelation remains constant over time.

• Nonrecurring, constant data set, non-exogenous
feedback, solution rely on non-important
parameters and less.

• Dependency on past values.
• Might over fit.
• High MAPE values.

NARX-LSA-EWD

• Dynamic recurrent network and create
memory between inputs and output
through lags.

• Faster convergence.
• The accuracy is improved by utilizing

optimized (LSA) values for the number of
neurons, input, and feedback delays.

• Avoid the possibility of overfitting with an
increase in the number of neurons by using
the exponential weight decay function.

• Autocorrelation remains constant over time.

• More computational time.

6. Results & Discussion

The comparative error results for NARX and NARX-LSA is shown in Figure 12 with MAPE in
NARX-LSA case of 0.85%. Error distribution is shown in Figure 13 with hourly, weekly, and monthly
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breakdown for a single house category subjective to follow a similar pattern for other house types.
The effect of neurons count on point and mean error can be explored further.

The convergence is obtained at less than 35 epochs when training by using a Levenberg–Marquardt
backpropagation algorithm. The error histogram for demonstrating data fitness is shown in Figure 14a
and input lag correlation analysis is given in Figure 14b. The network maintained stability as no
increase in error is monitored after convergence and there is no overshoot, which can be validated
from Figure 15a. The performance metrics between actual and forecasted load is shown by a regression
plot in Figure 15b. The closeness of data with fitted regression is shown with value of R = 0.998.
The closeness of R values to 1 in the proposed model represents that the data variance is well explained
around its mean.

Two training functions, two activation functions, and the error exponential weight decay function
is used to test the improvements in the proposed model. The MAPE in each case is analyzed.
The result is an average of five runs with an optimal value of a hidden layer neurons, feedback,
and input time lags. From the result in Table 3, the Levenberg-Marquardt worked well with a logistic
sigmoid and Bayesian Regularization performed well with a hyperbolic tangent function. There is
little effect on MAPE when using the Levenberg-Marquardt algorithm with an exponential mask.
For the Bayesian Regularization case, a notable improvement is observed in an exponential case.
The Levenberg-Marquardt with log sigmoid is more susceptible to varying neuron numbers and
produce less error across multiple scenarios.

The computational efficiency in terms of training time is better for conventional feedforward and
FitNet algorithms. Adding complexity, the training time increased. Average NARX and NARX-LSA
took 2–16 s and 20–25 s for training respectively, contrarily FitNet, and feedforward network took
0–9 s for similar neuron variations. The training is performed on an Intel quad core i7 processor with
8 GB storage.

Table 3. Comparative analysis with exponential weight decay.

Training Function Activation Function ClosedLoop-NARX-LSA
MAPE

Closed Loop-NARX-LSA
(Exponential Weight Decay) MAPE

Levenberg-Marquadt Logistic Sigmoid 0.85 0.821
Levenberg-Marquadt Hyperbolic Tangent 2.04 2.01

Bayesian Regularization Logistic Sigmoid 1.22 1.02
Bayesian Regularization Hyperbolic Tangent 1.11 0.89
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Figure 13. (a) Hourly error distribution, (b) weekly error distribution, (c) monthly error distribution,
and (d) mean error distribution.
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Figure 14. (a) Error histogram and (b) error auto correlation with lag inputs.

In economic terms, the lower prediction error translates in cost benefit by saving energy cost,
which is a resultant obtained by handling power system operations more accurately, which makes the
system more reliable. For grid operations like IESCO, the region with continuous economic growth
and facing power shortcomings an accurate prediction will help the power company to deal with
the load shedding problem more efficiently. The prediction accuracy will help them save cost by not
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committing expensive independently operated fuel generating units, which can ease the burden on
the government by controlling the subsidized amount on the current energy tariff.Electronics 2018, 7, x FOR PEER REVIEW  23 of 26 
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Figure 15. (a) Model performance validation and (b) model regression plot.

Future Consideration

With the proposed electrical load, forecasting technique future research can be realized towards
operational cost reduction [42], optimum use of available resources, effective power management,
stability analysis [43], and a reliable planning process. The research has been expanded towards
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forecasting added-peninsular systems in the region. The aim is to test model robustness with highly
variable house data and propose feasible energy management plans for the region.

7. Conclusions

In this paper, an autoregressive nonlinear neural network is implemented with external input
vectors. The network is originally trained in the open loop by considering available exogenous (climate
factors, time factors) and endogenous inputs (historical load) vectors. The network is used in recursive
mode with input, hidden, and output layers fully connected. The initial neural weight is determined
by operating the network in open loop. The network is fed with forecasted load output in a closed
loop. The feedback loop isolated the network from the initial load input, saving the network for
utter retaining for each predicted output. Backpropagation Levenberg–Marquardt algorithm with log
sigmoid activation function is used for training. The accuracy in terms of MAPE of less than 1% for
NARX network validates its effectiveness as compared to conventional feedforward, BRT, and statistical
methods (ARMAX, state space). The comparative analysis of statistical and computational methods
demonstrated that the proposed NARX network generates least MAPE error. The NARXNN-LSA
method features strong robustness, high convergence speed, and high accuracy with no dependency
on the model mathematical relationship. The model is further tested by adding a weight decay mask
on error weights from old data. The proposed model might have high prospects to be used in a wide
range of variable load data, which makes it a useful tool for sustainable energy applications.
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