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Abstract: Accurate maneuver prediction for surrounding vehicles enables intelligent vehicles to
make safe and socially compliant decisions in advance, thus improving the safety and comfort of
the driving. The main contribution of this paper is proposing a practical, high-performance, and
low-cost maneuver-prediction approach for intelligent vehicles. Our approach is based on a dynamic
Bayesian network, which exploits multiple predictive features, namely, historical states of predicting
vehicles, road structures, as well as traffic interactions for inferring the probability of each maneuver.
The paper also presents algorithms of feature extraction for the network. Our approach is verified on
real traffic data in large-scale publicly available datasets. The results show that our approach can
recognize the lane-change maneuvers with an F1 score of 80% and an advanced prediction time of
3.75 s, which greatly improves the performance on prediction compared to other baseline approaches.

Keywords: maneuver prediction; dynamic Bayesian network; intelligent vehicles; feature extraction

1. Introduction

Intelligent vehicles are promising tools for future transportation. They show an enormous potential to
improve driving safety and the efficiency of transportation systems. However, current technologies
on intelligent vehicles still have limitations, especially when they are driving in complex dynamic
environments. The limitations lie in making socially compliant maneuvers and completely avoiding
collisions with dynamic obstacles (surrounding vehicles and other moving traffic participants). To overcome
these limitations, intelligent vehicles should gain a better understanding of dynamic surroundings.

There are many previous studies concerning the understanding of dynamic surroundings.
Intelligent vehicles normally use onboard sensors, such as digital cameras, depth cameras, LIDARs,
and radar ([1–6]) for accurate detection of dynamic surroundings. Inspired by human drivers, who have
an inherent capacity to anticipate the future traffic, people try to enable intelligent vehicles to predict
the future motion of surrounding vehicles. The prediction helps intelligent vehicles make safe and
socially compliant decisions in advance [7,8], thus guarantee the driving safety without losing too
much comfort or being too conservative.

However, accurate motion prediction is an extremely challenging task because there exists a large
number of potential factors that can influence the predicted results. For instance, the sensors installed
on an intelligent vehicle may not detect all cars in the neighborhood due to limited visibility and
occlusion. Moreover, different driving habits of human drivers will also increase the difficulty
of the motion prediction. According to [9], predicting maneuvers is essential and significant for
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reliable motion prediction, in that maneuvers reflect social conventions and long-term trends of
a rational driving.

While maneuver prediction of surrounding vehicles received widespread attention in the past
three years, most state-of-the-art approaches do not apparently show excellent predictive performance.
Besides that, some reported approaches are only verified in a simulation environment or small
self-collected datasets, which leads to difficulties to assess their performance on prediction.

Contribution

In contrast, this paper proposes a practical, high-performance, and lost-cost maneuver-prediction
approach. Moreover, our approach is verified on large-scale and publicly available real-traffic datasets
instead of using small self-collected datasets. The main features of this paper include three aspects.

(1) Practicality

Our prediction approach is based on a dynamic Bayesian network (DBN). (i) The probabilistic
framework can effectively deal with the uncertainties in the prediction. The uncertainties are often
faced by intelligent vehicles because of limited sensing capacity of sensors and changing environments.
(ii) Moreover, our approach is more flexible to be extended to other scenarios compared to the
approaches using hand-designed rules. In other words, though the predicted scenario in this paper
focuses on the lane-change maneuver prediction in highways, the DBN can be extended to other
scenes, for example anticipating maneuvers of turning to a crossroad. (iii) Besides, the DBN is intuitive
to add predictive features based on the causal relationship in different predicting scenarios.

(2) High performance

Our approach adopts more features relatively compared to traditional approaches using a unique
feature. The features we used reflect not only the physical states and road information but also traffic
interactions. Meanwhile, the DBN considers the continuous changes and historical states of the chosen
features. The experimental results show that our approach gains comparable prediction performance
compared to other benchmark approaches.

(3) Low cost

Our approach needs less computational resource compared to the one using deep neural networks
for prediction.

The remainder of the paper is organized as follows. In Section 2, the state-of-the-art techniques of
maneuver prediction for surrounding vehicles are compared and classified based on predictive features.
In Section 3, the framework of our system is introduced. In Section 4, the multi-dimensional predictive
features and the structure of our DBN for maneuver prediction are discussed. In Section 5, the algorithm
for feature extraction and the qualitative discretization method are highlighted. In Section 6,
the datasets we applied are introduced, and the optimal parameters for discretization are selected.
Moreover, the prediction performance of the proposed approach is compared with other state-of-the-art
benchmark approaches. Finally, Section 7 concludes and suggests future work.

2. State of the Art

The predictive features are crucial in the fields of pattern recognition [10–12]. The existing
approaches to maneuver prediction can be classified based on their used predictive features. Generally,
commonly used features for maneuver prediction can be classified into three types: (1) features related
to physical states of vehicles, (2) features related to road structures, (3) features related to traffic
interactions. The specific comparison is shown in Table 1 and will be discussed in the following of
this section.
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Table 1. Comparative review of approaches on intention recognition for surrounding vehicles.

Applied Features Approaches

Unique Physics related
motion model [13,14],
intelligent driver model [15],
prototype trajectory set [16]

Road structure-related set-based prediction [17,18]

Multiple

Without traffic interaction
(combined the physics and road structure)

naive Bayesian approach [19] ,
rule-based approach [20],
decision tree-based approach [21],
interacting multiple model filter [22,23],
hidden Markov model [24–26]

With traffic interaction

convolutional neural network [27],
long short-term memory network [28–30],
interactive hidden Markov model [31],
Bayesian network and its variations [32–36]

Physics-based features mainly refer to detective states (e.g., position, velocity, acceleration)
of surrounding vehicles. Because the motion of vehicles satisfies kinematic and dynamic laws,
the historical states of vehicles with kinematic and dynamic laws can be used to infer possible future
states (i.e., motion boundaries) of vehicles. Traditional physics-based prediction approaches use
a motion model based on constant velocity (CV), constant acceleration (CA), constant turn rate (CTR)
or their combinations (e.g., [13]). An intelligent driver model (IDM), which explicitly builds the
relationship between maneuvers at intersections and velocity, acceleration of predicting vehicles,
is proposed in [15]. Some of these approaches assume Gaussian noise existing in the detection
of states, thus improving the ability to handle uncertainties. Contrarily, some approaches do not
assume a specific distribution of the noise. For example, in [14], the Markov chains and Monte Carlo
method are used to predict the probabilistic occupancy and furthermore determining the collision
risk. Moreover, [16] presents an approach based on a set of trajectory prototype. The trajectory set
is collected from fixed driving scenarios. The maneuver is predicted by comparing the historical
trajectory and prototypes using similarity metrics. Though this approach can gain a relatively high
performance in fixed driving scenarios, it is hard to be adaptive to other traffic situations. In general,
physics-based prediction approaches are always limited to short-term prediction, since uncertainties
not only come from the detection of states but also the driving environments and traffic interactions.
These external features also influence driving maneuvers.

Road structure-based features mainly refer to road topology (which can be seen as a simplified road
representation), road signs, and traffic rules. The typical road structure-based prediction approaches
include [17,18,37]. In [17,18], a set-based approach is presented, which uses a geometric graph to represent
roads. The approach is expected to work in arbitrary road networks and guarantee the collision-free
reachability analysis. However, the prediction generates an over-approximate occupancy, which is too
conservative to provide enough information for the motion planning of intelligent vehicles. In [37],
the features considering traffic rules are discussed. However, the hand-designed rules are too complex to
be modeled. The simulation and verification are also hard to perform.

Recently, many prediction approaches combine physics-based features and road structure-based
features. In [19], the conditional probability of features is modeled as a Gaussian mixture model.
Then, the approach applies a naive Bayesian method to classify the lane-change maneuver. Moreover,
the predictive power of all features is compared, and thereby obtaining features with maximum
predictive power. Compared with the approaches which use only physics-based features, the predicting
accuracy of the approach has been remarkably improved. In [20], maneuver prediction is performed
based on two types of features and ontology-based rules, which models priori driving knowledge.
Similarly, the paper [21] adopts the decision tree method for predicting risk behaviors in cut-in scenes.
However, these two methods [20,21] have high complexity and are difficult to be extended to other
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environments. In [22], a unified multi-model filtering algorithm for maneuver prediction and trajectory
prediction is proposed. The approach uses a reference path to help extract the road-structure related
features. However, the predicted results seem effective only in short term. In [25], a hidden Markov
model (HMM) is used to predict lane-change maneuvers. It is announced to achieve 96% accuracy,
without reporting the false warning rate.

Interaction-aware features predict trajectories of surrounding vehicles with consideration of the
dependencies between vehicles. The features represent how the motion is influenced by the traffic
interaction (e.g., collision avoidance, social conventions), therefore interaction-aware prediction approaches
own a better understanding of the whole future traffic situation. Although the interaction-aware features
are essential in maneuver prediction, there are few approaches effectively considering these features before
2014 according to the review literature [9]. In the past three years, increasing researches use these features
implicitly or explicitly. With the development of deep learning technology, approaches based on the
deep learning framework (e.g., [27,28]) can model interactions implicitly. In [27], a Convolution Neural
Network (CNN) is modeled to predict the lane-change maneuver. In [28], a Long Short-Term Memory
(LSTM) network shows a promising performance on predicting predefined maneuvers (i.e., turning
left, turning right, and keeping straight) at intersections. Even though these approaches can model the
interaction implicitly, the neural network model is not intuitive in the prediction process. Moreover,
the high computational resource and large training data are required.

Thus, the explicit interaction-aware prediction approaches are proposed. In [31], the maneuver
prediction is based on an optimization approach, whose objective function models the interactions
of surrounding vehicles. The Bayesian network and its variants [32–36] are common to model the
interactions explicitly. In [32], an object-oriented Bayesian network (OOBN) is employed to predict
lane-change maneuvers, which attempts to be adaptive to different scenarios. In [33], a DBN models
driving intention of all vehicles instead of each separate vehicle, but the conditional distribution in the
network requires a large number of parameter settings and model assumptions. In [34], a Bayesian
network is established to predict maneuvers in highways. However, the network does not consider
dynamic changes, leading to poor predicting performance. Besides, as the paper mainly focuses on the
analysis of collision risks, the prediction performance is unverified. In [35], interactions are modeled
through model-based cost functions, which requires expert knowledge. The result of the model is
then used as a priori knowledge of the Bayesian network to simplify network structure. Unlike our
network, all previously mentioned networks lack either full consideration of predictive features or
capabilities in producing continuous predictions.

3. System Architecture

The architecture of our maneuver-prediction system is shown in Figure 1. The core of our system
is a DBN with the three-layer structure, which fully considers the predictive features and the relevance
of continuous maneuvers. The network is instantiated for each surrounding vehicle. For simplicity,
each node of the DBN represents one layer in a one-time step in the figure.

After we have determined the structure of the network, the maneuver-prediction system runs as
follows. Firstly, the raw data are obtained either from real-time detection systems or collected datasets.
Secondly, to obtain the feature state of each node in the network, the corresponding feature extraction
algorithms for all nodes are presented. Thirdly, the generated data about feature states are randomly
separated into learning sets and testing sets. Fourthly, the learning sets are used to learn parameters of
the DBN. Lastly, the testing sets are used to infer the probability of the lane-change maneuver and
verify the performance of the prediction.
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Dynamic Bayesian Network

Parameter Estimation

Probabilistic Inference

Figure 1. Framework of proposed maneuver-prediction approach.

4. Dynamic Bayesian Network for Maneuver Prediction

The DBN is a directed probabilistic graphical model. It is widely used in reasoning and
classification. A directed edge from a parent node to a child node represents a causal relationship,
which refers to the state of the child node depends on the parent node. Therefore, the child node
has a conditional probability distribution. In this section, our DBN for maneuver prediction will be
demonstrated in detail. The introduction to the structure of the network is followed by parameter
estimation and probabilistic inference.

4.1. Network Structure

A reasonable network structure is a prerequisite for maneuver prediction using a DBN.
This section first introduces why we build the network as Figure 2 and then discusses the functions and
relationships of the nodes in the network. Please note that in the rest of this paper, we mainly discussed
the lane-change maneuver prediction, though the network can also be applied to the prediction of other
maneuvers. The lane-change maneuver includes left lane change, right lane change, and lane keeping.

Inspired by [34], a three-layer structure is proposed, which institutes of a causal evidence layer,
a maneuver layer, and a diagnostic evidence layer. We try to separate predictive features to make
inter-causal reasoning instead of making either causal or evidential reasoning because of the basic
causal assumption. The assumption of our model is that the driving maneuvers of surrounding
vehicles are rational, and can be seen as an intermediate step in the driving process. The driving
process can be modeled as follows. Initially, a driver evaluates the feasibility for executing specific
maneuvers. The factors for the evaluation could be set in the causal evidence layer. If all conditions
are satisfied, the driver will choose a proper driving maneuver to respond to changing environments.
Next, the consequences caused by the maneuver will be produced in the form of measurable
physical motion states. Thus, these consequences could be set in the diagnostic evidence layer.
Finally, the physical motion states will furthermore influence the maneuver in the subsequent frame.

To consider all predictive features discussed in Section 2 (i.e., physics-based features,
road structure-based features, and interaction-aware features) when predicting maneuvers of the vehicle
(PV), our DBN is designed as Figure 2. The DBN concerns the predictive features and maneuvers in
consecutive time slices (also called frames). The time slice [38] discretizes the continuous timeline
into countably discrete time points with a predetermined time granularity, which is often consistent
with the frequency of data recording. As the computational complexity of probabilistic inference
increases with the number of time slices, we only consider two time slices for our network. In this
paper, each time slice contains 14 nodes. The road structure-based features, the interaction-aware
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features, and the physics-based features are represented by yellow nodes, blue nodes, and red nodes,
respectively. The dotted circles in the figure indicate that the features may not exist in the dataset or
hard to be obtained in reality, though they are still important features. These nodes also show that our
network can support soft evidence and can be expanded according to the actual situation. Different
layers have different types of features. For example, features representing road structures, interactions
with other vehicles, and three physics-based features are presented in the causal evidence layer. Please
note that all naturally continuous measurable variables (e.g., curvature, lateral offset, yaw rate) are
discretized into two or three values. Therefore, the features in our network comply with binomial or
multinomial distributions (1).{

P(S f = i) = θi, i = 0, 1, or 0, 1, 2,
∑i θi = 1

(1)

where S f means the feature state. The states of the feature contain 0, 1 or 0, 1, 2. The value of the feature
state will be judged by the feature extraction algorithm in Section 5. θi represents the probability of
each state, which complies with the probability axiom.

The specific introduction of the features in the DBN and their abbreviations in the figure are listed
as follows.

(1) road structure-based features

- LLE/RLE: the existence of a left or right lane next to the occupied lane of the PV.
- LCU: the lane curvature of the road. LCU can decide whether a lane change is probabilistically

acceptable. For instance, a lane change is not common in roads with large curvatures.

(2) interaction-aware features

Lane-change behavior is often affected by the spacing and relative velocity of surrounding vehicles.
Thus, the interaction-aware features we exploited represent these two crucial factors. We assume that
the maneuver of the PV is not influenced by the state of an adjacent vehicle behind the PV in the same
lane. Moreover, as the existence of neighboring lanes is the prerequisite to the existence of neighboring
vehicles, the latter features are dependent on the former ones.

- LBRV/LARV: the state of an adjacent vehicle before/after the PV in the attention area of the left
lane. The state contains the existence, the relative velocity to the PV.

- RBRV/RARV: the state of an adjacent vehicle before/after the PV in the attention area of the
right lane.

- FVRV: the state of a leading vehicle of the PV in the attention area of the same lane.

(3) physics-based features

Different from other features, the physics-based features (except the classification of the vehicle)
will influence the maneuver in a forward and backward manner. The features are displayed in the two
time slices.

- VC: the classification of the vehicle, which includes a motorcycle, a truck, and an automobile.
VC is placed in the causal evidence layer as it is a factor that is evaluated for lane change and will
not be changed during the driving.

- TI/BI: the state of turn indicators or brake indicators of the PV, which contains two states:
on and off.

- LO: the direction of lateral velocity, which contains two states: left and right.
- YA: the yaw rate to the road tangent.
- BO: the boundary distance to neighboring lane lines.
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Figure 2. Structure of our dynamic Bayesian network for lane-change maneuver prediction.

4.2. Parameter Estimation and Probabilistic Inference

The parameter estimation is the process to learn the probabilities of the feature states [38]. Since the
structure of our DBN is determined, the conditional independencies for the family of each node and
its parent nodes can be learned from the experimental data. As all naturally continuous measurable
variables of the network are discretized after feature extraction, the conditional independencies of
the discrete DBN are conditional probability tables (CPTs). The method of parameter estimation we
used is maximum likelihood estimation, as our dataset D consists of fully observed instances of the
network variables: D = {ξ[1], ..., ξ[M]}, where M is the number of the instances, ξ includes discretized
feature values of all nodes in the DBN. Because the nodes in our network comply with binomial or
multinomial distributions, the estimated result can be easily calculated by (2).

θi =
mi + ψi

msum + ψi
, (2)

where mi is the number of estimating states in the dataset, msum is the total number of the records, ψi is
the pseudo-count, which avoids the existence of zeros in the CPT caused by the lack of certain states.

The probabilistic inference process in this paper refers to the calculation of the probability
distribution of the maneuver. The process uses the CPTs which have been learned previously and
other detected states of features (called evidence) in two consecutive time slices. The output of the
process is the probabilities of maneuvers at the time point t + 1. In theory, the resulting probabilities
can be calculated by Equations (3) and (4). However, to calculate more effectively, we use an academic
free platform GeNIe to implement our probabilistic inference, whose inference method for the unroll
network is based on the Lauritzen-Spiegelhalter junction tree algorithm. Junction tree algorithm is
an exact inference algorithm, whose result will be the same as the result calculated by Equations (3)
and (4). The specific procedure can be referred to [38]. The probabilistic inference for the DBN has the
capacity to handle the uncertainties through soft evidence, which is likely to be faced with perceptual
systems in reality. Finally, we choose the Maximum a Posterior of the states as the predicted maneuver.

P(Mt+1|Ct, Dt, Ct+1, Dt+1) ∝ ∑
Mt

P(Ct, Dt, Ct+1, Dt+1, Mt, Mt+1) (3)
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P(Ct, Dt, Ct+1, Dt+1, Mt, Mt+1) = P(Ct)P(Mt|Ct)P(Dt|Mt)P(Ct+1)P(Mt+1|Ct+1, Mt, Dt)P(Dt+1|Mt+1) (4)

where M represents the lane change node in the maneuver layer, C represents all nodes in the causal
evidence layer, D represents all nodes in the diagnostic evidence layer. Suffix t and t + 1 represent
time slices.

5. Feature Extraction

To infer the probability of the maneuver, the states of features in the network should be obtained as
accurate as possible in real time. The feature extraction relies on raw perceptual data, which comes from
the perceptual systems of intelligent vehicles or fixed devices from the third perspective without any
vehicle-to-vehicle communication. The useful raw data include detected lane lines, historical position
of the predicting vehicles, relative speed and distance of the neighboring vehicles, the classification
of the vehicles. In this section, the specific algorithms of feature extraction will be introduced with
the ordering of (1) road-structure-based features, (2) interaction-aware features and (3) physics-based
features.

(1) road-structure-based features

As road-structure-based features (LCU, LLE, and RLE) cannot be obtained directly by raw
perceptual data, the proposed extraction algorithms are as follows.

The state of LCU depends on the curvatures of lane boundaries. Thus, the observable lane
boundaries should be fitted. Typically, the lane boundaries can be fitted as lines, high-degree
polynomials or spline curves. After calculating the curvatures of fitted lines or curves, the curvatures
can be discretized into different values. Please note that in this paper, the feature LCU is not used
because the related information is not provided in experimental datasets.

The states of LLE and RLE can be extracted by a universal algorithm, which only requires the
center point of the PV (PPV) and the set of observable lane lines. The algorithm, which is shown as
Algorithm 1, can be divided into four steps. Firstly, for each lane line l, the nearest point (Pn) in l to the
PV is found. Secondly, two neighboring points Pn−1 and Pn+1 on each side of point Pn are selected,
which generates two vectors (~k1, ~k2) from PPV . Thirdly, the relative positional relationship between the
PV and each lane line is judged by the sign of the cross product of these two vectors, concerning the
driving direction of the PV. Fourthly, the state of LLE and RLE can be gained by judging the number of
lane lines on each side. Please note that the states of LLE and RLE can be simply calculated by the lane
identification using experimental datasets.

Algorithm 1: Extraction algorithm for road-structure features: LLE and RLE
Require: PPV(the center point of the PV), Ls(the set of lane lines)
Ensure: states of LLE and RLE

1: for all l in Ls do

2: Pn ← FindNearestPoint(l, PPV)
3: (~k1, ~k2)← GenerateVector(Pn, ∆P)
4: if ~k1 × ~k2 < (. . . , . . . , 0) then

5: NLLE ← NLLE + 1
6: else

7: NRLE ← NRLE + 1
8: end if
9: end for

10: NLLE > 2 : LLE = 1?LLE = 0
11: NRLE > 2 : RLE = 1?RLE = 0
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(2) interaction-aware features

Interaction-aware features (LBRV, LARV, RBRV, RARV, FVRV) cannot be obtained directly by raw
perceptual data. The vehicles considered by interaction-aware features are the adjacent ones in the
attention area of the PV. The attention area of a PV, which is divided into five sections (i.e., LB, LA, RB,
RA, FV in Figure 3), is determined by predefined distance thresholds. The distance threshold dthre2
for a leading vehicle (FV) in the same lane may be different from the distance threshold dthre1 for the
others. The latter threshold generates an intersection area of a circle and the road. The state of the
feature is judged by the distance of adjacent vehicles and their relative velocities to the PV. For instance,
the state of LBRV is extracted as follows.

LBRV =


0, if ELB = 0

1, if ELB = 1 and VLB −VPV ≥ 0

2, if ELB = 1 and VLB −VPV < 0

(5)

where ELB indicates whether there is a vehicle in the area LB, zero means no existence, and one means
existence. VLB is the velocity of the nearest vehicle in the area LB, VPV is the velocity of the PV.

RA

LB

RB

LA

FV

d
thre1

d
thre2

LA LB

FV d
thre2

RBRA

Figure 3. The attention area is divided into five sections by the distance thresholds.

(3) physics-based features

Different from the other two types of features, part of physics-based features (i.e., VC, TI/BI, LO)
can be obtained directly by raw perceptual data. The extraction processes for the other physics-based
features YA and BO are proposed as follows.

The state of YA is discretized after the yaw angle ϕ between the tangent of the road (red arrowed
line in Figure 4) and the historical direction of the PV (green arrowed line in Figure 4) is calculated.
The tangent of the road can be approximated given the tangent of the adjacent lane line. The discretization
works as follows, where the threshold ϕYA is a tunable parameter for the discretization.

YA =


0, if |ϕ| < ϕYA

1, if ϕ ≥ ϕYA

2, if ϕ ≤ −ϕYA

(6)
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The state of BO is discretized based on its distance d to the neighboring lane line of each side.
The discretization works as follows, where the threshold dBO is a tunable parameter.

BO =


0, if dle f t < dBO

1, if dright < dBO

2, otherwise

(7)

where dle f t is the distance to the left lane line, dright is the distance to the right lane line.
Different threshold parameters (e.g., dBO, dthre1, dthre2) for discretization in the feature extraction

would lead to different states of features, which affect the parameter estimation and probabilistic
inference of the DBN. The optimal threshold parameters in feature extraction are the ones producing
the most powerful predictive capacity. The predictive capacity is often presented through the strength
of node influence ([39]). We calculate the strength of node influence based on an average Euclidean
distance metric between two distributions as follows.

n

∑
i=0

1
n
· D(P(A), P(B|A = ai)) (8)

where A and B are two directly connected nodes, A has n states and D is Euclidean distance between
two distributions.

YO

Figure 4. Description of key threshold parameters of the physical-based features: YA and BO.

6. Experiments and Results

In this section, the detail of our approach executed on real-traffic open datasets is discussed.
Moreover, the performance of our prediction method is also evaluated compared with other
state-of-the-art methods.

6.1. Datasets

The datasets we used are NGSIM I-80 and NGSIM US-101 from American Federal Highway
Administration. They have been widely used for intelligent transportation systems and validation of
prediction algorithms (e.g., [40,41]). The two datasets contain six subsets of fifteen-minute collected
trajectories (denoting as (I), (II), · · · , (VI)), which are collected by vision-based highway monitoring
systems. The monitoring systems, which can record the real-time traffic as a video (The screenshot
of the video can be seen as Figure 5c), are installed above highway near the study area rather
than installed in a vehicle. The basic information of each recorded vehicle provided by datasets
is obtained from the video analysis. The content of the data file includes the identification number,
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position, velocity, acceleration, current lane identification, vehicle type of detected vehicles over time
at 10 Hz. Next, we will introduce some important quantitative indicators of each dataset individually,
followed by the preprocessing of the datasets.

Dataset NGSIM I-80 is collected from the traffic on Interstate 80 in the San Francisco Bay Area,
California. The study area is approximately 1650 feet in length with six mainline lanes, including
high-occupancy vehicle lanes and an on-ramp, as shown in Figure 5a. The dataset contains trajectories of
5678 individual vehicles, among which 1851 vehicles are changing the lanes.

Dataset NGSIM US-101 is collected from the traffic on Hollywood Freeway, Los Angeles. The study
area is approximately 2100 feet in length with five mainline lanes, including high-occupancy vehicle lanes,
an on-ramp and an off-ramp, as shown in Figure 5b. The dataset contains trajectories of 4824 individual
vehicles, among which 753 vehicles are changing the lanes.

As the positioning data (e.g., positions, velocities, and accelerations) in the NGSIM is obtained
from video analysis, they contain a large amount of noise. Therefore, we first use the first-order
Savitzky-Golay filtering algorithm [30] to smooth the raw data. Moreover, all ground-truth
lane-change maneuvers are extracted if a driving maneuver passes the lane line to its neighboring lane.
The lane-change trajectories refer to the ones which cross the lane line and have a fixed distance on
both sides of the lane line (0.5 m in this paper).

(a)The study area of Dataset NGSIM I-80 (b) The study area of 

Dataset NGSIM US-101

Study Area

Building

503 meters
(1,650 feet)

Powell St.
Onramp

Ashby Ave.
Offramp

Eastbound/
Northbound I-80

Study Area

D
riv

in
g
 

D
irectio

n

(c) The screenshot of 

the recorded traffic

Figure 5. Overview of traffic environments on two datasets [42].

6.2. Selection for Discretized Parameters

In this section, the selection for discretized parameters (i.e., thresholds for the discretization) is
conducted. The threshold parameters contain: (1) the distance threshold dBO of boundaries to the
neighboring lane lines, (2) the yaw angle threshold ϕYA to the road tangent, (3) the distance threshold
of attention areas in neighboring lanes dthre1 (for the neighboring vehicles except for the front), (4) the
distance threshold of front attention area dthre2.

As discussed in Section 5, the optimal threshold parameters in feature extraction can be selected
based on the strength of influence of corresponding nodes. Thus, we apply different values for
discretization and then generate different learning datasets to obtain probability distributions. In order
to ensure the probability distributions are only influenced by the discretized parameters, the learning
datasets are chosen from the records of same vehicles. Then, the strengths of the influence of
corresponding nodes (i.e., BO, YA, FVRV, LBRV/LARV/RBRV/RARV) with different probability
distributions are calculated as (8). As the nodes LBRV/LARV/RBRV/RARV all depend on the
threshold dthre1, the average strength of the influence of four nodes is calculated.
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Tables 2–5 list the calculated strength of influence with different discretized parameters on two
datasets. As the strength of the influence shows the predictive capacity, the higher strength of influence
is preferred. Consequently, the highest values, which are selected as the optimal parameters, will be
used in the following performance experiments. As the tables show, the optimal discretized parameters
of these four nodes show high consistency within the two datasets. This indicates that two highways
have structural similarities. Moreover, the optimal discretized parameters may vary with different
subsets, but the differences are quite small. Surprisingly, in these two datasets, the interaction-aware
features show weaker influence compared to other two features (almost an order of magnitude). Table 5
shows that the optimal parameters for the threshold dthre2 in both datasets are 10 m. The optimal
values are consistent with the dataset description, which indicates a heavy traffic flow in the rushing
periods. Table 4 shows that the optimal parameters for the threshold dthre1 are 100 m for I-80 and 200 m
for US-101, which are much larger than those of dthre2. However, the strength of influence only slightly
increases with the threshold dthre1 from 20 m to 200 m, whose increment is only 0.001. For simplicity,
only five thresholds are shown in tables.

Table 2. Parameter comparison for boundary distance to the neighbor lanelines dBO.

I-80
Threshold for BO (Unit:m)

US-101
Threshold for BO (Unit:m)

0.3 0.5 0.7 0.9 1.1 0.3 0.5 0.7 0.9 1.1

(I) 0.508 0.554 0.501 0.437 0.350 (IV) 0.330 0.512 0.552 0.503 0.426
(II) 0.495 0.509 0.371 0.294 0.294 (V) 0.289 0.463 0.537 0.512 0.450
(III) 0.468 0.497 0.441 0.373 0.291 (VI) 0.316 0.491 0.575 0.539 0.467

Table 3. Parameter comparison for yaw rate to the road tangent ϕYA.

I-80
Threshold for YA (Unit:degree)

US-101
Threshold for YA (Unit:degree)

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

(I) 0.674 0.704 0.699 0.675 0.637 (IV) 0.485 0.467 0.403 0.335 0.269
(II) 0.637 0.616 0.599 0.586 0.539 (V) 0.616 0.628 0.595 0.543 0.480
(III) 0.657 0.661 0.649 0.633 0.613 (VI) 0.681 0.675 0.653 0.607 0.539

Table 4. Parameter comparison for distance dthre1.

I-80
Threshold for Distance dthre1 (Unit:m)

US-101
Threshold for Distance dthre1 (Unit:m)

40 60 80 100 120 120 140 160 180 200

(I) 0.0112 0.0116 0.0117 0.0117 0.0117 (IV) 0.0091 0.0092 0.0091 0.0091 0.0092
(II) 0.0111 0.0114 0.0114 0.0115 0.0114 (V) 0.0084 0.0084 0.0084 0.0084 0.0084
(III) 0.0116 0.0119 0.0119 0.0121 0.0121 (VI) 0.0061 0.0061 0.0062 0.0062 0.0062

Table 5. Parameter comparison for distance dthre2.

I-80
Threshold for Distance dthre2 (Unit:m)

US-101
Threshold for Distance dthre2 (Unit:m)

10 12 14 16 18 10 12 14 16 18

(I) 0.0170 0.0161 0.0153 0.0145 0.0140 (IV) 0.0130 0.0127 0.0123 0.0119 0.0118
(II) 0.0153 0.0143 0.0135 0.0130 0.0127 (V) 0.0102 0.0099 0.0096 0.0093 0.0092
(III) 0.0149 0.0138 0.0131 0.0127 0.0124 (VI) 0.0079 0.0077 0.0074 0.0071 0.0070

6.3. Performance Metrics and Filtering Window

To comprehensively evaluate the prediction performance, we exploit four quantitative
performance metrics, i.e., Precision, Recall, F1 Score, Accuracy. The primary objective of prediction is
predicting the lane-change maneuver correctly, which is noted as positive.
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(1) Precision (PRE) is the fraction of correct classification of corresponding lane change out of all
events predicted to be positive, i.e.,

PRE =
TP

TP + FP
(9)

where TP means true positive and FP means false positive.
(2) Recall, also named true positive rate (TPR), is the fraction of correct classification of corresponding

lane change out of all true events, i.e.,

TPR =
TP

TP + FN
(10)

where FN means false negative.
(3) F1 Score is the harmonic mean of the two metrics (precision and recall), i.e.,

F1 =
2 ∗ PRE ∗ TPR

PRE + TPR
(11)

(4) Accuracy (ACC) is the fraction of correctly classified maneuvers out of all predicted
maneuvers, i.e.,

ACC =
TP + TN

TP + TN + FP + FN
(12)

where TN means true negative.

To improve the stability of the prediction, we exploit a window filtering algorithm after the
Bayesian inference executed. The workflow of window filtering algorithm runs as Figure 6. Each time
point, the DBN uses all features to infer the possibility of the maneuvers in two consecutive time
slices (i.e., one previous time point and current time point). The maneuver at the current time
point with a maximal possibility is chosen as the candidate result. Then, candidate results are put
into a fixed-length row (also called filtering window). If all elements in the window are the same
lane-change maneuver, the final predicted result will be the same. Otherwise, the final predicted result
is lane keeping.

2

Left Lane Change
Filtering Window

1

𝑪𝒕−𝟏 𝑪𝒕

𝑴𝒕−𝟏 𝑴𝒕

𝑫𝒕−𝟏 𝑫𝒕

Time (0.1s)

𝑪𝒕−𝟏 𝑪𝒕

𝑴𝒕−𝟏 𝑴𝒕

𝑫𝒕−𝟏 𝑫𝒕

𝑪𝒕−𝟏 𝑪𝒕

𝑴𝒕−𝟏 𝑴𝒕

𝑫𝒕−𝟏 𝑫𝒕

𝑪𝒕−𝟏 𝑪𝒕

𝑴𝒕−𝟏 𝑴𝒕

𝑫𝒕−𝟏 𝑫𝒕

3 n n+1

Left Lane Change Left Lane Change

Left Lane Change

Logic gate

Final Predicted Result

Candidate Results

Figure 6. The workflow of window filtering algorithm.

The results for two datasets are shown in Figures 7 and 8, respectively. The figures demonstrate
that the time length of the filtering window has important effects on the classification performance.
The advantage of a larger filtering window is producing larger PRE and F1 scores in all datasets,
which leads to less false alarming. Therefore, the prediction will be more stable. Contrarily, a smaller
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filtering window produces a larger recall rate in all datasets, which decreases the risk of ignoring the
lane change. Consequently, the driving of intelligent vehicles will be more safe-oriented due to being
careful to possible lane changes. The trade-off between the precision and recall is common in the
field of machine learning. Thus, the time length of the filtering window should be chosen differently
according to the traffic scenario. Please note that the number of left-change maneuvers is more than
that of right-change maneuvers. Thus, the prediction performance of left-change maneuver is slightly
better than that of right-change maneuver.
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Figure 7. The impact of the time length of the filtering window on prediction performance in Dataset
I-80. The left column shows the prediction performance of left lane changes, and the right column
shows that of right lane changes. (a) Performance of left lane change in Dataset (I); (b) Performance of
right lane change in Dataset (I); (c) Performance of left lane change in Dataset (II); (d) Performance of
right lane change in Dataset (II); (e) Performance of left lane change in Dataset (III); (f) Performance of
right lane change in Dataset (III).
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Figure 8. The impact of the time length of the filtering window on prediction performance in Dataset
US-101. The left column shows the prediction performance of left lane changes, and the right column
shows that of right lane changes. (a) Performance of left lane change in Dataset (IV); (b) Performance
of right lane change in Dataset (IV); (c) Performance of left lane change in Dataset (V); (d) Performance
of right lane change in Dataset (V); (e) Performance of left lane change in Dataset (VI); (f) Performance
of right lane change in Dataset (VI).

6.4. Comparison with Other Approaches

To verify the performance of our approach, we compared our approach with other state-of-the-art
approaches, which include a model predictive control (MPC)-based approach [43], a Bayesian
network-based approach [34], a recurrent neural network (RNN)-based approach [41], a HMM-based
approach [44] and a rule-based approach [45].

The settings of comparative experiments are as follows. The discretized parameters for
extracting features are selected as Table 6. The time length of the filtering window is one second,
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whose performance has the highest F1 score on average in the previous section. Eighty percent
of the lane-change vehicles are randomly chosen from each sub-dataset as the learning set.
Then, corresponding networks with learned CPTs are used to predict on ten testing sets. As the
experiment based on a Bayesian network approach in [34] is not conducted in the dataset NGSIM, the
features for predicting lane-change maneuvers in the original network are reserved with recalculation
of the CPTs.

Table 6. Final selected parameters.

Parameter Dataset I-80 Dataset US-101

boundary distance threshold to the neighbor lane lines (m) 0.5 0.7

yaw rate threshold to the road tangent (deg)
0.5 (II)

1 (I), (III)
0.5 (IV, VI)

1 (V)
the distance threshold of attention areas in neighboring lanes dthre1 (m) 100 200
the distance threshold of front attention area dthre2 (m) 10 10

The prediction time is another comparative indicator of different approaches, which shows the
capacity to predict lane-change maneuvers in advance. The prediction time is defined as τt = te − tp,
where te represents the time point of crossing a lane line, and tp is the first time point with a lane-change
label prediction.

The average metrics of each approach are listed in Table 7. Among all approaches, the proposed
approach retains the highest recall up to 0.94 and the highest average F1 score of 0.795 on average.
This shows our approach has a high comprehensive predictive performance. The average prediction
time for a lane change after the beginning of a correct prediction is 3.75 s, which is the second highest
among all approaches. This demonstrates that the proposed method can provide a long prediction
time before the predicting vehicle crosses the lane markers.

It can be seen from the Table 7 that the performance of our approach is much better than the
Bayesian network-based approach [34] on all metrics, which implies that the multiple features and
dynamic relationship improve the prediction performance. Compared to the rule-based approach
which is only conducted in the dataset I-80, our approach is not confined to a single scenario.
Though the comprehensive F1 score of our approach is the highest, the accuracy is slightly lower than
MPC-based, RNN-based and HMM-based approaches.

Table 7. Performance comparison of different approaches

Method Our Approach MPC-Based [43] BN
Based [34]

RNN
Based [41]

HMM
Based [44]

Rule
Based [45]

Dataset I-80 US-101 I-80 US-101 Both Both Self-collected I-80 Only

precision 0.73 0.68 0.91 0.89 0.53 [-] [-] [-]
recall 0.99 0.89 0.70 0.74 0.72 [-] [-] [-]

F1 0.83 0.76 0.78 0.81 0.61 [-] [-] [-]
Accuracy 0.72 0.63 0.81 0.82 0.57 0.83–0.89 0.91 0.39

Prediction time 2.39 5.11 4.39 4.73 1.03 [-] 1.5 2

It should be pointed out that our approach needs less computational resource compared to the
RNN-based approach in the parameter learning process. As the learning process of our DBN uses the
maximum likelihood estimation method to estimate parameters as (2), the result can be calculated
easily by traversing all instances in the dataset. Thus, the complexity of parameter learning in our
approach is O(M), where M is the number of instances in the dataset. The learning complexity of
the RNN, which traditionally uses stochastic gradient descent optimization technique, is O(n2hM),
where n is the number of the nodes, and h is the length of epoch [46].
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6.5. Limitation of the Results

Though the performance of maneuver prediction is greatly improved on large-scale and publicly
available real-traffic datasets, the following limitation may still exist. (1) The datasets are not
collected from the perspective of intelligent vehicles, so final onboard predictions deserve further
verification. (2) This paper does not consider the driving behavior which violates traffic rules or out of
control driving.

7. Conclusions and Future Work

This paper proposes a maneuver-prediction approach based on the DBN with multi-dimensional
predictive features. The experiment is conducted on the publicly available datasets. The results show
that the performance of maneuver prediction is greatly improved using our approach, which can
recognize the lane-change maneuvers with an F1 of 80% and a prediction time of 3.75 s.

To accurately predict the motion of surrounding vehicles, future work includes predicting
long-term trajectories based on the predicted maneuvers, which will take velocity prediction into
account. Moreover, a real-time implementation of our approach will be verified in real-world
traffic scenarios.
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