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Abstract: This study proposes a mobile positioning method that adopts recurrent neural network
algorithms to analyze the received signal strength indications from heterogeneous networks
(e.g., cellular networks and Wi-Fi networks) for estimating the locations of mobile stations.
The recurrent neural networks with multiple consecutive timestamps can be applied to extract
the features of time series data for the improvement of location estimation. In practical experimental
environments, there are 4525 records, 59 different base stations, and 582 different Wi-Fi access points
detected in Fuzhou University in China. The lower location errors can be obtained by the recurrent
neural networks with multiple consecutive timestamps (e.g., two timestamps and three timestamps);
from the experimental results, it can be observed that the average error of location estimation was
9.19 m by the proposed mobile positioning method with two timestamps.

Keywords: deep learning; recurrent neural networks; mobile positioning method; fingerprinting
positioning method; received signal strength

1. Introduction

With the development of wireless networks and mobile networks, the techniques of location-based
services (LBS) can provide the corresponding services to the users according to users’ current locations.
LBS, which have played an important role in many fields, require the high accuracy of positioning
technology [1–22].

For LBS in outdoor environments, global positioning system (GPS) and assisted GPS (A-GPS) are
popular techniques and meet most of the positioning requirements. However, these techniques may no
longer be applicable if the problems of multi-path propagation of wireless signals exist [13]. The study
indicated that the availability of GPS may be lower in urban roads, and the GPS modules may be
invalid [9]. Furthermore, higher power consumption is required by these techniques [1]. Therefore,
some studies proposed cellular-based positioning methods to analyze the signals of cellular networks
for reliably estimating the locations of mobile stations [1,5,9,10].

For LBS in indoor environments, Wi-Fi-based positioning methods are popular techniques
to detect and analyze the received signal strength indications (RSSIs) from Wi-Fi access points
(APs) [5,8,10–16,18–21]. The fingerprinting positioning methods based on machine learning algorithms
were proposed to learn the relationships among locations and RSSIs for the estimation of locations.
Although these methods can estimate the locations of mobile stations without GPS modules, these
methods may be invalid in outdoor environments if the transmission coverage of Wi-Fi APs is
not sufficient.

Some deep learning methods (e.g., neural networks, convolutional neural networks, recurrent
neural networks) have been applied to improve the accuracies of estimation locations [8,11–15].
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For instance, a modified probability neural network was used for indoor positioning, and the accuracies
of estimated locations by the method were higher than those by the triangulation technique [11].
An improved neural network was trained with the correlation of the initial parameters to achieve the
highest possible accuracy of the Wi-Fi-based positioning method in indoor environments [8].

Although cellular-based positioning methods can obtain estimated locations in outdoor
environments, the errors of estimated locations may be larger. Furthermore, Wi-Fi-based positioning
methods can obtain higher precise locations, but these methods may be not applicable in outdoor
environments. Therefore, this study proposed a mobile positioning method to analyze the network
signals from heterogeneous networks (e.g., cellular networks and Wi-Fi networks) for LBS in outdoor
environments. Furthermore, recurrent neural networks [23] are applied to the proposed mobile
positioning method for the analyses of consecutive locations and network signals (e.g., time series data).

The remainder of the paper is organized as follows. Section 2 provides the overview of mobile
positioning methods and fingerprinting positioning methods. Section 3 presents the proposed mobile
positioning system and method based on recurrent neural networks. The practical experimental results
and discussions are illustrated in Section 4. Finally, conclusions and future work are given in Section 5.

2. Related Work

Mobile positioning and fingerprinting positioning methods include two stages: the training stage
and performing stage (shown in Figure 1). In the training stage, the RSSIs and locations measured by
the mobile stations are matched and stored in a fingerprinting database for training. Machine learning
methods can be performed to learn the relationships among RSSIs and locations for the establishment
of mobile positioning models. In the performing stage, mobile stations can detect the RSSIs of neighbor
base stations and Wi-Fi APs, which can be adopted in the trained models to estimate the locations of
these mobile stations.
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Figure 1. Fingerprinting positioning method. RSSI—received signal strength indication.

For training the mobile positioning models, some studies used k-nearest neighbors, Bayesian
theory, support vector machine, neural networks, convolutional neural networks, or recurrent neural
networks to estimate locations in accordance with RSSIs. For instance, a probabilistic positioning
algorithm was proposed to store the probability distribution of RSSIs during a certain time in
the fingerprinting database, and the probable locations of mobile stations were calculated by a
Bayesian theory system [10]. However, the relationships among inputs were assumed as independent
parameters, so big errors of estimated locations may be obtained if the inputs were not independent
parameters. Some mobile positioning methods based on k-nearest neighbor algorithms can obtain
higher accuracies of estimated locations, but these methods required more computation time in
the performing stage. Some neural networks have been proposed to analyze the interrelated
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influences of inputs for the improvement of location estimation [8,11–13], and convolutional neural
networks were applied to extract the features of spatio metrics in accordance with convolutional
layers [14,18–21]. Although the spatio metrics may be analyzed by neural networks and convolutional
neural networks, these methods cannot provide the solutions of temporal data analyses. Therefore,
this study applies recurrent neural networks to analyze the temporal data for improving the accuracies
of estimation locations.

3. Mobile Positioning System and Method

The architecture of the proposed mobile positioning system is presented in Section 3.1, and the
concepts of the proposed mobile positioning method are illustrated in Section 3.2.

3.1. Mobile Positioning System

The proposed mobile positioning system includes (1) mobile stations, (2) a mobile positioning
server, (3) a database server, and (4) a model server (shown in Figure 2). Each component in the
proposed system is presented in the following subsections.
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3.1.1. Mobile Stations

In the training stage, mobile stations can detect and receive the RSSIs of neighbor base stations
and Wi-Fi APs from heterogeneous networks. GPS modules can be equipped in the mobile stations
and estimate the locations of mobile stations (i.e., coordinates). Then, the mobile stations can send the
vectors of GPS coordinates (i.e., longitudes and latitudes) and RSSIs to the mobile positioning server
for the collection of network signals. In the performing stage, mobile stations can send the detected
RSSIs of neighbor base stations and Wi-Fi APs to the mobile positioning server for location estimation.

3.1.2. Mobile Positioning Server

In the training stage, the mobile positioning server can receive GPS coordinates and network
signals (i.e., the RSSIs of base stations and Wi-Fi APs) from mobile stations. These GPS coordinates
and network signals can be sent to the database server for storing. The mobile positioning server can
execute the proposed mobile positioning method to train RNN models. The network signals can be
used as the input layer of the RNN models, and the GPS coordinates can be used as the output layer of
the RNN models. Once the RNN models have been trained, these models can be sent to the model
server for saving. In the performing stage, the mobile positioning server can load the trained RNN
models from the model server. When the mobile positioning server receives network signals from
mobile stations, these network signals can be adopted in the trained RNN models for estimating the
locations of mobile stations.
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3.1.3. Database Server

The database server can store the vectors of coordinates (i.e., longitudes and latitudes) and RSSIs
from mobile stations via the mobile positioning server. These vectors can be queried and used to train
RNN models.

3.1.4. Model Server

The model server can save the trained RNN models from the mobile positioning server in
training stage, and the saved RNN models can be loaded for location estimation by the mobile
positioning server.

3.2. Mobile Positioning Method

The proposed mobile positioning method includes (1) collection and normalization, (2) the
execution of mobile positioning method based on recurrent neural networks, and (3) de-normalization
and estimation. Each step in the proposed method is presented in the following subsections.

3.2.1. Collection and Normalization

For the collection of network signals and GPS coordinates, the RSSIs of base stations from cellular
networks (i.e., Rc,i in Equation (1)), the RSSIs of Wi-Fi APs from Wi-Fi networks (i.e., Rw,i in Equation
(2)), and the GPS coordinates (i.e., li in Equation (3)) can be detected and collected by the mobile station
at time ti (shown in Figure 3). The RSSI of the j-th base station from a cellular network at time ti is
defined as rc,j,i, and the RSSI of the k-th Wi-Fi AP from a Wi-Fi network at time ti is defined as rw,k,i.
The RSSI dataset of heterogeneous networks (i.e., cellular networks and Wi-Fi networks) at time ti is
defined as Ri (shown in Equation (4)). Furthermore, the location li (i.e., a GPS coordinate) includes
a longitude lx,i and a latitude ly,i. There are m locations, n1 different base stations, and n2 different
Wi-Fi APs detected in the experiments. If the RSSIs of base stations or Wi-Fi APs cannot be detected,
the values of these RSSIs can be encoded as null. For instance, the mobile station cannot detect the
RSSI of Wi-Fi AP2 at time ti in Figure 3, so the value of rw,2,i is encoded as null.

Rc,i =
{

rc,1,i, rc,2,i, . . . , rc,n1,i
}

(1)

Rw,i =
{

rw,1,i, rw,2,i, . . . , rw,n2,i
}

(2)

li =
{

lx,i, ly,i
}

(3)

Ri = {Rc,i, Rw,i}
=
{

rc,1,i, rc,2,i, . . . , rc,n1,i, rw,1,i, rw,2,i, . . . , rw,n2,i
} (4)

For the normalization of network signals and GPS coordinates, the minimum values and
maximum values of RSSIs and coordinates are considered and adopted in Equations (5)–(8).
The normalized RSSI of the j-th base station from a cellular network at time ti is defined as cj,i, in

accordance with the minimum value and maximum value of the RSSIs (i.e., r(−)c and r(+)
c in Equation

(5)) from cellular networks; the normalized RSSI of the k-th Wi-Fi APs from a cellular network at time
ti is defined as wk,i, in accordance with the minimum value and maximum value of the RSSIs (i.e.,

r(−)w and r(+)
w in Equation (6)) from Wi-Fi networks. Furthermore, the normalized longitude at time

ti is defined as xi in accordance with the minimum value and maximum value of longitudes (i.e.,
l(−)x and l(+)

x in Equation (7)) from GPS coordinates, and the normalized latitude at time ti is defined
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as yi in accordance with the minimum value and maximum value of latitudes (i.e., l(−)y and l(+)
y in

Equation (8)) from GPS coordinates.

cj,i =


rc,j,i−r(−)c

r(+)
c −r(−)c

, if rc,j,i 6= null

0, otherwise
, where r(+)

c = max
1≤p≤n1,1≤q≤m

rc,p,q, r(−)c = min
1≤p≤n1,1≤q≤m

rc,p,q (5)

wk,i =

 rw,k,i−r(−)w

r(+)
w −r(−)w

, if rw,k,i 6= null

0, otherwise
, where r(+)

w = max
1≤p≤n2,1≤q≤m

rw,p,q, r(−)w = min
1≤p≤n2,1≤q≤m

rw,p,q (6)

xi =

 lx,i−l(−)x

l(+)
x −l(−)x

, if lx,i 6= null

0, otherwise
, where l(+)

x = max
1≤q≤m

lx,q, l(−)x = min
1≤q≤m

lx,q (7)

yi =


ly,i−l(−)y

l(+)
y −l(−)y

, if ly,i 6= null

0, otherwise
, where l(+)

y = max
1≤q≤m

ly,q, l(−)y = min
1≤q≤m

ly,q (8)
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Figure 3. The scenario of network signal and global positioning system (GPS) coordinate collection.

3.2.2. Mobile Positioning Method Based on Recurrent Neural Network

The proposed mobile positioning method adopts recurrent neural network algorithms to estimate
the locations of mobile stations. The recurrent neural networks can be applied to extract the features of
time series data, so this study considers and analyzes the normalized RSSIs with multiple consecutive
timestamps. Section “Recurrent Neural Networks with One Timestamp” presents recurrent neural
networks with one timestamp, and Section “Two Timestamps for Recurrent Neural Network” describes
recurrent neural networks with multiple consecutive timestamps.

Recurrent Neural Networks with One Timestamp

This subsection shows the designs and optimization of recurrent neural networks with one
timestamp. A case study of a recurrent neural network with one timestamp is illustrated in Figure 4.
The recurrent neural network is constructed with an input layer, a recurrent hidden layer, and an output
layer. The input layer includes the normalized RSSIs of n1 base stations (i.e.,

{
c1,i, c2,i, . . . , cn1,i

}
) and n2

Wi-Fi APs (i.e.,
{

w1,i, w2,i, . . . , wn2,i
}

), and the output layer includes the estimated normalized longitude
and latitude (i.e., x̃i and ỹi). The recurrent hidden layer includes a neuron, and the initial value of
the neuron in the recurrent hidden layer is defined as h0. The value of the neuron in the recurrent
hidden layer can be updated as h1 after calculating the RSSIs in the first timestamp. The weights of
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cj,i, wk,i, and h0 are αj, βk, and v, respectively; the weights of h1 for the outputs x̃i and ỹi are γ1 and γ2,
respectively. The biases of neurons in the hidden layer and the output layer are defined as b1,1, b2,1,
and b3,1. The sigmoid function is elected as the activation function of each neuron, so the values of h0,
h1, x̃i, and ỹi can be calculated by Equations (9)–(12), respectively. Furthermore, the loss function is
defined as Equation (13) in accordance with squared errors.

h0 = 0 (9)

h1 = s

(
n1

∑
j=1

αj × cj,i +
n2

∑
k=1

βk × wk,i + v× h0 + b1,1

)
= s(z1,1), where s(z) =

1
1 + e−z (10)

x̃i = s(γ1 × h1 + b2,1) = s(z2,1), where s(z) =
1

1 + e−z (11)

ỹi = s(γ2 × h1 + b3,1) = s(z3,1), where s(z) =
1

1 + e−z (12)

E =
1
2
(x̃i − xi)

2 +
1
2
(ỹi − yi)

2 =
1
2

σ1
2 +

1
2

σ2
2 (13)
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For the optimization of recurrent neural network, the learning rate η and a gradient descent
method is applied to update each weight and bias. The updates of γ1, γ2, b2,1, b3,1, αj, βk, v, and b1,1

are proven and calculated by Equations (14)–(21), respectively.

γ1 = γ1 − η × ∂E
∂γ1

, where
∂E
∂γ1

= ∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂γ1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂γ1

= σ1 × x̃i × [1− x̃i]× h1

(14)

γ2 = γ2 − η × ∂E
∂γ2

, where
∂E
∂γ2

= ∂E
∂σ1

∂σ1,
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂γ2

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂γ2

= σ2 × ỹi × [1− ỹi]× h1

(15)

b2,1 = b2,1 − η × ∂E
∂b2,1

, where
∂E

∂b2,1
= ∂E

∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂b2,1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂b2,1

= σ1 × x̃i × [1− x̃i]

(16)
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b3,1 = b3,1 − η × ∂E
∂b3,1

, where
∂E

∂b3,1
= ∂E

∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂b3,1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂b3,1

= σ2 × ỹi × [1− ỹi]

(17)

αj = αj − η × ∂E
∂αj

, where
∂E
∂αj

= ∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

∂h1
∂z1,1

∂z1,1
∂α1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

∂h1
∂z1,1

∂z1,1
∂αj

=
(

∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

)
∂h1

∂z1,1

∂z1,1
∂αj

= {σ1 × x̃i × [1− x̃i]× γ1 + σ2 × ỹi × [1− ỹi]× γ2} × h1 × [1− h1]× cj,i

(18)

βk = βk − η × ∂E
∂βk

, where
∂E
∂βk

= ∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

∂h1
∂z1,1

∂z1,1
∂α2

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

∂h1
∂z1,1

∂z1,1
∂βk

=
(

∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

)
∂h1

∂z1,1

∂z1,1
∂βk

= {σ1 × x̃i × [1− x̃i]× γ1 + σ2 × ỹi × [1− ỹi]× γ2} × h1 × [1− h1]× wk,i

(19)

v = v− η × ∂E
∂v , where

∂E
∂v = ∂E

∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

∂h1
∂z1,1

∂z1,1
∂v + ∂E

∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

∂h1
∂z1,1

∂z1,1
∂v

=
(

∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

)
∂h1

∂z1,1

∂z1,1
∂v

= {σ1 × x̃i × [1− x̃i]× γ1 + σ2 × ỹi × [1− ỹi]× γ2} × h1 × [1− h1]× h0

(20)

b1,1 = b1,1 − η × ∂E
∂b1,1

, where
∂E

∂b1,1
= ∂E

∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

∂h1
∂z1,1

∂z1,1
∂b1,1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

∂h1
∂z1,1

∂z1,1
∂b1,1

=
(

∂E
∂σ1

∂σ1
∂x̃i

∂x̃i
∂z2,1

∂z2,1
∂h1

+ ∂E
∂σ2

∂σ2
∂ỹi

∂ỹi
∂z3,1

∂z3,1
∂h1

)
∂h1

∂z1,1

∂z1,1
∂b1,1

= {σ1 × x̃i × [1− x̃i]× γ1 + σ2 × ỹi × [1− ỹi]× γ2} × h1 × [1− h1]

(21)

Furthermore, the number of neurons in the recurrent hidden layer can be extended for the
extraction of time series data. The weight between each of the two neurons can be updated by the
gradient descent method.

Two Timestamps for Recurrent Neural Network

This subsection illustrates the designs and optimization of recurrent neural networks with two
consecutive timestamps. A case study of a recurrent neural network with two consecutive timestamps
is showed in Figure 5. In the case, the recurrent neural network is constructed with an input layer, a
recurrent hidden layer, and an output layer. The input layer includes (n1 + n2) normalized RSSIs (i.e.,{

c1,i, c2,i, . . . , cn1,i
}

and
{

w1,i, w2,i, . . . , wn2,i
}

) in the first timestamp and (n1 + n2) normalized RSSIs (i.e.,{
c1,i+1, c2,i+1, . . . , cn1,i+1

}
and

{
w1,i+1, w2,i+1, . . . , wn2,i+1

}
) in the second timestamp; the output layer

includes the estimated normalized longitude and latitude (i.e., x̃i+1 and ỹi+1) in the second timestamp.
The recurrent hidden layer includes a neuron, and the initial value of the neuron in the recurrent
hidden layer is defined as h0 (shown in Equation (9)). The value of the neuron in the recurrent hidden
layer can be updated as h1 in the first timestamp and as h2 in the second timestamp. The weights of
base station j, Wi-Fi AP k in each timestamp are αj and βk; the weights of h2 for the outputs x̃i+1 and
ỹi+1 are γ1 and γ2, respectively. Furthermore, the weight of the neurons in the recurrent hidden layer
in the least timestamp is defined as v. In the case, the biases of neurons in the hidden layer and the
output layer are defined as b1,1, b2,1, and b3,1. The sigmoid function is elected as the activation function
of each neuron, so the values of h1, h2, x̃i, and ỹi can be calculated by Equations (22)–(25), respectively.
Furthermore, the loss function is defined as Equation (26) in accordance with squared errors.

h1 = s

(
n1

∑
j=1

αj × cj,i +
n2

∑
k=1

βk × wk,i + v× h0 + b1,1

)
= s(z1,1), where s(z) =

1
1 + e−z (22)
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h2 = s

(
n1

∑
j=1

αj × cj,i+1 +
n2

∑
k=1

βk × wk,i+1 + v× h1 + b1,1

)
= s(z1,2), where s(z) =

1
1 + e−z (23)

x̃i+1 = s(γ1 × h2 + b2,1) = s(z2,1), where s(z) =
1

1 + e−z (24)

ỹi+1 = s(γ2 × h2 + b3,1) = s(z3,1), where s(z) =
1

1 + e−z (25)

E =
1
2
(x̃i+1 − xi+1)

2 +
1
2
(ỹi+1 − yi+1)

2 =
1
2

σ1
2 +

1
2

σ2
2 (26)
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Figure 5. A recurrent neural network with two consecutive timestamps.

For the optimization of recurrent neural network with two consecutive timestamps, the learning
rate η and a gradient descent method is applied to update each weight and bias. The updates of γ1, γ2,
b2,1, b3,1, αj, βk, v, and b1,1 are proven and calculated by Equations (27)–(34), respectively.

γ1 = γ1 − η × ∂E
∂γ1

, where
∂E
∂γ1

= ∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂γ1

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂γ1

= σ1 × x̃i+1 × [1− x̃i+1]× h2

(27)

γ2 = γ2 − η × ∂E
∂γ2

, where
∂E
∂γ2

= ∂E
∂σ1

∂σ1,
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂γ2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂γ2

= σ2 × ỹi+1 × [1− ỹi+1]× h2

(28)

b2,1 = b2,1 − η × ∂E
∂b2,1

, where
∂E

∂b2,1
= ∂E

∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂b2,1

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂b2,1

= σ1 × x̃i+1 × [1− x̃i+1]

(29)

b3,1 = b3,1 − η × ∂E
∂b3,1

, where
∂E

∂b3,1
= ∂E

∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂b3,1

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂b3,1

= σ2 × ỹi+1 × [1− ỹi+1]

(30)

αj = αj − η × ∂E
∂αj

, where
∂E
∂αj

= ∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

∂h2
∂z1,2

∂z1,2
∂α1

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

∂h2
∂z1,2

∂z1,2
∂αj

=
(

∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

)
∂h2

∂z1,2

∂z1,2
∂αj

= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]×
(

cj,i+1 + v ∂h1
∂z1,1

∂z1,1
∂αj

)
= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]×

(
cj,i+1 + v× h1 × [1− h1]× cj,i

)
(31)
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βk = βk − η × ∂E
∂βk

, where
∂E
∂βk

= ∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

∂h2
∂z1,2

∂z1,2
∂α2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

∂h2
∂z1,2

∂z1,2
∂βk

=
(

∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

)
∂h2

∂z1,2

∂z1,2
∂βk

= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]×
(

wk,i+1 + v ∂h1
∂z1,1

∂z1,1
∂βk

)
= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]× (wk,i+1 + v× h1 × [1− h1]× wk,i)

(32)

v = v− η × ∂E
∂v , where

∂E
∂v = ∂E

∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

∂h2
∂z1,2

∂z1,2
∂v + ∂E

∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

∂h2
∂z1,2

∂z1,2
∂v

=
(

∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

)
∂h2

∂z1,2

∂z1,2
∂v

= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]×
(

∂v
∂v h1 + v× ∂h1

∂z1,1

∂z1,1
∂v

)
= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]× (h1 + v× h1 × [1− h1]× h0)

(33)

b1,1 = b1,1 − η × ∂E
∂b1,1

, where
∂E

∂b1,1
= ∂E

∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

∂h2
∂z1,2

∂z1,2
∂b1,1

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

∂h2
∂z1,2

∂z1,2
∂b1,1

=
(

∂E
∂σ1

∂σ1
∂x̃i+1

∂x̃i+1
∂z2,1

∂z2,1
∂h2

+ ∂E
∂σ2

∂σ2
∂ỹi+1

∂ỹi+1
∂z3,1

∂z3,1
∂h2

)
∂h2

∂z1,2

∂z1,2
∂b1,1

= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]×
(

1 + v ∂h1
∂z1,1

∂z1,1
∂b1,1

)
= {σ1 × x̃i+1 × [1− x̃i+1]× γ1 + σ2 × ỹi+1 × [1− ỹi+1]× γ2} × h2 × [1− h2]× (1 + v× h1 × [1− h1])

(34)

Furthermore, the recurrent neural network can analyze with more consecutive timestamps,
and the number of neurons in the recurrent hidden layer of the recurrent neural network can be
extended for the extraction of time series data. The weight between each of the two neurons can be
updated by the gradient descent method.

3.2.3. De-Normalization and Estimation

For de-normalization and estimation, the estimated normalized longitude and latitude (i.e., x̃i
and ỹi) can be adopted in Equations (35) and (36) to retrieve the estimated longitude and latitude (i.e.,
l̃x,i and l̃y,i), respectively.

l̃x,i = x̃i ×
(

l(+)
x − l(−)x

)
+ l(−)x (35)

l̃y,i = ỹi ×
(

l(+)
y − l(−)y

)
+ l(−)y (36)

4. Practical Experimental Results and Discussion

This section presents and discusses the practical experimental results. Practical experimental
environments are illustrated in Section 4.1, and practical experimental results are shown in Section 4.2.
Section 4.3 discusses the results of different recurrent neural networks.

4.1. Practical Experimental Environments

In the practical experimental environments, an Android application was implemented and
installed into mobile stations (e.g., Redmi 5 running Android platform 7.1.2). The Android application
was performed to collect the coordinates of the GPS module and the RSSIs from cellular networks and
Wi-Fi networks every second. The mobile stations were carried out on a 5.6 km long road segment
in Fuzhou University in China (shown in Figure 6). The segment was traversed eight times by the
same mobile station to collect GPS coordinates and network signals (i.e., the RSSIs of base stations
and Wi-Fi APs). There are 4525 records (i.e., m = 4525), 59 different base stations (i.e., n1 = 59) in long
term evolution (LTE) networks, and 582 different Wi-Fi APs (i.e., n2 = 582) detected in the experiments.
The availability of position method based on cellular networks was 100%, but the availability of
position method based on Wi-Fi networks was about 96%. Some road segments in experimental
environments were not covered by Wi-Fi networks. Therefore, the proposed method based Wi-Fi
network signals for outdoor, but in range of a nearby Wi-Fi networks. This study selected 2263 records
including GPS coordinates and RSSIs as training data, and other 2262 records were selected as testing
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data. The mean and median of distances between each of the two measurement locations along the
test route were 2.8 and 2.6 m, respectively.
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4.2. Practical Experimental Results

For the evaluation of the proposed mobile positioning method, nine experimental cases with
different timestamp numbers (i.e., one timestamp, two timestamps, and three timestamps) and with
different mobile networks (i.e., only cellular networks, only Wi-Fi networks, and cellular and Wi-Fi
networks) were designed and performed. There were 30 neurons in the recurrent hidden layer of the
recurrent neural network for each experimental case. The practical experimental results are shown in
Table 1, as well as in Figures 7–10. Table 1 and Figure 7 illustrated that the more precise location can be
estimated by the proposed method with heterogeneous networks (i.e., long term evolution networks
and Wi-Fi networks). The higher location errors may be obtained by the recurrent neural networks
with one timestamp (i.e., traditional neural networks), which cannot extract the feature of time series
data (shown in Table 1 and Figure 8). The lower location errors can be obtained by the recurrent neural
networks with multiple consecutive timestamps (e.g., two timestamps and three timestamps); from
the experimental results, it can be observed that the average error of location estimation was 9.19 m by
the proposed mobile positioning method with two timestamps.

Table 1. The average errors of estimated locations by the proposed mobile positioning method (unit: meters).

Number of
Timestamps

Only Cellular
Networks

Only Wi-Fi
Networks

Cellular and Wi-Fi
Networks

1 timestamp 39.88 18.88 16.21
2 timestamps 36.51 18.69 9.19
3 timestamps 34.57 17.83 9.26
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4.3. Discussions

This section discusses the structure of neural networks, loss function, computation time, and
power consumption in different cases.

4.3.1. The Structure of Neural Networks

In this subsection, the different structures of neural networks were constructed and performed
for the evaluation of neural networks. The 641 RSSIs from cellular networks (i.e., n1 = 59) and
Wi-Fi networks (i.e., n2 = 582) were considered as the neurons in the input layer of neural networks.
One hidden layer was constructed in neural networks, and the output layer of neural networks
included two neurons (i.e., longitude and latitude). When the hidden layer included 10 neurons,
the structure of neural network was expressed as 641-10-2. This study considered four structures of
hidden layers in neural networks, which included 10, 20, 30, and 40 neurons. Table 2 shows that the
average location errors were lower in the case of 641-30-2. Therefore, this study adopted the structure
of 641-30-2 for the proposed mobile positioning method.

Table 2. The average errors of estimated locations by different structures of neural networks (unit: meters).

Number of Timestamps 641-10-2 641-20-2 641-30-2 641-40-2

1 timestamp 16.23 16.30 16.21 16.27
2 timestamps 12.07 10.87 9.19 12.09
3 timestamps 11.60 10.56 9.26 11.55

4.3.2. The Loss Function of Deep Learning Models

The proposed mobile positioning method used a trained recurrent neural network to
simultaneously estimate longitudes and latitudes; in the recurrent neural network, the estimated
longitudes and latitudes were determined in accordance with the same weights in the input layer and
hidden layers. In addition, this study also considered separately training two recurrent neural networks
for estimating longitudes and latitudes (shown in Figures 11 and 12); the estimated longitudes and
latitudes were determined in accordance with different weights in these recurrent neural networks.
When the method only analyzed the RSSIs from cellular networks, the structure of neural network was
expressed as 59-30-1; when the method only analyzed the RSSIs from Wi-Fi networks, the structure
of neural network was expressed as 582-30-1. Furthermore, the structure of neural network was
expressed as 641-30-1 when the RSSIs from cellular networks and Wi-Fi networks were considered and
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analyzed. The practical experimental results indicated that higher precise locations may be obtained by
the recurrent neural networks with one timestamp (i.e., traditional neural network) (shown in Table 3).
However, big errors of estimated locations may be obtained by the recurrent neural networks with
multiple consecutive timestamps. The estimated location is a two-dimensional output, so overfitting
problems may exist if longitudes and latitudes are estimated by different recurrent neural networks
with multiple consecutive timestamps. Therefore, the interaction effects of longitudes and latitudes
should be analyzed, so they should be estimated by the same recurrent neural network for determining
higher precise locations.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 19 

 

Number of Timestamps 641-10-2 641-20-2 641-30-2 641-40-2 
1 timestamp 16.23 16.30 16.21 16.27 
2 timestamps 12.07 10.87 9.19 12.09 
3 timestamps 11.60 10.56 9.26 11.55 

4.3.2. The Loss Function of Deep Learning Models 

The proposed mobile positioning method used a trained recurrent neural network to 
simultaneously estimate longitudes and latitudes; in the recurrent neural network, the estimated 
longitudes and latitudes were determined in accordance with the same weights in the input layer 
and hidden layers. In addition, this study also considered separately training two recurrent neural 
networks for estimating longitudes and latitudes (shown in Figures 11 and 12); the estimated 
longitudes and latitudes were determined in accordance with different weights in these recurrent 
neural networks. When the method only analyzed the RSSIs from cellular networks, the structure of 
neural network was expressed as 59-30-1; when the method only analyzed the RSSIs from Wi-Fi 
networks, the structure of neural network was expressed as 582-30-1. Furthermore, the structure of 
neural network was expressed as 641-30-1 when the RSSIs from cellular networks and Wi-Fi networks 
were considered and analyzed. The practical experimental results indicated that higher precise 
locations may be obtained by the recurrent neural networks with one timestamp (i.e., traditional 
neural network) (shown in Table 3). However, big errors of estimated locations may be obtained by 
the recurrent neural networks with multiple consecutive timestamps. The estimated location is a two-
dimensional output, so overfitting problems may exist if longitudes and latitudes are estimated by 
different recurrent neural networks with multiple consecutive timestamps. Therefore, the interaction 
effects of longitudes and latitudes should be analyzed, so they should be estimated by the same 
recurrent neural network for determining higher precise locations. 

Table 3. The average errors of estimated locations by the proposed mobile positioning method (unit: 
meters). 

Number of 
Timestamps 

Only Cellular 
Networks 

Only Wi-Fi 
Networks 

Cellular and Wi-Fi 
Networks 

1 34.61 16.46 14.39 
2 259.44 255.87 252.53 
3 254.85 256.61 253.85 

 
Figure 11. A recurrent neural network with one timestamp for estimating longitudes. 

h1

… w1,i …

h0
v

b2,1

c1,i

b1,1

Figure 11. A recurrent neural network with one timestamp for estimating longitudes.Electronics 2019, 8, x FOR PEER REVIEW 16 of 19 

 

 

Figure 12. A recurrent neural network with one timestamp for estimating latitudes. 

4.3.3. Computation Time 

For the analyses of computation time, a server with a GPU module (i.e., GeForce GTX 1080) was 
selected and used. The deep learning models were implemented and executed in TensorFlow and 
Keras libraries.  

In the training stage, the number of epochs was 20,000 for each case. Table 4 showed that the 
lower computation time was needed for the proposed method with cellular networks (i.e., 59 base 
stations). The higher computation time was required in the case of cellular and Wi-Fi networks (i.e., 
59 base stations and 582 Wi-Fi APs). The computation times of the proposed method with one 
timestamp (i.e., a neural network) in the cases of cellular networks, Wi-Fi networks, and cellular and 
Wi-Fi networks were 3022 s, 6928 s, and 7302 s, respectively. In recurrent neural networks, the higher 
computation time was required for the analyses of time series data. The experimental results showed 
that the computation times of the proposed method with two and three timestamps in the case of 
cellular and Wi-Fi networks were 14,533 s and 20,485 s, respectively. 

Table 4. The computation time of estimated locations by the proposed mobile positioning method in 
training stage (unit: seconds). 

Number of 
Timestamps 

Only Cellular 
Networks 

Only Wi-Fi 
Networks 

Cellular and Wi-Fi 
Networks 

1 3022 6928 7302 
2 5383 13,513 14,533 
3 6156 17,938 20,485 

In the performing stage, Table 5 showed that the computation times of the proposed method 
with one, two, and three timestamps in the case of cellular and Wi-Fi networks were 0.37 s, 0.73 s, 
and 1.02 s, respectively. The precise location information can be quickly obtained by the proposed 
method with two timestamps. 

Table 5. The computation time of estimated locations by the proposed mobile positioning method in 
performing stage (unit: seconds). 

Number of 
Timestamps 

Only Cellular 
Networks 

Only Wi-Fi 
Networks 

Cellular and Wi-Fi 
Networks 

1 0.15 0.35 0.37 
2 0.27 0.68 0.73 
3 0.31 0.90 1.02 

4.3.4. Power Consumption 

h1

… w1,i …

h0
v

b3,1

c1,i

b1,1

Figure 12. A recurrent neural network with one timestamp for estimating latitudes.

Table 3. The average errors of estimated locations by the proposed mobile positioning method (unit: meters).

Number of Timestamps Only Cellular Networks Only Wi-Fi Networks Cellular and Wi-Fi Networks

1 34.61 16.46 14.39
2 259.44 255.87 252.53
3 254.85 256.61 253.85

4.3.3. Computation Time

For the analyses of computation time, a server with a GPU module (i.e., GeForce GTX 1080) was
selected and used. The deep learning models were implemented and executed in TensorFlow and
Keras libraries.

In the training stage, the number of epochs was 20,000 for each case. Table 4 showed that the lower
computation time was needed for the proposed method with cellular networks (i.e., 59 base stations).
The higher computation time was required in the case of cellular and Wi-Fi networks (i.e., 59 base
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stations and 582 Wi-Fi APs). The computation times of the proposed method with one timestamp (i.e.,
a neural network) in the cases of cellular networks, Wi-Fi networks, and cellular and Wi-Fi networks
were 3022 s, 6928 s, and 7302 s, respectively. In recurrent neural networks, the higher computation
time was required for the analyses of time series data. The experimental results showed that the
computation times of the proposed method with two and three timestamps in the case of cellular and
Wi-Fi networks were 14,533 s and 20,485 s, respectively.

Table 4. The computation time of estimated locations by the proposed mobile positioning method in
training stage (unit: seconds).

Number of Timestamps Only Cellular Networks Only Wi-Fi Networks Cellular and Wi-Fi Networks

1 3022 6928 7302
2 5383 13,513 14,533
3 6156 17,938 20,485

In the performing stage, Table 5 showed that the computation times of the proposed method with
one, two, and three timestamps in the case of cellular and Wi-Fi networks were 0.37 s, 0.73 s, and 1.02
s, respectively. The precise location information can be quickly obtained by the proposed method with
two timestamps.

Table 5. The computation time of estimated locations by the proposed mobile positioning method in
performing stage (unit: seconds).

Number of Timestamps Only Cellular Networks Only Wi-Fi Networks Cellular and Wi-Fi Networks

1 0.15 0.35 0.37
2 0.27 0.68 0.73
3 0.31 0.90 1.02

4.3.4. Power Consumption

For the analyses of power consumption, an Android phone (i.e., Redmi 5 running Android
platform 7.1.2) was selected and used for measuring its battery life as an indicator. In experiments,
an Android application was implemented on the phone to periodically obtain location by GPS or
the proposed mobile positioning method. However, the cellular network module was necessarily
enabled for data communications via LTE networks. The experimental results were collected and
summarized in Table 6. Suppose the battery had a capacity of J Joules. The baseline lifetime with an
enabled cellular network module is 254,500 s, so the baseline power consumption B = J/254,500 Watts.
For the analysis of Wi-Fi power consumption W, the lifetime with an enabled Wi-Fi module is 175,450
s, so W + B = J/175,450. Furthermore, the lifetime with an enabled GPS module is 81,000 s, so G + B =
J/81,000 for the analysis of GPS power consumption G. For the comparison of power consumption,
the values of G/B, G/W, and G/(W + B) can be measured as 2.14, 4.75, and 1.47, respectively. Therefore,
the proposed method can obtain location information with lower power consumption.

Table 6. The power consumption comparisons. GPS—global positioning system.

Enable Modules Sampling Period Lifetime (Seconds)

Cellular Continuous (1/s) 254,500
Cellular and Wi-Fi Continuous (1/s) 175,450
Cellular and GPS Continuous (1/s) 81,000

5. Conclusions and Future Work

This section summarizes and describes the contributions of this study in Section 5.1. The limitations
of the proposed method and future work are presented in Section 5.2.
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5.1. Conclusions

In previous studies, cellular-based positioning methods could estimate locations of mobile
stations in outdoor environments, but the accuracies of estimated locations may have been lower.
Moreover, Wi-Fi-based positioning methods can precisely estimate the locations of mobile stations,
but the transmission coverage of Wi-Fi APs is not enough in outdoor environments. Although some
studies used convolutional neural networks to extract the features of spatio metrics, temporal data of
signals from cellular and Wi-Fi networks were not analyzed for reducing location errors. Therefore,
a mobile positioning system and a mobile positioning method based on recurrent neural networks are
proposed to analyze the RSSIs from heterogeneous networks, which include cellular networks and
Wi-Fi networks. The network signals from heterogeneous networks can be analyzed to improve the
accuracies of the estimation of locations. Furthermore, the RSSIs in multiple consecutive timestamps
can be adopted in recurrent neural networks for the analyses of time series data and location estimation.
In practical experimental environments, the results showed that the average error of location estimation
was 9.19 m by the proposed mobile positioning method with two timestamps. Therefore, the proposed
system and method can be applied to obtain LBS in outdoor environments.

5.2. Future Work

Although the higher accuracies of estimation locations can be obtained by recurrent neural
networks with multiple consecutive timestamps, some overfitting problems may exist. For instance,
the higher errors of estimated locations were obtained by recurrent neural networks with three
timestamps. Therefore, overfitting solutions of time series data [24] can be investigated to improve the
accuracies of estimated locations in the future.
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